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Abstract. Aqueous human placenta extract (HPE) has been 
previously used to treat chronic soft tissue ulcer; however, the 
optimal dosage of HPE has yet to be elucidated. The present 
study investigated a novel nanofiber gel composed through 
layer‑by‑layer (LbL) self‑assembly, in which HPE was encap-
sulated. IKVAV, RGD, RAD16 and FGL‑PA were screened 
and combined to produce an optimal vehicle nanofiber gel 
through LbL assembly. Subsequently, the aqueous HPE was 
encapsulated into this nanofiber at the appropriate concen-
tration, and the morphology, particle size, drug loading 
efficacy, encapsulation rate, release efficiency and structure 
validation were detected. The encapsulation efficiency of all 
three HPE samples was >90%, the nanofiber gel exhibited a 
slow releasing profile, and the structure of HPE encapsulated 
in the nanofiber gel was unvaried. In conclusion, this type 
of novel composite nanocapsules may offer a promising 
delivery system for HPE.

Introduction

The wound healing potency of an aqueous human placental 
extract (HPE) has been clinically established in previous 
studies (1,2). HPE has numerous applications in the treatment 
of chronic soft tissue ulcers and in the stimulation of endog-
enous growth factors, while it possesses anti‑inflammatory 
and antimicrobial properties (1,2). HPE efficiently activates 
adenosine A2A receptors and is not degraded in vivo, meaning 
it is more efficient than other types of therapy, including 
vacuum sealing drainage, local application of growth factor, 
and traditional Chinese medicine (3). However, the use of 

appropriate vehicles to maintain the biological activity of 
HPE during the delivery process is crucial to the success of 
the treatment (4,5).

Short poly‑N‑acetyl glucosamine (sNAG) nanofibers 
have been found to activate the integrin receptor on the 
surface of platelets, promote the formation of fibrous protein 
complexes and cell proliferation and migration, and stimulate 
the release of a variety of growth factors (6,7). The activated 
integrin receptor was also found to increase the expression 
of vascular endothelial growth factor (VEGF) and accelerate 
the formation of new blood vessels through a transcriptional 
factor‑dependent signaling pathway (8). Furthermore, sNAG 
nanofibers may also accelerate the expression of α‑defensins 
and defensin β‑1 in endothelial and keratin cells (9). Therefore, 
self‑assembled sNAG nanofiber gel encapsulating aqueous 
HPE can serve as an ideal matrix material and tool for the 
treatment of chronic soft tissue ulcers (9,10).

Layer‑by‑layer (LbL) self‑assembly is a widely used tech-
nique of alternating the adsorption of materials onto a surface 
using complementary interactions, one layer of material at a 
time, in order to create nanometer‑thin films (11,12). Due to its 
versatility and simplicity, the LbL self‑assembly technique has 
been under intensive investigation for a wide range of purposes, 
including bone tissue engineering for vaccine delivery and the 
creation of biological interfaces (13,14). The development of 
stimuli‑responsive LbL‑assembled nanoparticles has advanced 
in recent years (15).

In the present study, the aqueous HPE was encapsulated in 
a novel nanocomposite gel fiber (16,17) prepared by the ideal 
formulation of IKVAV, RGD, RAD16 and FGL‑PA through 
LbL self‑assembly (17,18,19,20), and the morphology, particle 
size, drug loading, drug release efficacy, encapsulation rate and 
structure validation were examined. IKVAV is an amphiphilic 
molecule, also known as isoleucine‑lysine‑valine‑alanin‑valine. 
The sequence of IKVAV is C16H31O‑NH‑AAA  GGG  E 
IKVAV‑COOH, and this was prepared by the solid phase 
synthesis method (21). RAD16 is a self‑assembled peptide 
composed of alternating negative and positive amino acids 
(ACN‑RAD​ARA​DAR​ADA​RADA‑​CONH2). In addition, 
the FGL‑PA sequence was C22H43O‑NH‑AAA​GGG​EVY​
VVA​ENQ​QGK​SKA‑COOH, and the RGD sequence was C16​

H31O‑NHA​AAA​GGGS(PO4)‑RGD‑COOH. The study aimed 
to investigate whether this novel type of composite nanocap-
sules may offer a promising delivery system for HPE.
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Materials and methods

