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Abstract. The present study aimed to investigate the dynamic 
changes in peripheral blood leucocyte subpopulations, cyto‑
kine and miRNA levels, and changes in computed tomography 
(CT) scores in patients with severe coronavirus disease 2019 
(COVID‑19) (n=14) and age‑matched non‑COVID‑19 volun‑
teers (n=17), which were included as a reference control group. 

All data were collected on the day of patient admission (day 0) 
and on the 7th, 14th and 28th days of follow‑up while CT of 
the lungs was performed on weeks 2, 8, 24 and 48. On day 0, 
lymphopenia and leucopenia were detected in most patients 
with COVID‑19, as well as an increase in the percentage 
of banded neutrophils, B cells, and CD4+ Treg cells, and a 
decrease in the content of PD‑1low T cells, classical, plasmacy‑
toid, and regulatory dendritic cells. On day 7, the percentage of 
T and natural killer cells decreased with a concurrent increase 
in B cells,  but returned to the initial level after treatment 
discharge. The content of different T and dendritic cell subsets 
among CD45+ cells increased during two weeks and remained 
elevated, suggesting the activation of an adaptive immune 
response. The increase of PD‑1‑positive subpopulations of 
T and non‑T cells and regulatory CD4 T cells in patients 
with COVID‑19 during the observation period suggests 
the development of an inflammation control mechanism. 
The levels of interferon γ‑induced protein 10 (IP‑10), tumor 
necrosis factor‑α (TNF‑α) and interleukin (IL)‑6 decreased 
on day 7, but increased again on days 14 and 28. C‑reactive 
protein and granulocyte colony‑stimulating factor (G‑CSF) 
levels decreased gradually throughout the observation period. 
The relative expression levels of microRNA (miR)‑21‑5p, 
miR‑221‑3p, miR‑27a‑3p, miR‑146a‑5p, miR‑133a‑3p, and 
miR‑126‑3p were significantly higher at the beginning of 
hospitalization compared to non‑COVID‑19 volunteers. The 
plasma levels of all miRs, except for miR‑126‑3p, normalized 
within one week of treatment. At week 48, CT scores were 
most prominently correlated with the content of lymphocytes, 
senescent memory T cells, CD127+ T cells and CD57+ T cells, 
and increased concentrations of G‑CSF, IP‑10, and macrophage 
inflammatory protein‑1α.
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Introduction 

The disease caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2) has been designated as coro‑
navirus disease 2019 (COVID‑19) by the World Health 
Organization. COVID‑19 has spread globally, leading to a 
pandemic that has infected over 730 million people and caused 
over 6.8 million deaths (reported on February 8, 2023) in over 
200 countries (https://covid19.who.int/). COVID‑19 is clini‑
cally characterized by fever, fatigue, muscle pain, diarrhea, and 
pneumonia and can cause death in severe cases. Leukocytosis, 
leukopenia, and lymphopenia are commonly observed in 
patients with COVID‑19 (1). Moreover, the main feature of 
COVID‑19 is the development of a cytokine release syndrome, 
which leads to acute respiratory distress syndrome (ARDS) 
and/or multiple‑organ failure demonstrating that immunopa‑
thology plays an important role in the progression of disease 
severity (2‑4). Exudative, proliferative, and fibrotic phases of 
ARDS can be triggered by a variety of clinical circumstances, 
including pneumonia, sepsis, and blood transfusion (5). The 
capillary membrane is ruptured and leaks during the first week 
of the exudative phase, resulting in edema, increased lung 
permeability, and respiratory insufficiency (6). The prolifera‑
tive phase is defined by fibroblast migration through breaks 
in the alveolar membrane, generating a cellular granulation 
tissue, followed by epithelial cell withdrawal, transforming 
the intra‑alveolar exudate into the interstitial tissue (7). The 
fibrotic phase, which includes substantial remodeling and 
collagenous tissue substitution, as well as scar formation, 
occurs during the third or fourth week of respiratory failure. 
Chest computed tomography (CT) in patients with COVID‑19 
is a commonly used non‑invasive method for both diagnosis 
and management of the disease. CT is associated with disease 
severity and comorbidities in aged patients (8‑10). It is crucial 
to associate clinical parameters with the formation of fibrotic 
lesions observed in CT in the long‑term period.

Leukocytes activated within an excessive systemic inflam‑
matory response syndrome are among the factors contributing 
to the pathophysiology of ARDS and inflammatory media‑
tors. They migrate into the interstitial space of the lungs and 
increase endothelial permeability (11). This is accompanied 
by a significant influx of alveolar macrophages and neutro‑
phils, attracted by cytokines secreted by leukocytes, followed 
with the destabilization of the surfactant monolayer in the air 
spaces, promotion of the alveolar collapse, and impairment of 
gas‑exchange abnormalities (12).

Pro‑inflammatory cytokines including tumor necrosis 
factor‑α (TNF‑α), interleukin (IL)‑6, interferon γ‑induced 
protein 10 (IP‑10), monocyte chemoattractant protein‑1 
(MCP‑1), and macrophage inflammatory protein‑1α (MIP‑1α) 
and their interactions across different cell types are other 
contributors to ARDS development (6). Some cells may respond 
to certain stimuli directly and release a specific attractant that 
affects a different cell type. TargeT cells respond by gener‑
ating chemokines, sending out feedback signals, or recruiting 
a new subset of targeT cells. A cytokine storm develops as 
a result of this chain of events. The mechanism of cytokine 
release syndrome is complex and involves dysregulation of the 
immune cell response; therefore, strategies to control cytokine 
release are under investigation. Some prognostic risk factors 

of COVID‑19 severity have already been explored, such as 
age, diabetes, vitamin D deficiency, IL‑6 levels, N‑terminal 
pro‑B‑type natriuretic peptide (NT‑proBNP) levels, and serum 
amyloid A levels (13‑17).

Circulating microRNAs (miRNAs or miRs) have already 
been proposed as diagnostic and prognostic markers in 
ARDS‑related and immune pathologies. For instance, miR‑27 
plays an important role in reducing the inflammatory process 
in acute lung injury and M2 macrophage polarization (18). 
In addition, miR‑192‑5p and miR‑323a‑3p were reported to 
be differentially expressed in non‑survivors and survivors of 
COVID‑19 (19). Nevertheless, the role of miRNAs in patients 
with COVID‑19 has not been comprehensively addressed.

Numerous studies have described the clinical character‑
istics of patients with COVID‑19, including epidemiological, 
clinical, laboratory, radiological, and treatment data (9,20,21). 
Most of these results refer to the differences between severe 
and non‑severe patients during hospitalization or assessment 
of COVID‑19 severity. Other reports include test results from 
only a single time point collected on admission, exacerbation, 
or discharge. However, analysis at only a single time point may 
conceal alterations in the parameters of an individual patient 
when the patient's condition changes, and it may not demon‑
strate diversification with disease aggravation. Recent studies 
analyzed a series of large sample cohorts, which included 
complete data on patients with COVID‑19 in different disease 
states (1,20,22); however, there is limited research on dynamic 
changes in blood cell parameters and inflammatory factors 
to characterize disease progression and their profiling in the 
long‑term perspective. The immune cells from the peripheral 
blood of a patient may be used as markers for COVID‑19 
and can be analyzed using fast and easily accessible blood 
tests (21,23,24). However, their implementation in clinical 
practice is limited due to the uncertainty of the mechanisms 
leading to changes in blood cell features and inflammatory 
components. The underlying fine changes in inflammatory 
subpopulations in peripheral blood cells, as well as changes 
in cytokine levels in patients with COVID‑19, are ambiguous.

