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Abstract. Regenerative medicine is a rapidly growing field that 
holds promise for the treatment of many currently unrespon-
sive diseases. Stem cells (SCs) are undifferentiated cells with 
long‑term self‑renewal potential and the capacity to develop 
into specialized cells. SC‑based therapies constitute a novel 
and promising concept in regenerative medicine. Radiotherapy 
is the most frequently used method in the adjuvant treatment 
of tumorous alterations. In the future, the usage of SCs in 
regenerative medicine will be affected by their regular and 
inevitable exposure to ionizing radiation (IR). This phenom-
enon will be observed during treatment as well as diagnosis. 
The issue of the genetic stability of SCs and cells differenti-
ated from SCs is crucial in the context of the application of 
these cells in clinical practice. This review examines current 
knowledge concerning the DNA repair mechanisms (base 
excision repair, nucleotide excision repair, mismatch repair, 
homologous recombination and non‑homologous end‑joining) 
of SCs in response to the harmful effects of genotoxic agents 
such as IR and chemotherapeutics.
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1. Stem cells: Genetic integrity

Stem cells (SCs) have high potential and hold great promise 
in the rapid development of regenerative medicine. Pluripotent 
SCs are able to self‑renew unrestrictedly. They can differentiate 
in vitro and in vivo in all cell types deriving from the three germ 
layers (1,2). This ability makes them useful in cell replacement 
therapy and the treatment of numerous diseases (3), including 
diabetes (4), neurodegenerative (5), retinal (6) and cardiac (7) 
diseases, as well as muscular dystrophy (8). SC therapy raises 
questions concerning the consequences of their influence on 
an organism. In vivo studies constitute only a small proportion 
of all research on SCs (9).

Despite the clearly demonstrated effectiveness of 
SC‑derived therapies, this approach has a number of impedi-
ments. The response of SCs and stem‑derived cells to ionizing 
radiation (IR) and chemotherapeutics is a questionable issue, 
particularly with regard to the increase of cancer morbidity in 
patients >50 years old (10,11). Tumor diseases are frequently 
diagnosed, particularly in elderly patients often burdened 
with other diseases. How SC therapies affect the organism 
during cancer treatment (radiotherapy and/or chemotherapy) 
remains unknown. Exposure to gamma radiation and cisplatin 
is known to cause DNA damage in cancer cells. These treat-
ments are intended to deprive cancer cells of multiplication 
potential, and trigger irreparable DNA damage leading to their 
death (12). However, knowledge concerning the effects of anti-
cancer therapies on healthy cells, including SCs is limited. The 
exposure of SCs to IR will be unavoidable during treatment 
and routine diagnosis using computed tomography, positron 
emission tomography and single‑photon emission computed 
tomography (13).

An additional difficulty in the application of SCs is the 
evidence that human‑induced pluripotent SCs (hiPSCs) and 
human embryonic SCs (hESCs) are prone to genetic instability 
during in vitro culture. Frequently chromosomal rearrange-
ments, aneuploidy or defective DNA methylation in both cell 
types are observed. This results in decreased differentiation 
capacity and increased proliferation rate (14). Cellular stress, 
such as freeze‑thaw cycles, causes them to be more prone to 
gene mutation. Manipulation of culture conditions in vitro may 
contribute to epigenetic instability. Although the majority of 
cell lines retain a normal karyotype during multiple passages, 
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long‑term culture increases the risk of anomalies (15). It has 
also been reported that the process of reprogramming leads 
to the creation of genetically unstable induced pluripotent SCs 
(iPSCs). Chromosomal abnormalities in those cells occur at the 
very early passages (16). The first reports involving abnormal 
karyotypes of hESCs concerned trisomy of chromosome 12. 
Chromosomal aberrations may apply to all chromosomes 
or occur at subchromosomal level. Many of them are also 
observed in iPSCs (17). Trisomy of chromosome 8 occurs 
more frequently in hiPSCs than in hESCs. In turn, trisomy 17 
was not identified in hiPSCs, but was present in hESCs (18).