Materials. IKVAV (relative molecular mass of 1,351.6 with 
98%  purity; batch number, 20140520; Shanghai Bootech 
Bioscience & Technology Co., Ltd., Shanghai, China), RAD16 
(relative molecular mass of 1207.34 with 98% purity; Shanghai 
Bootech Bioscience & Technology Co., Ltd.), FGL‑PA (rela-
tive molecular mass of 2,485.92 with 98% purity; Shanghai 
Bootech Bioscience & Technology Co., Ltd.), and RGD (rela-
tive molecular mass of 1,207.34 with 99% purity; Shanghai 
Bootech Bioscience & Technology Co., Ltd.) were used in the 
present study.

Preparation of vehicle nanofiber gel. For the preparation 
of the vehicle nanofiber gel, 10 mg IKVAV, 10 mg RAD16, 
10 mg FGL‑PA and 10 mg RGD were added to a mixture 
of 0.1 M NaOH (400 µl) and twice‑distilled water (400 µl). 
The mixture was then placed in 37˚C for 30 min and stirred 
vigorously until a clear liquid was obtained. The pH value 
was detected using a pH meter (pH 9.4) and 0.1 M HCl was 
used to adjust the pH to 8.5‑9.0. Distilled water was used 
to adjust the peptide concentration to 1 mg/ml. Next, 0.1 ml 
Dulbecco's modified Eagle's medium/nutrient mixture F12 
(DMEM‑F12; Gibco; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) was added to 0.1 ml peptide to trigger 
self‑assembly.

A greater nanofiber gel viscosity resulted in better 
performance of the gel. Based on the preliminary results, 
IKVAV, FGL‑PA and RGD were used for the formula 
screening (22). The appropriate proportion and concentration 
of IKVAV, FGL‑PA and RGD were screened to prepare the 
optimum nanofibers gel for the appropriate times as follows: 
i) IKVAV:RGD = 2:1 (4.5 sec); ii) IKVAV:RGD = 1:1 (4 sec); 
iii)  IKVAV:RGD  =  1:2 (5  sec); iv)  IKVAV:FGL‑PA  =  2:1 
(5. 5   se c);  v)   I KVAV:FGL ‑PA  =   1:1  (6   se c); 
vi) IKVAV:FGL‑PA = 1:2 (7 sec); vii) RGD:FGL‑PA = 2:1 (8 sec); 
viii) RGD:FGL‑PA = 1:1 (8.2 sec); ix) RGD:FGL‑PA = 1:2 
(8 . 5   s e c) ;  x)   I K VAV: RG D: F G L ‑ PA   =   1:1:1 
(11  sec); xi)  IKVAV:RGD:FGL‑PA  =  3:2:1 (9  sec); 
xii) IKVAV:RGD:FGL‑PA = 1:2:3 (10 sec).

Preparation of nanofiber gel‑encapsulated HPE. HPE was 
obtained from a 28 year‑old patient recruited from the Union 
Hospital of the Tongi Medical College (Wuhan, China) on 
February 2014. According to the appropriate proportion and 
concentration, IKVAV, FGL‑PA and RGD were added into 
the HPE, and then mixed with an equal volume DMEM‑F12 
to trigger self‑assembly at room temperature. The solution 
was then diluted 0, 50 and 100 times with distilled water and 
observed at magnifications of x30,000, x39,000, x65,000, 
x93,000 and x135,000 using a Tecnai‑10 transmission electron 
microscope (Philips, Amsterdam, Netherlands).

Transmission electron microscopy. The morphology of the 
HPE nanofiber gels was analyzed using a Tecnai‑10 transmis-
sion electron microscope (Philips). Briefly, following dilution 
(1:100) in water, the sample was negatively‑stained with 1% 
(weight/volume) phosphotungstic acid (Shanghai Muhong 
Industrial Co., Ltd., Shanghai, China) for 5  min at 25˚C. 
Subsequently, the sample was placed on copper film grids 

(Wuhan Boster Biological Technology, Ltd., Wuhan, China) 
and observed using transmission electron microscopy after 
drying for 10 min at 25˚C (23).