Therefore, in the present study, the dynamic fine changes 
in blood parameters, including the total number of blood cells 
and individual cell subpopulations, selected miRNAs, and 
cytokine levels in the peripheral blood of patients with severe 
COVID‑19 were investigated over 28 days of the disease. In 
addition, quantitative chest CT analysis in conjunction with 
clinical laboratory data were used to identify prognostic 
factors for disease severity over a period of 48 weeks after 
onset of symptoms. Predictors included CT score values, blood 
assay parameters, and data on cytokines and miRNA levels at 
four time points. 

Materials and methods

Participants. Between October and December 2020, a total 
of 14 confirmed cases of patients with COVID‑19 (COVID‑19 
group) at the Kyiv City Clinical Hospital No. 4, were included 
in the present study. As a control group, 17 age‑matched 
non‑COVID‑19 volunteer participants, who had not been 
hospitalized but had some underlying comorbidities, as indi‑
cated in Table I, were enrolled. The COVID‑19 group included 
10 male and 4 female patients between 55 and 64 years old. 
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The volunteer group consisted of 7 male and 10 female partici‑
pants aged between 36 and 67 years. The study protocol was 
designed in accordance with the Declaration of Helsinki and 
approved by the Ethics Committee of the Kyiv City Clinical 
Hospital No. 4 (protocol no. 280; April 23, 2020). Written 
informed consent was obtained from all subjects enrolled 
in the study. All patients met the moderate severity criteria 
according to the interim guidelines from the WHO and the 
Novel Coronavirus Pneumonia Diagnosis and Treatment Plan 
issued by the National Health Commission of the People's 
Republic of China (Provisional 7th Edition) (25). Patients from 
the COVID‑19 group had any of the following conditions: 
Respiratory distress, RR ≥30 times/min; oxygen saturation 
(SpO2) ≤93% at rest; and bilateral pneumonia, which was 
observed in all enrolled participants. The major treatments for 
patients included drug therapy, such as antibiotic therapy/dexa‑
methasone therapy; patients received low‑pressure oxygen 
through a face mask while no mechanical ventilation was 
applied. Patients with severe COVID‑19 with symptoms 
persisting after 7‑11 days of standard treatment participated 
in the present study. Laboratory and clinical data from each 
patient were acquired for a period of 28 days, while chest CT 
data were acquired for 48 weeks; missing data for blood assays 
were due to hypercoagulation or insufficient volume.

Respiratory pathogen detection. Laboratory validation of 
SARS‑CoV‑2 was performed at the Kyiv City Clinical Hospital 
No. 4 using reverse transcripton‑polymerase chain reaction 

(RT‑PCR). Briefly, throat swab specimens were obtained 
from the upper respiratory tract of patients and stored imme‑
diately in the viral transport medium. Following extraction 
of total RNA, RT‑PCR was performed to identify the virus. 
Genotyping of the SARS‑CoV‑2 was not performed, but the 
delta strain dominated in the Ukraine at that time period.

Blood collection. Blood samples (12‑20 ml) of the 14 patients 
with COVID‑19 were collected on the day of admission 
(day 0) and on days 7, 14, and 28 after admission. Briefly, 5 ml 
was used for routine blood assays completed using a Swelab 
Alfa Basic hematology analyzer (Boule Medical AB) at the 
Kyiv City Clinical Hospital No. 4. The remaining portions of 
blood samples were immediately transported to the Institute 
of Cell Therapy (Kyiv, Ukraine) where the plasma and serum 
were separated, snap‑frozen, and stored at ‑80˚C for cytokine 
detection and miRNA analysis. Peripheral blood mononuclear 
cells (PBMCs) were isolated by density gradient centrifuga‑
tion using Ficoll‑Paque PLUS density gradient media (Life 
Sciences; Cytiva), frozen in media containing 10% DMSO 
(Sigma‑Aldrich; Merck KGaA) and 90% fetal bovine serum 
(Sigma‑Aldrich; Merck KGaA), and stored in liquid nitrogen 
until multiparametric fluorescence flow cytometry was 
performed.

Flow cytometric analysis. Cryopreserved PBMCs were 
thawed in a water bath at 37˚C, washed with RPMI‑1640 
(Sigma‑Aldrich; Merck KGaA) supplemented with 2% fetal 

Table I. Clinical characteristics of patients with COVID‑19 included in the present study.

 Patients with non‑COVID‑19 
Parameters COVID‑19 (n=14) volunteers (n=17) P‑value

Age, years (median, range) 62 (55‑64) 62 (36.2‑67) 0.336
Sex   0.200
  Male  10/14 (71.42%) 7/17 (41.17%) 
  Female 4/14 (28.57%) 10/17 (58.82%) 
The interval from illness onset to hospital 11.0 (8.5‑12.8) Not applicable Not applicable
admission (days)   
Underlying diseases, no. (%)   
  Hypertension 8/14 (57.14%) 7/17 (41.17%) 0.376
  Diabetes 1/14 (7.14%) 2/17 (11.76%) 1.000
  Heart disease 6/14 (42.85%) 2/17 (11.76%) 0.097
Symptoms, no. (%)  Not applicable Not applicable
  Fever 10/14 (71.42%)  
  Cough 14/14 (100.0%)  
  Shortness of breath 11/14 (78.57.0%)  
  Diarrhea 1/14 (7.14%)  
  Fatigue 14/14 (100.0%)  
  Myalgia 3/14 (21.42%)  
Clinical outcome, no. (%)  Not applicable Not applicable
  Recovered and discharged 13/14 (92.85%)  
  Death 1/14 (7.14%)  

COVID‑19, coronavirus disease 19.
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bovine serum (Sigma‑Aldrich; Merck KGaA), and centrifuged 
at 350 x g for 5 min at room temperature. Cell pellets were 
resuspended in RPMI‑1640, filtered through a 40‑µm nylon 
cell strainer (Corning; Corning, Inc.), and aliquoted at 50 µl 
into 5 ml polystyrene tubes (up to 3x105 cells per tube). Cells 
were incubated with fluorochrome‑conjugated monoclonal 
antibodies for 30 min at 4˚C protected from light in an appro‑
priate dilution of 0.5 µg per 106 cells. Following incubation, 
any unbound antibodies were washed away with 2 ml of cell 
wash buffer (BD Biosciences) by centrifugation at 350 x g for 
5 min at 4˚C. Prior to analysis, cells were gently resuspended 
in 300 µl of cell wash buffer.