Inzunza et al investigated the karyotypes of three hESC 
lines. The karyotypes of two of the cell lines did not differ, but 
in the third a monosomy X was demonstrated (19). Genomic 
and phenotypic changes may be associated with abnormal 
functioning of SCs, both in the undifferentiated and differen-
tiated stages. Thus, the issue of genetic stability of SCs and 
cells differentiated from them is crucial in the context of the 
application of these cells in clinical trials. Further studies 
are required to demonstrate that iPSCs have no deleterious 
effect for patients. A high level of DNA damage disrupts the 
normal functioning of cells. Changes occurring in DNA play 
an important role during aging, disease conditions and cancer 
development  (20). Specialized repair mechanisms, check-
points of the cell cycle and tolerance to certain DNA damage 
protect the integrity of the cell genome, which is required for 
the normal functioning of cells and their progeny (21). DNA 
damage is caused by numerous factors, which can arise during 
replication and transcription, or in response to endogenous 
and exogenous factors, such as UV radiation, reactive oxygen 
species, IR and chemical agents (22). However, the nature of 
the cellular response of SCs to damaging agents and the repair 
mechanisms remain poorly understood.

The present article provides an overview of the stem and 
stem‑derived cell DNA‑damage response to cytotoxic and 
genotoxic agents during anticancer therapies. Although some 
research has been carried out on the DNA repair mechanisms 
of SCs, the complicated mechanisms in undifferentiated, 
partially differentiated and differentiated cells require eluci-
dation in further studies. The current literature data on DNA 
repair mechanisms in SCs are explored and discussed in the 
present review.

2. Cell cycle of stem cells and DNA damage recognition

SCs are required to constantly deal with potential damage to 
their DNA (23). When severe DNA damage occurs, the cell 
cycle is arrested to prevent aberrant replication, transcription 
and translation, as well as to preserve energy. However, when 
DNA damage repair is impossible, cell death mechanisms 
are activated (24). In response to DNA double‑strand breaks 
(DSBs), ESCs undergo similar events to those of differentiated 
cells: The kinase ataxia telangiectasia mutated (ATM) becomes 
phosphorylated at serine 1981 and relocates to DSBs, where it 
phosphorylates the histone variant protein H2AX within a few 
minutes. In mouse embryonic stem cells (mESCs) following 
exposure to IR, the ATM and ataxia talengiectasia and 
Rad3‑related protein (ATR) kinases phosphorylate >900 sites 
in ~700 proteins (25). The phosphorylation of histone H2AX 
is visible as γH2AX foci. The level of endogenous foci can 

be also detected in the presence of unrepaired or misrepaired 
DNA DSBs, the dysfunction of telomeres, genomic instability 
or senescence. The size of γH2AX depends on the chromatin 
structure. During the condensation of chromatin regions, 
smaller structures can be observed. In turn, when the hyper-
acetylation of chromatin proceeds or a deficiency of histone 
H1 occurs, the γH2AX foci create bigger structures  (26). 
Hundreds of much smaller γH2AX foci appear in differenti-
ated cells, although these small foci probably are unrelated 
to the DNA damage response (27). Moreover, mESCs reveal 
increased basal levels of γH2AX, even in the absence of DNA 
DSBs (28). Another important factor is replication protein A, 
which is single‑stranded DNA‑binding protein playing a major 
role in DNA repair pathways (including nucleotide excision, 
base excision and double‑strand break repairs) (29).

The majority of accomplished experiments have been 
carried out on mESCs. mESCs and hESCs are not equivalent, 
and differences between them must be taken into consider-
ation. mESCs do not possess the G1 checkpoint and readily 
undergo tumor protein 53 (p53)‑independent apoptosis, as 
well as demonstrating good repair mechanisms in response to 
oxidative damage (30). The lack of a functional G1 checkpoint 
is caused by sequestration of p53 into the cytoplasm. The cells 
with DNA damage transition from G1 into the S phase, where 
the lesion can be intensified by a round of replication. mESCs 
spend ~75% of their time in S phase, which favors homolo-
gous recombination as a main DNA repair mechanism. The 
p53 protein has an ability to inhibit the activity of homeobox 
protein Nanog throughout the association with its promoter, 
which facilitates the differentiation of mESCs. It allows the 
maintenance of an unchanged population of cells (31). mESCs 
tolerate only a low level of DNA damage, and for that reason 
they readily undergo apoptosis or differentiation. As a result of 
these defensive mechanisms, mESCs generate fewer mutations 
than somatic cells (32).