Particle size determination. After diluting 100‑fold with 
distilled water, the mean particle size of the HPE nanofiber 
gel was determined using Zetasizer  3000  HS (Malvern 
Instruments Ltd., Malvern, UK). Three parallel measure-
ments were performed for each sample as previously 
described (24).

Encapsulation efficiency and drug loading testing of HPE 
nanofiber gel. The encapsulation efficiency and drug loading 
was analyzed by dissolving ~5 mg HPE nanofiber gel in 
either 1.2 ml distilled water or absolute ethyl alcohol. Next, 
the mixture was centrifuged at 8,000 x g for 10 min and the 
precipitation was resuspended in 1.2 ml distilled water. The 
supernatant and precipitation were detected using an ultra-
violet (UV) detector (Alpha 1500; Shanghai Lab‑Spectrum 
Instruments Co., Ltd., Shanghai, China) at 280  nm. The 
formula used to measure the encapsulation efficiency was 
as follows: Encapsulation efficiency  =  (concentration of 
supernatant + concentration of precipitation in demulsified 
samples ‑ concentration of precipitation in non‑demulsified 
samples)/total concentration of demulsified samples. The 
formula used to measure drug loading was as follows: 
Drug loading = actual drug concentration /  (drug‑loading 
particle + drug concentration). Three parallel measurements 
were performed for each sample.

Slow‑releasing potential detection of HPE nanofiber gel. The 
slow‑releasing potential of the HPE nanofiber gel was evalu-
ated using a dialysis method. Briefly, dialysis bags (molecular 
weight cut‑off, 1,000 Da) containing 0.1 ml HPE nanofiber gel 
were immersed in a thermostatic gas bath containing 20 ml 
release medium (phosphate‑buffered saline, pH 7.2) at 37˚C. 
At predefined intervals (0.25, 0.5, 1, 1.5, 2, 4, 6, 9, 12, 24, 
48, 72, and 96 h), 1 ml aliquots of phosphate‑buffered saline 
(Wuhan Boster Biological Technology, Ltd., Wuhan, China) 
were withdrawn and replaced with the same volume of release 
medium. The HPE release behavior of the nanofiber gel was 
determined using a UV spectrophotometer (Agilent 8453; 
Agilent Technologies, Santa Barbara, CA, USA) at 280 nm. 
The measured concentrations were calculated according to 
the standard curve, followed by calculation of the cumulative 
release rate (22).

Crystal structure validation of HPE nanofiber gel. The HPE 
stock solution and nanofiber gel were diluted 100 times with 
distilled water. The solution was stirred for 10 min at 20 x g. 
The crystal structure of the HPE stock solution and HPE nano-
fiber gel was then evaluated using an X‑ray diffractometer 
(Siemens D5000; Siemens AG, Munich, Germany). The condi-
tion of the diffraction was as follows: λ = 1.5064 Å ; voltage, 
20 kV; electric current, 20 mA; 2θ scanning in the range of 10˚ 
to 80 ;̊ scanning frequency, 0.02˚ Q/S.

Statistical analysis. Statistical analysis was performed using 
the SPSS version 16 software (SPSS, Inc., Chicago, IL, USA). 
The statistical significance of differences was determined 
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using one‑way analysis of variance. All statistical tests were 
two‑sided, and P<0.05 was considered to indicate a statisti-
cally significant difference. Results are presented as the 
mean ± standard deviation.

Results

Preparation and characterization of HPE encapsulated 
in nanofiber gels. The IKVAV, RAD16, FGL‑PA and RGD 

Figure 1. Morphology of human placental extract encapsulated in nanofibers, as observed using transmission electron microscopy. Different dilutions were 
used, including dilution by (A) 0, (B) 50 and (C) 100 times. The four images in each part of the figure were captured at different magnifications. In (A) and (B), 
the magnification is x30,000, x39,000, x65,000 and x93,000 (from left to right), while in (C) the magnifications are x30,000, x39,000, x93,000 and x135,000 
(from left to right).