Flow cytometric gating strategy. A total of seven panels of 
mononuclear leukocyte lineage and phenotypic markers were 
defined to broadly assess the immunological cellular profile 
of cryopreserved PBMCs: CD45/CD14/CD1c/CD11b/CD11c, 
CD45/CD14/CD1c/CD303/HLA‑DR, CD45/CD3/CD19/
CD16+CD56, CD3/CD4/CD8/CXCR3/HLA‑DR/CD45RO, 
CD3/CD4/CD8/PD1/CD57/CD45RO, CD3/CD4/CD8/
PD‑1/HLA‑DR, and CD3/CD4/CD8/CD25/CD127. To avoid 
inclusion in the analysis of granulocytes, CD45‑positive 
mononuclear cells were gated out of all events by side 
scattering followed by subsequent singlet gating. The 
percentage of T cells (CD45+CD3+), B cells (CD45+CD19+), 
NK cells (CD45+CD16/56+), and monocytes (CD45+CD14+) 
were calculated among the selected mononuclear cells. 
Subsequent subpopulations of cells were estimated from the 
corresponding gated populations described above. T cells were 
further subdivided into Treg (CD25+), T memory (CD45RO+), 
T effector (CD183+), and activated T cells (HLA‑DR+), as 
well as senescent CD57+ or CD279+ cells. Dendritic cells 
were further classified based on the differential expression 
of CD1c, CD11b, CD11c, and CD303 (Figs. S1‑S3). The final 
relative content of each subpopulation was calculated for all 
CD45‑positive mononuclear cells.

Antibodies used for flow cytometry and the defined 
lymphocyte subpopulations are listed in Table SI. To deter‑
mine viable cells, 7‑aminoactinomycin D dye (7‑AAD; BD 
Biosciences) was used.

Unstained control, single stained, and fluorescence minus 
one controls were used to adjust the compensation settings of 
fluorochromes overlapping for multiparameter analysis. At 
least 1x105‑3x105 cells per sample were recorded using a BD 
FACSAria cell sorter (Becton Dickinson; BD Biosciences). 
Data were analyzed using the BD FACSDiva 6.1.2 software 
(Becton Dickinson; BD Biosciences). The combinations of 
markers used to analyze distinct populations of PBMCs are 
listed in Table SII.

Cytokine measurement. The C‑reactive protein (CRP) 
content in patient sera was determined using AccuBind 
(cat. no. 3125‑300; Monobind, Inc.) according to the manufac‑
turer's instructions. The detection limit was 0.014 µg/ml. For the 
detection of granulocyte colony‑stimulating factor (G‑CSF), 
IL‑2, IL‑6, TNF‑α, IP‑10, MCP‑1, and MIP‑1α, enzyme‑linked 
immunosorbent assay (ELISA) was performed using the 
Invitrogen kit according to the manufacturer's instructions. 
The following ELISA and standard curves (all from Instant 
ELISA; Invitrogen; Thermo Fisher Scientific) were employed 

for the measurement of each parameter: Human G‑CSF 
(cat. no. BMS2001INST), IL‑2 (cat. no. BMS221INST), IL‑6 
(cat. no. BMS213INST), TNF‑α (cat. no. KHC3014), IP‑10 
(cat. no. BMS284INST), MCP‑1 (cat. no. BMS281INST), and 
MIP‑1α (cat. no. KAC2201). The sensitivity was 11 pg/ml for 
G‑CSF, 2.3 pg/ml for IL‑2, 0.92 pg/ml for IL‑6, 0.13 pg/ml for 
TNF‑α, 1 pg/ml for IP‑10, 2.31 pg/ml for MCP‑1, and 2 pg/ml 
for MIP‑1α. All absorbance measurements were carried out 
using a HumaReader HS plate reader (Human GmBH). Each 
sample was performed in duplicate.

miRNA expression. miRNA was extracted from the plasma of 
14 patients with COVID‑19 and the 17 age‑matched volunteers 
from the control group according to the instructions for the 
NucleoSpin miRNA Kit (Macherey‑Nagel GmbH & Company 
KG) and stored at ‑80˚C. The concentration of isolated 
miRNA was measured using a NanoDrop 2000 spectropho‑
tometer (Thermo Fisher Scientific, Inc.), and miRNA was 
reverse transcribed into cDNA using the miRNA 1st‑Strand 
cDNA Synthesis Kit (Agilent Technologies) with a universal 
reverse primer from the synthesis kit. RT‑quantitative (q)PCR 
was conducted to detect the miRNA levels using a 5X HOT 
FIREPolEvaGreen qPCR Mix Plus kit (no ROX) (Solis 
BioDyne OÜ) with a CFX96™ Real‑Time PCR Detection 
System (Bio‑Rad Laboratories, Inc.). For each sample, the 
RT‑qPCR reaction consisting of a 15 min hot start at 95˚C for 
polymerase activation, followed by 44 cycles of 15 sec at 95˚C 
and 20 sec at 60˚C, was performed in triplicate. The ΔΔCq 
method (26) was used for miRNA quantification analysis, 
with U6 as a reference. The primer sequences are listed in 
Table SIII.

CT evaluation and scoring. Following admission, all patients 
lying in the supine position were subjected to high‑resolution 
plain chest CT scanning using a Philips Brilliance CT 
64 slice scanner (Philips Medical Systems Technologies, 
Ltd.), applying a slice thickness of 1 mm with 120 kV and 335 
mAs. CT images were analyzed at weeks 2, 8, 24 and 48 after 
enrolment. Processing and grading of CT images considered 
radiologic features including ground glass opacity, reticulation, 
and honeycombing. The approach applied for the quantitative 
determination of the affected lung area was described by 
Büttner et al (27) with some changes. Briefly, the affected 
lung area was measured in polygonal regions of interest in one 
image at three levels (upper point, above the level of the carina; 
lower point, below the highest point of the right diaphragm; and 
middle point, between the previous two, right at the midpoint). 
Each image was parted into four quadrants with further 
dividing of each quadrant into 5 sub‑quadrants covering 
5% of the total image area. The scale applied for evaluation 
included 7 values: 0 (no involvement), 1 (≤10% involvement), 
2 (11‑20% involvement), 3 (21‑30% involvement), 4 (31‑40% 
involvement), 5 (41‑50% involvement), 6 (>50% involvement). 
The total severity score was the sum of the scores of the five 
lung lobes.

Statistical analysis. SPSS version 27.0 software (IBM Corp.) 
was used for statistical analysis. The variables were presented 
as medians with interquartile ranges. The baseline character‑
istics of the two groups were compared using the Chi‑square 
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test or Fisher's exact test for categorical variables or the 
Mann‑Whitney U test for continuous variables. The Wilcoxon 
signed‑rank test was used to compare the time‑dependent 
events. The Mann‑Whitney U test was used to compare 
the differences between the groups at each time point. The 
Spearman rank test was performed to assess the correlations 
between variables. GraphPad Prism software (version 7.0a; 
GraphPad Software, Inc.) was used for the data visualization. 
A P‑value of ≤0.05 was considered to indicate a statistically 
significant difference.

Results

Basic characteristics of the patients with COVID‑19. A total 
of 14 patients with severe COVID‑19 admitted to the Kyiv 
Clinical Hospital No. 4 were enrolled in the present study 
after obtaining written informed consent. The detailed patient 
characteristics are shown in Table I. The median age of the 
COVID‑19 and control groups were 62.0 (55‑64.0) and 62.0 
(36.2‑67.0) years, respectively, and the interval from illness 
onset to hospital admission for the COVID‑19 group was 11.0 
(8.5‑12.8) days. 