The cell cycle in hESCs and mESCs has been found to be 
shorter in duration than that in somatic cells (Fig. 1A). This is 
caused by the significantly shorter G1 phase and the enhanced 
expression of cyclin‑dependent kinase 4 (CDK4) and cyclin 
D2 facilitating transition to the S phase. The defective G1/S 
checkpoint leads to the accumulation of DNA damage in the 
S phase, where DNA damage repair is activated or cell death 
proceeds (33). hESCs activate cell cycle arrest in G2 and, in 
contrast to mESCs, p53‑dependent apoptosis. Their DNA 
repair mechanisms are enhanced, which has improved genome 
protection effects, such as a higher level of DNA‑dependent 
protein kinase catalytic subunit (DNA‑PKcs) following irra-
diation and ultimately more effective repair of DSBs (34). 
p53 prevents the accumulation of unrepaired DNA lesions 
throughout cell arrest and DNA repair; in addition, it inhibits 
the expression of genes responsible for pluripotency, such as 
Nanog. Studies have indicated that the suppression of p53 may 
contribute to successful reprogramming. However, in this case 
the tumorigenicity of iPSCs and their derivatives requires 
intensive examination (35).

Desmarais et al disclosed that hESCs fail to activate check-
point kinase (CHK1) and ATM following exposure to cisplatin. 
Consequently, these cells undergo apoptosis rather than DNA 
repair. Furthermore, hESCs are able to activate CHK1 or ATM 
following IR treatment. hESCs and mESCs reveal less oxidative 
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damage than do differentiated cells (36). This phenomenon may 
be explained by two concepts. First, ESCs have higher levels 
of antioxidants that decrease with the progression of differen-
tiation; the downregulation of antioxidant genes results in an 
increase in the levels of reactive oxygen species. Secondly, 
mESCs and hESCs demonstrate better DNA repair capacity 
than differentiated cells such as fibroblasts (37).

3. DNA repair systems in stem cells

In accordance with the law of Bergoniè and Tribondeau, 
cells undergoing intensive division, that are mitotically active 
or characterized by a high mitotic index, as well as undif-
ferentiated cells, are much more radiosensitive in contrast 
to other cells. This statement has been confirmed in vitro 

Figure 1. (A) Response of undifferentiated and differentiated cells to genotoxic agents differs, because of distinct cell cycle and cell metabolism. (B) 
Mammalian cells are exposed to the influence of DNA damage (single- or double‑strand breaks) agents. In DNA repair mechanisms, base excision repair, 
nucleotide excision repair (NER), mismatch repair, homologous recombination and non‑homologous end joining are involved many genes. (C) Failure of 
DNA repair may direct the cells to apoptosis or to differentiation. ESCs, embryonic stem cells; ROS, reactive oxygen species; GG-NER, global genome‑NER; 
TC-NER, transcription‑coupled NER.

  A

  B

  C
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numerous times, with the exception of mature lymphocytes, 
that although are differentiated, reveal considerably decreased 
radioresistance (38).

Wilson et al conducted investigations that concerned the 
irradiation of hESCs cells with low and high doses of gamma 
radiation. Unsurprisingly, high doses of radiation brought about 
massive cell death. However, all samples of irradiated hESCs 
continued to be able to form teratomas, which is a clear test 
in the determination of pluripotency. It is likely that, although 
high‑dose radiation alters some developmental pathways, it 
does not influence the expression of pluripotency genes (39). 
Moreover, hESCs and human mesenchymal SCs (MSCs) are 
less susceptible to radiation‑induced bystander effect signaling 
than fully differentiated cells in in vitro experiments, which 
has a direct relevance to cancer therapy (40).

DNA repair pathways. DNA repair is essential for genetic 
integrity. DNA repair mechanisms can be divided into two main 
groups: Direct and indirect DNA damage response (DDR). The 
former includes O6‑methylguanine‑DNA methyl‑transferase 
(MGMT) activity, which removes methyl from newly created 
O6methylguanine adducts; this compound is harmful because 
it forms complementary base pairs with thymine instead of 
cytosine, and thus is potentially mutagenic  (41). Indirect 
DNA repair pathways are composed of nucleotide excision 
repair (NER), base excision repair (BER), mismatch repair 
(MMR) and DSB recombination repair. DSBs are repaired by 
error‑free homologous recombination (HRR) and error‑prone 
nonhomologous end‑joining (NHEJ) (Fig. 1B). The majority 
of damage triggered by chemo‑ and radiotherapy is repaired 
by HRR and NHEJ (42). Numerous proteins involved in the 
five basic DNA repair mechanisms take part also in apop-
tosis. In HHR: Breast cancer 1, early onset (BRCA1), ATM, 
ATR and p53; in NHEJ: DNA‑PK; in NER, excision repair 
cross‑complementation group 2 (XPD), p53 and excision 
repair cross‑complementation group 3 (XPB); in BER, poly 
(ADP‑ribose) polymerase 1 (PARP‑1), apurinic/apyrimidinic 
endonuclease/redox effector factor‑1 (Ref‑1/Ape) and p53; in 
MMR, mut S homolog 2 (MSH2), Mut S homolog 6 (MSH6) 
and Mut L homolog 1 (MLH1) (43). This process is discussed 
later in this review.

DSB repair mechanisms. DSBs cause a massive loss of genetic 
information, genomic rearrangements and/or cell death. The 
DSBs are repaired by homologous recombination (HR) and 
NHEJ. During HR, the undamaged DNA template on the 
sister chromatid is necessary in order to recover the original 
sequence. In NHEJ, homology is not required due to modifica-
tion and ligation of the DNA ends. It often results in deletion 
or insertions. HR is active in S/G2/M phases and NHEJ in 
G1/S/G2/M phases (44,45). RAD51 and BRCA1 are the most 
common biomarkers for HR, and DNA‑PKcs for NHEJ (46). 
The RAD51 gene encodes a recombinase protein that induces 
DNA strand exchange during HR. It plays a pivotal role in 
DSBs during replication, because RAD51 associates with 
chromatin during the S phase and interacts with components 
of the DNA replication apparatus (47). RAD51 is active in 
three phases of HR: Presynapsis, synapsis and post‑synapsis. 
During the first stage, the presynaptic filament consisting 
of six RAD51 molecules and a single‑strand DNA (ssDNA) 

filament is formed. In the synapsis phase, RAD51 creates a 
heteroduplex DNA (D‑loop) created by connection of invading 
substrate and homologous duplex DNA template. During the 
last phase, RAD51 exposes the 3‑OH group required for 
DNA synthesis throughout dissociation from double‑strand 
DNA  (48). DSB repair using a homologous template can 
involve HR or single‑strand annealing (SSA). SSA is always 
characterized by mutagenic alterations, as it involves the 
annealing of sequence repeats located near the DSB and as a 
result, a deletion between these repeats is observed (49). The 
participation of very precise HR decreases with the progress of 
differentiation, whereas the contribution of error‑prone NHEJ 
increases. Oliver et al demonstrated that even during the early 
stages of differentiation, hMSCs are more prone to cell death. 
This phenomenon may be explained through the commitment 
of caspases both in apoptosis and cell differentiation (50).