Dynamic profile of hematological parameters in patients with 
COVID‑19. Blood parameter comparisons in patients with 

COVID‑19 depending on the time of assessment are presented 
in Fig. 1A. White blood cell (WBC) and granulocyte counts 
increased on day 7 and steadily decreased by day 28, whereas 
the percentage of neutrophils, including banded and segmented, 
decreased gradually from the time of admission on day 0 
to 28. However, the percentages and counts of lymphocytes 
increased regularly. Compared to day 0, the percentage 
of eosinophils increased significantly on day 28 (P≤0.01). 
Platelet count showed a sharp increase on day 7; however, all 
values appeared within the normal range (125.0‑350.0x109/l). 
A significant decrease in erythrocyte sedimentation rate 
(ESR) was observed only on day 28 compared to the initial 
day (P≤0.05). Other parameters, including the percentage of 
monocytes, red blood cell count, and hemoglobin, were not 
altered during COVID‑19 progression and early recovery.

On day 0, 5/14 (35.71%) patients with COVID‑19 had 
leucopenia, whereas 2/13 (15.38%) patients had leukocytosis 
on day 7. Lymphopenia (≤1.1x109/l) occurred in 12/14 (85.71%) 
patients with COVID‑19 on day 0 and was not observed on 
day 28 (Fig. 1B).

Dynamic profile of lymphocyte cell subpopulations in patients 
with COVID‑19. The frequencies of major lymphocyte subsets 
in the peripheral blood of the patients with COVID‑19 are 
shown in Fig. 2A. The percentage of CD45+ WBC on day 7 was 

Figure 1. Dynamic changes in hematological parameters in patients with COVID‑19. (A) Dynamic profile of blood cell types. Blue rectangles denote the normal 
range. (B) Ratio of leukopenia and leukocytosis. (C) Ratio of lymphopenia. Data are presented as the median and interquartile range. Wilcoxon signed‑rank 
test: *P≤0.05, **P≤0.01 and ***P≤0.001. COVID‑19, coronavirus disease 19; WBC, white blood cells; ESR, erythrocyte sedimentation rate; RBC, red blood cells.
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significantly lower than that in the control group (P≤0.05) but 
restored on day 14. The median value of T cell (CD45+CD3+) 
content in the COVID‑19 group decreased at day 7 and returned 
to significantly elevated levels on days 14 and 28 (P≤0.05). The 
percentage of B cells (CD19+) peaked on day 7 compared to 
that on days 14‑28 and differed significantly from those of 
the control group during the first week of hospitalization. The 
percentage of natural killer (NK) cells (CD3‑CD16+CD56+) 
decreased from the start of observation reaching a nadir on 
day 7 of hospitalization and then increased constantly but not 
significantly through the next two weeks.

The content of double‑positive (DP) T cells CD3+CD4+CD8+ 
among mononuclear leukocytes was under‑represented on 
days 0 and 7 and restored to values of the control group on 
days 14 and 28. The frequencies of PD‑1‑expressing cells in 
both CD3+ and CD3‑ blood cell populations increased during 
the four weeks of assessment. A significant increase in CD3+ 
PD‑1 expressing blood cells occurred from 7 to 14 days 
(P≤0.01), whereas CD3‑ PD‑1 expressing cells increased 
during the first week of hospitalization and then reached a 
plateau. The percentage of PD‑1low T cells was significantly 
higher in COVID‑19 patients on days 14 and 28 compared 
to the control group. The percentage of PD‑1low non‑T cells 
was significantly lower at the beginning of hospitalization 
compared to the cohort of non‑COVID‑19 volunteers. The 
content of CD25+ T cells increased during the observation 
period and was significantly higher than that in the control 
group, from day 7 onward. The percentages of CD127+ T cells 
demonstrated consistent slight growth during the observation 
period, reaching significant differences compared to those of 
the control group on days 14 and 28 (Fig. 2B).

Dynamic profile of changes in subpopulations of T cells in 
patients with COVID‑19
CD8 T cells. The content of cytotoxic CD3+CD4‑CD8+ 
T cells and effector CD3+CD4‑CD8+CXCR3low T cells 
steadily increased from day 0 to 28. The content of 
act ivated CD3+CD4 ‑CD8+HLA‑DR+ and exhausted 

CD3+CD4‑CD8+HLA‑DR+PD‑1low T cells increased during 
the entire observation period and was significantly higher 
on days 7, 14, and 28 in comparison with non‑COVID‑19 
volunteers. The percentage of senescent CD8 T cells 
CD3+CD4‑CD8+CD57+PD‑1low and their memory subpopu‑
lation CD3+CD4‑CD8+CD57+PD‑1lowCD45RO+ began to 
increase on day 7 and reached the maximum value on day 28. 
Compared to the control group, the content of senescent CD8+ 
T cells and the memory subpopulation of senescent CD8+ 
T cells was significantly higher on days 14 and 28 (P≤0.05 and 
P≤0.01, respectively; Fig. 3A).

CD4 T cells. The percentage of CD3+CD4+CD8‑Th cells 
increased significantly from the day 0 to 28. The memory 
CD4+ T cells CD3+CD4hiCD45RO+ subpopulation increased 
steadily throughout the four weeks. The effector CD4+ 
T cells CD3+CD4+CD8‑CXCR3low subpopulation increased 
over 14 days and did not change during the fourth week. The 
abovementioned CD4 T cell subpopulations were comparable 
to those of the control group. The population of activated 
CD4 CD3+CD4+CD8‑HLA‑DR+ T cells increased for 28 days, 
with a peak value on day 14 acquiring a significant difference 
(P≤0.05) compared to the control group. Exhausted CD4 
CD3+CD4+CD8‑HLA‑DR+PD‑1low and senescent memory 
CD3+CD4+CD8‑CD57+PD‑1lowCD45RO+ T cells shared the 
same pattern as activated CD4 T cells. The percentage of senes‑
cent CD4 T cells CD3+CD4+CD8‑CD57+PD‑1low increased 
over 28 days. The senescent, senescent memory, and exhausted 
cells in the COVID‑19 group were significantly abundant 
(P≤0.05) on days 14 and 28. The percentage of CD4 regulatory 
T cells CD3+CD4+CD8‑CD25lowCD127low increased and 
remained significantly higher on days 0 (P≤0.05), 7 (P≤0.01), 
14 (P≤0.01), and 28 (P≤0.001) compared to the control group 
(Fig. 3B). 

Dynamic profile of changes in subpopulations of myeloid 
mononuclear cells in patients with COVID‑19. The percentage 
of CD45+CD14+ monocytes gradually decreased over 28 days. 