NHEJ repairs exogenous DSBs triggered by radiation 
exposure or variable diversity joining (VDJ) recombina-
tion. The proteins engaged in this process involve formation 
of a complex from DNA‑PK, Ku70 and Ku80 at the lesion, 
the alignment of short homologies in overhand regions and 
recruitment of the ligase IV/X‑ray repair cross‑complementing 
protein 4 (XRCC4) complex (20). The Ku complex, due to its 
toroidal shape, is able to detect DNA damage, maintain the 
two DNA ends in proximity, inhibit or regulate the activity 
of exonuclease, and also recruit DNA‑PKcs polymerase and 
ligase (51). DNA‑PKcs is the largest known protein with serine/
threonine kinase activity. DNA‑PKcs and Ku bind together 
to form a DNA duplex. Then, autophosphorylation occurs at 
>15 sites. This activated protein induces the ligase activity of 
ligase IV/XRCC4. Positive feedback loops are evident: The 
presence of DNA ligase IV/XRCC4 evokes the autophos-
phorylation activity of DNA‑PKcs. The DNA‑PKcs takes part 
in the regulation of the endonucleolytic activities of artemis, 
which is another relevant factor for NHEJ (52). Artemis is 
hyperphosphorylated by the ATM kinase in response to IR. 
The artemis‑DNA‑PKcs complex excises damaged DNA 
overhangs due to its 5' and 3' endonuclease activity. Moreover, 
artemis possesses an apparent 5' exonuclease activity (53).

DSB repair is more precise in hESCs than it is in somatic 
human cells. The differentiation of hESCs into astrocytes 
results in a reduction in the efficiency and fidelity of DSB 
repair mechanisms. hESCs use homologous recombinational 
repair rather than NHEJ, which is contrary to the situation 
in other types of human cells. In addition, a reduction in 
the accuracy of NHEJ is observed during differentiation. 
Hence, NHEJ in hESCs is likely to be independent on ATM, 
DNA‑PKcs and PARP as well as dependent on XRCC4 
with considerable effectiveness (13). Zou et al examined the 
response of hESCs and hESC‑derived neuronal stem cells 
(NSCs) to IR  (54). They reported that hESCs have DNA 
repair mechanisms comparable with those of somatic cells, 
which was not in accordance with other literature data, and 
revealed that following high‑dose treatment, 90% of irradi-
ated hESCs underwent apoptosis. Following differentiation, 
the DNA repair capacity of stem‑derived cells was found 
to decline and a higher level of reactive oxygen species was 
shown. In contrast to hESCs, a sizeable fraction of the NSCs 
survived high doses of IR (54). In conclusion, although hESCs 
demonstrate robust DNA repair capacity and tolerate stress, 
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they seems to be considerably more sensitive to IR than are the 
cells differentiated from them.

Sokolov and Neumann investigated the dynamics of 
transcriptional changes of IR‑responsive genes, such as 
cyclin‑dependent kinase inhibitor 1A (CDKN1A/p21/Cip1), 
growth arrest and DNA‑damage‑inducible α (GADD45A), 
proliferating cell nuclear antigen (PCNA), BTG family 
member 2 (BTG2), BCL2‑binding component 3 (BBC3), 
sestrin 1 (SESN1), DNA damage‑binding protein 2 (DDB2), 
immediate early response 5 (IER5), polo‑like kinase 3 (PLK3) 
and growth differentiation factor 15 (GDF15) during the 
῾early᾿ and ῾late᾿ radioresponse of hESCs. The activation of 
stress genes exhibited a dose‑response correlation, although 
not in clear linear manner. This may indicate the existence of 
a threshold for changes in gene expression in certain human 
ESC genomes for low doses of IR (55). CDKN1A is one of 
the principal cyclin‑dependent kinase inhibitors necessary for 
effective activation of the G1/S checkpoint following IR treat-
ment in majority of human cells in vitro. However, in response 
to IR, hESCs and iPSCs fail to induce the G1/S checkpoint. 
This phenomenon may be caused by reduced p21 protein 
levels in hESCs/iPSCs following IR (56). However, the G1/S 
checkpoint is characteristic for NHEJ not for HR.

Single‑strand break repair mechanisms. The mismatch repair 
(MMR) pathway is responsible for the repair of mismatches 
created between bases on complementary DNA strands. The 
mismatches are formed due to polymerase slippage during 
replication that initiates errors and alterations in nucleotide 
incorporation, as well as short insertions and deletions (indels). 
Deficiencies of MMR may induce the accumulation of muta-
tions and microsatellite instability, which is characteristic for 
hereditary nonpolyposis colon cancer (57). The study carried 
out by Tichy et al indicates that mESCs are characterized 
by elevated levels of MMR proteins, which correlates with 
more efficient MMR. Moreover, in these cells, BER protein 
expression levels are also elevated and better able to repair an 
oligonucleotide template (58).

The BER pathway covers two main types of repair: Short 
patch repair dependent upon DNA polymerase β and long 
patch repair dependent upon PCNA. In short patch repair, 
single nucleotides are first removed and then replaced. The 
longer mechanism is based on the removal of nucleotides from 
the damaged strand, DNA synthesis and consequently, ligation. 
Those mechanisms eliminate base damage caused by oxida-
tion, alkylation or deamination as well as ssDNA breaks (59).

NER is responsible for eliminating a wide variety of bulky, 
helix‑distorting lesions from DNA, such as cisplatin‑DNA 
intrastrand crosslinks. With regard to the mechanical process, 
BER and NER are very similar; however, the NER pathway is 
much more complex mechanism. NER involves DNA damage 
recognition, local opening of the DNA helix around the lesion, 
excision of a short single‑strand segment of DNA spanning the 
defect, as well as sequential repair synthesis and strand liga-
tion (60). The NER pathway consists of two subgroups, termed 
global genome NER (GG‑NER) and transcription‑coupled 
NER (TC‑NER). The predominant damage recognition factor 
of GG‑NER is the XP complementation group C (XPC)/Rad23 
homolog B (HR23B)/Centrin (CEN2) system. This system 
eliminates or reduces DNA lesions throughout the genome. 

TC‑NER damage recognition includes the arrest of elongating 
RNA polymerase II (RNAPII) and two proteins: Cockayne 
syndrome A (CSA) and B (CSB). The XPC complex, CSA and 
CSB recruit 10 protein complexes and the multi‑functional 
transcription factor TFIIH to the site of the lesion  (61). 
Undifferentiated cells have higher efficacy of NER and BER 
than non‑pluripotent cells. The GG‑NER, but not TC‑NER 
repair mechanism, is superior in human undifferentiated cells 
in comparison with fibroblasts (62).

4. Failure of DNA repair systems: Apoptosis

Failure of DNA repair processes directs cells to undergo 
apoptosis‑programmed cell death (63). Dying cells send signals 
to neighboring and living cells, inducing the proliferation of 
stem and progenitor cells. This phenomenon is crucial for the 
regenerative process (64). The main reason for apoptosis is a 
loss of genomic integrity caused by the accumulation of DNA 
damage (65). Although SCs have very efficient DNA repair 
mechanisms, the lack of a G1 checkpoint causes them to be 
hypersensitive to IR and other DNA‑damaging agents, which 
facilitates their apoptosis (66). However, the final decision 
regarding the induction of apoptosis and/or cell cycle arrest 
is dependent on the magnitude and duration of the damage 
stimuli (67). In mammalian cells, two main pathways initiating 
apoptosis exist: Extrinsic and intrinsic (mitochondrial). The 
key mechanism in both is based on the activation of enzymes 
known as caspases (68). Caspases can be divided into initiator 
(caspase‑8, ‑9 and ‑12) and effector (caspase‑3, ‑6 and ‑7) 
types (69,70). An important role in the process of apoptosis is 
played by p53. In physiological conditions, the concentration 
of p53 in the cytosol is low. In response to cellular stress, p53 
is accumulated, which leads to the activation of apoptosis (71).

The extrinsic apoptotic pathway is based mainly on binding 
of death receptor ligand to the receptor membrane. These death 
receptors include the tumor necrosis factor (TNF) receptor 
superfamily of TNF‑Fas (Apo‑1, CD95), TNF receptor  1 
(TNF‑R1), death receptor 3 (DR‑3, Apo‑3, TRAMP, WSL‑1, 
LARD), death receptor 4 (TRAIL‑R1, DR‑4), death receptor 5 
(TRAIL‑R2, DR‑5), death receptor 6 (DR‑6), ectodysplasin 
receptor (EDA‑R) and nerve growth receptor (NGF‑R). All 
death receptors are composed of an extracellular domain, 
transmembrane portion and cytoplasmic death domain (DD), 
which is necessary for interaction with the adapter protein 
complex. Receptor‑ligand binding leads to a conformational 
change in the receptor internal domain and formation of the 
death‑inducing signaling complex (DISC), consisting of a death 
receptor adapter protein known as Fas‑associated protein with 
death domain (FADD) and procaspase‑8 or procaspase‑10. 
As a result of DISC dimerization, the activation of caspase‑8 
or ‑10 proceeds. Activated caspases initiate a cascade of reac-
tions leading to cell death (72‑74).