Figure 2. Dynamic changes in lymphocyte subsets in patients with COVID‑19. (A) Frequency of white blood cells, T cells, B cells, natural killer cells. 
(B) Frequency of double‑positive CD4+CD8+ T cells, CD3+PD‑1low T cells, CD3‑PD‑1low non‑T cells, CD25‑expressing, and CD127‑expressing T cells. Data 
are presented as the median and interquartile range. Wilcoxon signed‑rank test was used for comparison of time‑dependent events: *P≤0.05, **P≤0.01 and 
***P≤0.001. Mann‑Whitney U test was used for comparing the values of the control and COVID‑19 groups at each time point: #P≤0.05, ##P≤0.01 and ###P≤0.001. 
The blue line represents the COVID‑19 group; and the black line represents the control group. COVID‑19, coronavirus disease 19; WBC, white blood cells; 
NK, natural killer.
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The content of CD14‑CD11c+CD11blowCD1c+ dendritic cells 
was significantly lower on day 0 and 7 (P≤0.001) compared to 
the control group; however, it normalized on days 14 and 28. 
The content of CD14‑CD1c+ dendritic cells increased during 
the observation period and was within the normal range. The 
content of plasmacytoid dendritic cells CD303+HLA‑DR+ 
was significantly lower over the first 7 days than in the 
control group, and then, it significantly increased from day 7 
to 28 (P≤0.01). Compared to non‑COVID‑19 volunteers, the 
percentage of regulatory CD14+CD11bdimCD11clow dendritic 
cells was significantly under‑represented over four weeks of 
assessment with a nadir on day 7. The percentage of inflam‑
matory monocyte‑derived CD14+CD1c+CD11c+ dendritic cells 
gradually increased from day 7 to 28 and reached a significant 
difference at days 14 and 28 (P≤0.01 and P≤0.001, respectively) 
compared to the control group (Fig. 4).

Cytokine and miRNA levels in the plasma of patients with 
COVID‑19. During two weeks of hospitalization, CRP levels 
in the plasma of patients with COVID‑19 were significantly 
higher than in the plasma of volunteers in the control group 

and decreased from day 7 to 28 of observation. IP‑10 levels 
in the plasma of patients with COVID‑19 were increased 
compared to those in the control group, except for a drop 
to normal ranges on day 7. TNF‑α levels were significantly 
higher on days 0, 14, and 28 in the COVID‑19 group, with 
a slight reduction on day 7 compared to the control group. 
The concentration of MIP‑1α was higher at the beginning of 
observation in COVID‑19 patients in comparison with the 
control group. Furthermore, the levels of MIP‑1α, IL‑6, and 
IL‑2 were not altered throughout the observation period in the 
COVID‑19 group between different time points. However, IL‑6 
values differed significantly from the control group on days 0 
(P≤0.001), 7 (P≤0.01), and 14 (P≤0.01). The concentration of 
G‑CSF gradually decreased over the observation period in the 
COVID‑19 group and MCP‑1 levels in the plasma of patients 
with COVID‑19 increased from day 7 (Fig. 5). 

At the beginning of observation, all investigated miRs 
had significantly higher expression levels compared to 
non‑COVID‑19 volunteers. The relative expression levels 
of miR‑27a‑3p and miR‑133a‑3p in patients with COVID‑19 
decreased significantly over the first week and remained at a 

Figure 3. Dynamic changes in T‑cell subsets in patients with COVID‑19. (A) Different subsets of CD8 T cells. (B) Different subsets of CD4 T cells. Data 
are presented as the median and interquartile range. Wilcoxon signed‑rank test was used for comparison of time‑dependent events: *P≤0.05, **P≤0.01 and 
***P≤0.001. Mann‑Whitney U test was used for comparing the values of the control and COVID‑19 groups at each time point: #P≤0.05, ##P≤0.01 and ###P≤0.001. 
The blue line represents the COVID‑19 group; and the black line represents the control group. COVID‑19, coronavirus disease 19.
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low level up to day 28 compared to day 0 (P≤0.05 and P≤0.01, 
respectively). The relative expression levels of miR‑146a‑5p, 
miR‑21‑5p, and miR‑221‑3p in the plasma of patients with 
COVID‑19 were significantly lower on days 14 and 28 compared 
to day 0. The relative level of miRNA expression was altered 
most markedly on day 14 compared to day 0. For example, 

the relative expression levels of miR‑21‑5p and miR‑146a‑5p 
exhibited a 4‑fold decrease, whereas that of miR‑221‑3p 
exhibited a 3‑fold decrease. The relative expression level of 
miR‑126‑3p in the COVID‑19 group significantly differed at 
day 14 compared to the day 0 time point. The expression of 
all investigated miRNAs markedly differed from the control 

Figure 4. Dynamic changes in myeloid mononuclear cell subsets in patients with COVID‑19. Data are presented as a median and interquartile range. Wilcoxon 
signed‑rank test was used for comparison of time‑dependent events: *P≤0.05, **P≤0.01 and ***P≤0.001. Mann‑Whitney U test was used for comparing the values 
of the control and COVID‑19 groups at each time point: #P≤0.05, ##P≤0.01 and ###P≤0.001. The blue line represents the COVID‑19 group; and the black line 
represents the control group. COVID‑19, coronavirus disease 19.

Figure 5. Dynamic changes in cytokine levels in patients with COVID‑19. Data are presented as a median and interquartile range. Wilcoxon signed‑rank test 
was used for comparison of time‑dependent events: *P≤0.05, **P≤0.01 and ***P≤0.001. Mann‑Whitney U test for comparing the control and COVID‑19 groups 
at each time point: #P≤0.05, ##P≤0.01 and ###P≤0.001. The blue line represents the COVID‑19 group; and the black line represents the control group. COVID‑19, 
coronavirus disease 19; CRP, C‑reactive protein; IP‑10, interferon γ‑induced protein 10; IL‑6, interleukin 6; TNF‑α, tumor necrosis factor‑α; MIP‑1α, macro‑
phage inflammatory protein‑1α; G‑CSF, granulocyte colony‑stimulating factor; IL‑2, interleukin 2; MCP‑1, monocyte chemoattractant protein‑1.
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group on day 0 (P≤0.05). Moreover, miR‑126‑3p remained 
significantly higher in COVID‑19 patients during the four 
weeks of observation compared to the control group (Fig. 6).

CT of the lungs. The total lung CT score of patients with 
COVID‑19 gradually decreased over all the observation period 
with significant differences on weeks 8, 24 and 48 compared 
to week 2 (P≤0.05). In addition, the CT score differed 
significantly between week 8 and 24 (P≤0.05). Concurrently, 
the median value for the CT total score did not significantly 
differ between weeks 24 and 48 after the beginning of 
hospitalization (Fig. 7).

Correlation between lymphocyte subsets, cytokines, and 
miRNA. The most significant data obtained using correla‑
tion analysis are presented in Fig. S4. CRP levels were 
positively correlated with ESR (r=0.545, P≤0.0001), neutro‑
phil percentage (r=0.688, P≤0.0001), and granulocytes 
(r=0.467, P≤0.0001) and negatively correlated with eosino‑
phils (r=‑0.428, P≤0.001) and lymphocyte count (r=‑0.613, 
P≤0.0001) and percentage (r=‑0.731, P≤0.0001). A negative 
correlation was revealed between CRP and plasmacytoid 
dendritic cells (r=‑0,481, P≤0.001) and classical dendritic cells 
(=‑0.589, P≤0,0001). A positive correlation was found between 
the concentration of G‑CSF and ESR (r=0.424, P≤0.005) 
and neutrophil percentage (r=0.443, P≤0.001) and a negative 
correlation was revealed with lymphocyte count (r=‑0.448, 
P≤0.001). Additionally, G‑CSF was highly correlated with 
the expression of miR‑27a‑3p (r=0.401, P≤0.001), miR‑21‑5p 
(r=0.304, P≤0.01), miR‑146a‑5p (r=0.321, P≤0.01), miR‑221‑3p 
(r=0.302, P≤0.01), and miR‑133a‑3p (r=0.351, P≤0.005). 

miR‑126‑3p expression was positively correlated with 
inflammatory monocyte‑derived dendritic cells (r=0.314, 
P≤0.01), CD3+CD127hi cells (r=0.336, P≤0.005) and negatively 
with regulatory dendritic cells (r=‑0.334, P≤0.005) (data 
not shown). miR‑146a‑5p negatively correlated with WBC 
(r=‑0.379, P≤0.005). The plasma level of miR‑21‑5p was 
negatively correlated with dendritic cells (r=‑0.358, P≤0.005) 
and senescent memory CD8 T cells (r=‑0.333, P≤0.005). A 
positive correlation was revealed between miR‑133a‑3p and 
IL‑6 (r=0.316, P≤0.01).

The subset of regulatory dendritic cells was positively 
correlated with the content of NK cells (r=0.503, P≤0.0001) 

Figure 6. Dynamic changes in miRNA expression levels in patients with COVID‑19. Data are presented as a median and interquartile range. Wilcoxon 
signed‑rank test was used for comparison of time‑dependent events: *P≤0.05 and **P≤0.01. Mann‑Whitney U test was used for comparing the values of the 
control and COVID‑19 groups at each time point: #P≤0.05 and ##P≤0.01. The blue line represents the COVID‑19 group; and the black line represents the control 
group. miRNA or miR, microRNA; COVID‑19, coronavirus disease 19; RU, relative units.

Figure 7. Dynamic changes in lung computed tomography scores in 
patients with COVID‑19. Data are presented as a median and interquartile 
range. Paired t‑test was used for comparison between related values of 
time‑dependent events: *P≤0.05. The blue line represents the COVID‑19 
group. COVID‑19, coronavirus disease 19; wk, week.
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and negatively with B cells (r=‑0.487, P≤0.0001). In addition, 
plasmacytoid dendritic cells were negatively correlated with 
neutrophils (r=‑0.405, P≤0.005) and positively with classical 
dendritic cells (r=0.460, P≤0.0001). CD3+CD25+ was strongly 
correlated with the content of following CD8 T cells subsets: 
Activated (r=0.810, P≤0.0001), senescent (r=0.701, P≤0.0001), 
senescent memory (r=0.591, P≤0.0001), and exhausted 
CD8 T cells (r=0.854, P≤0.0001). The analysis revealed a 
negative correlation between CD14+ myeloid cells and T‑cell 
populations as follows: DP CD4+CD8+ (r=‑0.325, P≤0.001), 
Th cells (r=‑0.807, P≤0.0001), effector Th cells (r=‑0.731, 
P≤0.0001), cytotoxic T cells (r=‑0.311, P≤0.01), memory 
Th cells (r=‑0.624, P≤0.0001), PD‑1low T cells (r=‑0.499, 
P≤0.0001), and CD127low T cells (r=‑0.470, P≤0.0001).

Correlation between laboratory parameters and CT. The most 
significant data on the correlation analysis with CT scores are 
presented in Table II. The CT score was negatively correlated 
with lymphocyte count and positively with ESR. The CT param‑
eters of lung injury were negatively correlated with the content of 
CD4+ among CD45+ cells. The percentage of senescent memory 
CD4+ and CD8+ T cells among CD45+ cells was positively 
correlated with CT lesions. CD3+CD57hi and CD3+CD127hi cells 
were strongly positively and negatively correlated, respectively, 
with the CT scores of the lung. A positive correlation was 
revealed between the lung lesion score and G‑CSF, IP‑10, and 
MIP‑1α concentration on weeks 2, 8, 24 and 48.

Discussion

In the present study, the dynamic changes in blood parameters, 
including alterations in individual cell subpopulations, selected 
miRNAs, and cytokine levels in the peripheral blood of patients 
with severe COVID‑19 over 28 days of the disease and their 
association to lung lesions in the long term were assessed.

It was observed that WBC and granulocyte counts increased 
on day 7 and decreased on day 28, whereas the percentage 
of neutrophils, including banded and segmented, decreased 
gradually. However, an opposite trend in the percentage and 
count of lymphocytes was observed, demonstrating a regular 
increase. Similar dynamics in increased neutrophils versus 
decreased lymphocytes in patients with severe COVID‑19 
have been previously reported (28). Another study also showed 
that critical patients with COVID‑19 pneumonia have an 
immune deficiency, which may lead to serious infection and 
mortality (23). The reduction in lymphocytes may be caused 
by the dysregulation in cytokine production (29), destruction 
of lymphatic organs (30), and migration of CD8+ circulating 
lymphocytes to the lungs (24,31). This data coincides with 
a negative correlation between lymphocyte count and lung 
lesions revealed in the present study.

The observed decrease in the percentage of T cells and NK 
cells among PBMCs on day 7 of hospitalization and concur‑
rent increase in the percentage of B cells may be associated 
to corticosteroid treatment (32,33). In general, no changes in 

Table II. Correlation analysis between computed tomography lesions and certain laboratory parameters.

 Weeks after beginning of hospitalization
 Spearman's correlation‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Parameters coefficient and P‑value 2 8 24 48

Lymphocyte count r ‑0.350 ‑0.461 ‑0.457 ‑0.424
 P‑value ≤0.05 ≤0.005 ≤0.005 ≤0.005
CD4 T cells r ‑0.372 ‑0.327 ‑0.343 ‑0.360
 P‑value ≤0.01 ≤0.05 ≤0.05 ≤0.05
Senescent memory CD4 T cells r 0.185 0.430 0.382 0.337
 P‑value ns ≤0.005 ≤0.05 ≤0.05
Senescent memory CD8 T cells r 0.320 0.500 0.544 0.568
 P‑value ≤0.05 ≤0.001 ≤0.001 ≤0.0001
CD3+CD127hi cells r ‑0.487 ‑0.437 ‑0.453 ‑0.484
 P‑value ≤0.0001 ≤0.005 ≤0.005 ≤0.001
CD3+CD57hi cells r 0.334 0.457 0.469 0.408
 P‑value ≤0.05 ≤0.005 ≤0.001 ≤0.01
ESR r 0.349 0.507 0.507 0.477
 P‑value ≤0.05 ≤0.001 ≤0.001 ≤0.001
G‑CSF r 0.308 0.492 0.434 0.397
 P‑value ≤0.05 ≤0.001 ≤0.01 ≤0.01
IP‑10 r 0.419 0.594 0.599 0.576
 P‑value ≤0.005 ≤0.0001 ≤0.0001 ≤0.0001
MIP‑1α r 0.340 0.411 0.414 0.478
 P‑value ≤0.05 ≤0.01 ≤0.005 ≤0.001

ESR, erythrocyte sedimentation rate; G‑CSF, granulocyte colony‑stimulating factor; IP‑10, interferon γ‑induced protein 10; MIP‑1α, macro‑
phage inflammatory protein‑1α.
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the B lymphocyte population were detected in other study 
groups (34,35).