The intrinsic apoptotic pathway is associated with the 
mitochondria and activated by DNA damage or cytotoxic 
drugs, which triggers changes within the mitochondria, such 
as increased permeability of the mitochondrial membrane 
and outflow of cytochrome c to the cytoplasm. Subsequently, 
cytochrome c activates apoptosis‑inducing protein (Apaf‑1) 
and procaspase‑9. An apoptosome is formed, which induces 
other effector caspases (75). Membrane proteins belonging 
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to the B‑cell lymphoma 2 (Bcl‑2) family are involved in 
the regulation of this process. Some of them: Bcl‑2 and 
B‑cell lymphoma‑extra large (Bcl‑xL) are anti‑apoptotic 
and increase the likelihood of cell survival. Others, such 
as Bcl‑2‑associated X protein (Bax) and Bcl‑2 homologous 
antagonist killer (Bak), direct the cell to programmed 
death  (76). Although the intrinsic and extrinsic pathways 
act in an independent manner, the receptor pathway can be 
associated with the internal pathway via BH3 interacting 
domain death agonist (Bid) protein. Caspase‑8 is capable of 
proteolysis of the pro‑apoptotic protein, Bid, which is trans-
located to the mitochondrial surface. This results in release 
of cytochrome c and activation of the intrinsic pathway of 
apoptosis (77).

Mechanism of apoptosis in pluripotent SCs. The mechanism 
of apoptosis varies, according to cell type and the nature of 
the stimulus. Filion et al showed that in the majority of hESCs 
undergoing apoptosis due to DNA damage, apoptosis was 
directed through the mitochondrial pathway. In stress condi-
tions, the accumulation of p53 contributes to the inhibition 
of octamer‑binding transcription factor 4 (Oct‑4) and Nanog 
expression, and the induction of spontaneous differentiation 
(Fig. 1C). This suggests that the utilization of this mechanism 
ensures the genomic integrity of hESCs (78). In comparison 
with hESCs, mESCs have lower levels of apoptosis and a 
reduced capacity for differentiation (79). However, mESCs 
exposed to DNA damage‑inducing UV radiation also reveal 
a certain degree of ability to induce differentiation by 
suppressing the expression of Nanog  (80). HESCs have a 
high capacity for DNA repair and a considerable threshold of 
apoptosis induction compared with differentiated cells. iPSCs 
exhibit an inferior apoptosis response to reactive oxygen 
species in comparison with hESCs (32). SCs isolated from 
the small intestine are sensitive to DNA damage‑induced cell 
death due to their low expression levels of the anti‑apoptotic 
Bcl‑2 protein. By contrast, colon SCs are more resistant to 
radiation; they express high levels of Bcl‑2. This demonstrates 
that the sensitivity to DNA damage and p53‑induced apop-
tosis differs significantly among different types of SCs (81). 
In conclusion, apoptosis constitutes a defensive mechanism 
that protects entire populations of cells against the effects of 
endo‑exogenous factors.

5. Conclusions

In conclusion, SCs possess a unique cell cycle, which has a 
DDR‑enhancing effect. The DNA repair mechanisms in 
pluripotent SCs are more efficient than those in differentiated 
cells. In particular, HR is favored as a main repair mechanism 
of DNA DSBs. Unrepaired DNA damage in pluripotent SCs 
readily directs them to programmed cell death or differentia-
tion. This phenomenon prevents the accumulation of mutations 
and contributes to the genetic stability of SCs. The genetic 
integrity of pluripotent SCs and their derivatives is very 
relevant due to the unavoidable exposure of SCs to genotoxic 
and cytotoxic agents during diagnostic procedures, as well as 
during anti‑cancer therapies. For that reason, further studies 
concerning the safety of stem and stem‑derived cells treated 
with IR and/or chemotherapeutics are required.
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