The findings in the present study showed higher frequen‑
cies of PD‑1‑positive T cells at different time points in patients 
with COVID‑19 compared to day 0. PD‑1 downregulates 
the proliferation and production of cytokines by T cells and 
controls the damage to normal tissues during infection (36). 
Moreover, an increased percentage and absolute count of 
PD‑1‑expressing CD3+CD4+ and CD3+CD8+ T cells have been 
previously reported in autoimmune diseases (37). The forma‑
tion of an inflammatory control mechanism by the increase 
in PD‑1‑positive T and non‑T cell subpopulations as well as 
regulatory CD4 T cells in patients with COVID‑19 across the 
whole observation period is suggested.

CD3+CD4+CD8+ DP T cells are a distinct, minor popula‑
tion of cells that are particularly detectable in viral infections 
and have both cytotoxic and immunosuppressive proper‑
ties (38,39). The increase of DP T cells with CD3+CD4+CD8+ 
immunophenotype among mononuclear WBCs in the process 
of recovery from COVID‑19 was revealed. This may indicate 
their functional significance in the fight against persistent 
infections. However, the absolute counts of CD3+CD4+CD8+ DP 
T lymphocytes progressively decreased in patients with more 
severe COVID‑19 (21).

A consistent increase in the content of CD25+ and CD127+ 
T cells over 28 days was observed. Furthermore, the content 
of CD127+ T cells was negatively correlated with lung injuries. 
Upregulated expression of CD25+ on T cells from patients 
with severe COVID‑19 has also been reported (40,41). 
Moreover, Chen et al (42) revealed that the number and 
proportion of CD4+CD25+CD127low cells increased in both 
patients with mild and severe COVID‑19, compared to the 
control group, and remained at higher levels after recovery. 
Additionally, CD127‑expressing T cells are considered to be 
SARS‑CoV‑2‑specific long‑lived T cells (43). Signaling by 
CD127/IL‑7 is involved in numerous key aspects of T‑cell 
survival and proliferation, therefore, increased CD127 
expression levels on T cells could be involved in overcoming 
lymphopenia in patients with COVID‑19 and thus lead to a 
decrease in lung inflammation. Furthermore, it was shown that 
an increase in the content of activated effector T cells with 
CD4+CD25+CD127high phenotype has a significant negative 
correlation with multiple organ failure (44). In the present 
study, the content of CD3+CD25+ T cells was strongly associ‑
ated with different populations of activated, senescent, and 
exhausted CD8+ T cells. Arguably, CD25‑expressing activated 
T cells receive IL‑2 signaling, which further in a positive 
feedback manner promotes their proliferation and differentia‑
tion (45). During the observation period, an increased content 
of CD4 T‑cell subsets (memory, effector, activated, senescent, 
senescent memory, and exhausted) and CD8 T cells (effector, 
activated, senescent memory, and exhausted CD8 Т cells) was 
noted, suggesting the activation of an adaptive immune response 
against the inflammation progression in the lungs. In addition,  
abundant content of activated both CD4+ and CD8+ T cells 
is a characteristic of COVID‑19 increasingly studied (45,46). 
Dysregulation of reactive CD8+ and CD4 T cells has been 
described in the early phase of immune response and immune 
memory development (47‑49). The data in the present study 
are consistent with those of a previous study that reported an 

association between a high level of CD57 expression among 
CD8+ T cells and immune senescence with either human 
aging or prolonged chronic infections in patients with severe 
COVID‑19 (50). The association that was revealed between 
the proportions of senescent memory T cells and CD3+CD57hi 

cells with the lung lesion indicates that lymphocytes are one of 
the key players in the pathogenesis of lungs during COVID‑19.

In the present study, a strong correlation was detected between 
both activated CD4 and CD8 T cells and the PD‑1 expression 
levels. Similarly, a high correlation was previously revealed 
between PD‑1‑expressing cells and activated CD38+HLA‑DR+ 
CD4 T cells, but not with activated CD8 T cells (42). Notably, 
activated T cells also increase the expression of the activation 
markers CD38 and HLA‑DR (48). From day 7, a significant 
increase in the percentage of Treg cells was observed. Certain 
studies revealed a lower level of Tregs in severe patients than in 
mild or moderate patients (51,52), whereas Chen et al indicated 
a trend toward higher content of Tregs in the severe group (53). 
Moreover, the dynamics of Treg frequency with a gradual 
increase from day 7 that peaked on day 22 compared to healthy 
donors, and a slight decrease up to day 28 was reported in a 
case report of an asymptomatic COVID‑19 patient (54). It is 
considered that all these discrepancies in results occurred due 
to variance in the time of assessment and do not comprise the 
full pattern of dynamic changes in cell subpopulations during 
the course of COVID‑19.

It was revealed that the percentage of classical and plasma‑
cytoid dendritic cells was significantly lower on days 0 and 7 
but restored from day 14 in the COVID‑19 group. These data 
are consistent with the previously reported lower frequency 
of CD1c+ dendritic cells in peripheral blood in patients with 
severe COVID‑19 due to their increased migration to the 
lungs (55). Moreover, it was reported that lower percentages of 
plasmacytoid and myeloid dendritic cells were observed in the 
blood of patients with severe COVID‑19 compared to healthy 
donors (34).

The repeated increase in the content of CD45+CD11clow 

CD11bdim regulatory dendritic cells on days 14‑28 after a slight 
decrease on day 7, is considered to be an indicator of prolonged 
inflammation. The data in the present study, are consistent 
with the previously reported considerable increase in this cell 
population that was almost restored to normal levels after intra‑
venous transplantation of mesenchymal stem cells in patients 
with severe COVID‑19 (56). Thus, it is surmised that regula‑
tory dendritic cells are essential for the excessive production 
of proinflammatory cytokines and further aggravate infection 
by suppressing T‑cell functions (57). Interestingly, regulatory 
dendritic cells were positively correlated with NK cells and 
negatively with B cells. 

Furthermore, it was hypothesized that the detected 
under‑represented classical dendritic cell content up to day 7, 
with a concurrent increase in the percentage of plasmacytoid 
dendritic cells observed after day 7, may be a consequence of 
corticosteroid therapy (58).

In the present study, a gradual increase in the percentage 
of inflammatory monocyte‑derived dendritic cells along with 
regulatory T cells was observed, implying the formation of 
adaptive immunity. These cells have been shown to consider‑
ably increase in numbers and promote the differentiation of 
memory CD8+ T cells during acute viral infection (59). In 
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addition, T‑cell mediated‑response to the new coronavirus was 
shown in individuals with asymptomatic or mild symptoms 
of COVID‑19 (60). Moreover, inflammatory dendritic cells 
are involved in innate defense and T‑cell activation in a 
pathogen‑dependent manner (61,62). 

Consistent with previous studies (63‑65), the present study 
confirmed that the CRP level is a useful biomarker in the early 
stages of COVID‑19 infection . Based on the data of the present 
study, although CRP reached the normal value on day 28 in 
patients with COVID‑19, the levels of several subpopulation of 
T cells remained elevated. Therefore, the levels of pro‑inflam‑
matory cytokines should be evaluated to control the general 
inflammation status. In the present study, similar to a previous 
study (66), a positive correlation between CRP and inflamma‑
tory parameters including ESR, granulocytes, and neutrophils 
was observed. While a negative correlation was revealed 
between CRP levels and classical and plasmacytoid dendritic 
cells that coincides with another study (67). Furthermore, it 
was revealed that CRP is strongly and inversely related to 
lymphocytes as was previously reported (68,69).

Previously, high levels of G‑CSF were detected in both 
intensive care unit (ICU) and non‑ICU patients compared to 
healthy volunteers (70). In the present study, it was revealed 
that G‑CSF levels were positively correlated with neutrophils 
and negatively with lymphocytes. In addition, it was shown 
that the plasma levels of both G‑CSF and MIP‑1α were 
positively correlated with CT scores. It was reported that the 
progression of inflammation in patients with COVID‑19 may 
be related to the amount of G‑CSF (71). However, the correla‑
tion between G‑CSF, NLR, and the prognosis is still being 
debated, as is the utilization of dynamic changes in G‑CSF and 
immune cells content to predict disease course and response 
to therapy (72,73). It was also found that the administration 
of corticosteroids can significantly reduce the concentration 
of IP‑10 in the plasma of patients with COVID‑19 (20). In 
the present study, a decrease was observed in plasma IP‑10 
concentration on day 7 and its return to baseline through 
the second week, in contrast to the levels of IL‑6 and CRP. 
It is hypothesized that it may be associated with the discon‑
tinuation of corticosteroid therapy. Thus, the plasma levels of 
IP‑10 and MCP‑1 in critically ill patients were significantly 
higher than those in severe patients (74). Moreover, IL‑6 
and MCP‑1 are considered as the main risk factors related 
to mortality in hospitalized COVID‑19 patients (75). In the 
present study, the plasma concentration of IP‑10 was corre‑
lated with lung lesions that coincides with the aforementioned 
data. However, in the present study, the levels of IL‑2 and 
IL‑6 were not altered during the observation period. Most 
studies reported an increase in IL‑2 levels in patients with 
severe COVID‑19 (23,76,77), whereas, in other studies, IL‑2 
levels remained within the normal range during the treatment 
period (78,79). As previously reported, the level of IL‑6 was 
higher than in healthy donors, and similarly to the data of 
the present study, it was not significantly altered during the 
observation period (42,78). A high level of TNF‑α in the serum 
and/or plasma of patients with COVID‑19 reported in previous 
studies (29,56,80) is consistent with the findings of the present 
study indicating abnormally activated host immune cells.

It was observed that the relative expression levels of 
miR‑21‑5p, miR‑221‑3p, miR‑27a‑3p, miR‑133a‑63p, and 

miR‑146a‑5p were significantly higher at the beginning of 
hospitalization and decreased within two weeks of treatment. 
miR‑146a has been previously reported to be an important 
molecular suppressor of inflammation through its capacity to 
target members of TLR and NF‑κB signaling, as well as the 
proteoglycan family (81). miR‑146a reduces NF‑κB‑dependent 
pro‑inflammatory cytokines in TNF‑α‑stimulated mono‑
cytes (82). Additionally, an increase in the expression level 
of miR‑146a was revealed to reduce lung cell damage by 
suppressing inflammatory responses (83). Moreover, a high 
expression level of miR‑146a‑5p in plasma in the COVID‑19 
patient group compared to the healthy group has been previ‑
ously shown (84). Furthermore, in the present study, a negative 
correlation between the level of miR‑146a and WBC was 
observed. It has been previously reported that the serum 
concentration of miR‑21 was significantly increased in patients 
with COVID‑19 compared to healthy controls (85). It was 
revealed in the present study that the plasma level of miR‑21 
in patients with COVID‑19 was negatively correlated with 
dendritic cells and senescent memory CD8 T cells suggesting 
its immunosuppressive properties. Similar immunosuppres‑
sive capacity of miR‑21 leading to a decrease in cytotoxic 
T cells was shown in the tumor microenvironment (86).

In a previous study by Wang et al, miR‑221 was significantly 
upregulated in the lung tissue of mice with LPS‑induced acute 
lung injury (ALI) . Furthermore, the study revealed that the 
protective effect of miR‑221 on LPS‑induced ALI may be medi‑
ated by the suppression of the NF‑κB pathway (87). Consistent 
with this, the results of the present study suggest miR‑221 as 
an indicator for lung damage. On days 7 and 14 of follow‑up, 
miR‑133a‑3p relative expression level was reduced 2‑fold and 
4‑fold, respectively, compared to day 0. The relative level of 
miR‑133a‑3p in plasma was positively associated with IL‑6, 
which may indicate myocardial injury. Indeed, the serum level 
of miR‑133 was shown to be positively correlated with IL‑6 in 
patients with the therosclerotic thrombotic cerebral infarction 
and cardioembolic stroke (88). In the present study, the rela‑
tive expression of miR‑126 was higher than in non‑COVID‑19 
volunteers in contrast to previously published data (85). It 
was demonstrated that miR‑126‑3p expression was positively 
correlated with inflammatory monocyte‑derived dendritic 
cells and negatively with regulatory dendritic cells establishing 
their pro‑inflammatory role in COVID‑19. The function of 
miR‑126‑5p as a positive regulator of monocyte‑mediated 
inflammatory responses was previously reported (89). In addi‑
tion, miR‑126‑3p was the most strongly upregulated in CD14+ 
cells among patients with axial spondyloarthritis (90). The 
majority of miRNAs have a positive association with the levels 
of G‑CSF and as follows, are involved in inflammation, thus 
contributing to COVID‑19 severity.

In summary, the present study highlights the dynamic 
changes in different subpopulations of immune cells in 
patients with severe COVID‑19. The collected data indicated 
the immunodeficiency state and development of the ‘cytokine 
storm’ syndrome in patients with COVID‑19 on day 0 of 
observation. At the beginning of the observation, lympho‑
penia and leucopenia were detected in most patients with 
COVID‑19, as well as an increase in the percentage of banded 
neutrophils, B cells, and CD4+ Treg cells, while a decrease 
in the content of PD‑1low T cells, classical, plasmacytoid, and 
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regulatory dendritic cells was also observed. The increased 
content of different subpopulations of T and dendritic cells 
starting from the 14th day of hospitalization indicates the 
activation of the immune response against the progression of 
inflammation in the lungs. For the first time, dynamic changes 
in DP CD3+CD4+CD8+ cells, CD127‑expressing T cells, 
CD25‑expressing T cells, PD‑1low non‑T cells, and PD‑1low 
T‑cell frequencies have been described in patients with severe 
COVID‑19 pneumonia. The increase of PD‑1‑positive subpop‑
ulations of T and non‑T cells and regulatory CD4 T cells 
in patients with COVID‑19 during the observation period 
suggests the development of an inflammation control mecha‑
nism. The positive response after treatment was observed 
starting from the 7th day, except for T cells, IL‑6, TNF‑α, and 
IP‑10 levels, which remained increased again from day 14. The 
high expression levels of miR‑21‑5p, miR‑221‑3p, miR‑27a‑3p, 
miR‑146a‑5p, miR‑133a‑3p, and miR‑126‑3p at the beginning 
of hospitalization may contribute to the disease severity. Based 
on the results of lung CT score correlation analysis, increased 
concentrations of G‑CSF, IP‑10, and MIP‑1a, as well as the 
content of lymphocytes, senescent memory T cells, CD127+ 
T cells, and CD57+ T cells, had the most prominent impact on 
post‑COVID‑19 lung injuries in a long‑term period.
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