Figure 2. Mean particle size of (A) vehicle nanofiber gel and (B) human placental extract nanofiber gel.
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peptides were synthesized and used to form nanofiber skeletons 
using the self‑assembly method via electrostatic and hydro-
phobic interactions. After a preliminary screening, IKVAV, 
RGD and FGL‑PA were able to form nanofiber skeletons with 
greater viscosity. Twelve different combinations of IKVAV, 
RGD and FGL‑PA were used for the formula screening. The 
results indicated that the optimal proportion of the nanofiber 
gel was IKVAV : RGD : FGL‑PA = 1:1:1 and the optimal 
concentration was 0.6 mg/ml, as determined by observing the 
liquidity, diffusion time and viscosity.

Subsequently, the HPE was encapsulated into the nanofibers. 
The morphology of the HPE nanofibers was observed using 
transmission electron microscopy. The results revealed that 
the HPE nanofibers had a fibrous appearance under different 
dilutions. With the increase of the dilution, the nanofiber gel 
appeared to be more homogeneously dispersed. At a dilution of 
100, the nanofiber gel was found to be directly observed (Fig. 1).

As shown in Fig.  2, the mean particle widths of the 
vehicle and of the HPE nanofiber gels were ~11.7 and 212 nm, 
respectively.

Encapsulation efficiency and in vitro release of HPE. The 
results of UV spectrophotometric analysis revealed that the 
encapsulation efficiency of all three HPE samples (dilution 
performed in triplicate) was >90% (96.8, 98.3 and 94.8%), 
with a mean encapsulation efficiency of 96.6±1.75%. The drug 
loading of the three samples (dilution performed in triplicate) 
was found to be 5.2, 5.13 and 5.11 mg/g, with a mean drug 
loading of 5.15±0.04 mg/g (data not shown).

The in vitro release of HPE nanofiber gel was examined 
using a dialysis method. The drug release profile was performed 
under simulated physiologic conditions (pH 7.2). As shown 
in Fig. 3, the HPE nanofiber gel showed a sustained drug 
release profile, with a total HPE release from the nanofibers 
of 2.35‑82.58%. The nanofiber gel exhibited a slow‑releasing 
profile (>4 days).

Crystal structure validation of HPE nanofiber gel. The 
results indicated that the peak number and time of HPE 
nanofiber gel was similar to that of the HPE stock solution. 
The preliminary results confirmed that the structure of HPE 
encapsulated in the nanofiber gel was unvaried compared 
with the HPE structure.

Discussion

The absolute or relative reduction of exogenous growth factor 
and its receptor is one of the main reasons why the treatment 
of chronic soft tissue ulcer is challenging (25,26). The topical 
application of active growth factors can promote the healing of 
chronic ulcer (27); however, our previous study revealed that 
the exogenous growth factors were easily degraded and diluted 
due to their short half‑life (28). Signaling pathways that are 
able to awaken the body's self‑healing mechanisms are there-
fore required to promote the sustained release of endogenous 
growth factors. Recent studies have shown that adenosine A2A 
receptor activation may play an important role in the protec-
tion and promotion of wound healing in ischemia, hypoxia, 
inflammation, trauma and numerous other pathological 
processes (29,30). The adenosine A2A receptor activation can 
inhibit the generation of reactive oxygen species and promote 
the release of cytokines, such as tumor necrosis factor‑α, accel-
erate osteoblast, fibroblast and fat precursor cell proliferation, 
as well as the release of VEGF, angiogenin and glutamine 
transferase  II, and thus promoting wound healing  (31,32). 
Therefore, selective activation of adenosine A2A receptors 
awakens the body's self‑healing mechanisms (33).

Numerous studies have demonstrated the biological actions 
of HPE in various diseases, and HPE has been used in wound 
healing in several countries for years as a folk remedy (34,35). 
Another study suggested that HPE exerts an anti‑inflammatory 
function that suppresses chemical mediators, and that these 
effects may be associated with innate immune functions (36). 
Furthermore, previous studies indicated that oligomeric DNA 
nucleotides, such as polydeoxyribonucleotide (PDRN), are 
linear DNA nucleotide polymers from HPE with a length 
range of 50‑2,000 bp (37,38). PDRN can efficiently activate 
adenosine A2A receptors, without being degraded into small 
fragments, thus preventing the activation of other adenosine 
receptors (39,40). PRDN treatment for chronic soft tissue ulcer 
has been found to significantly increase wound granulation, 
thus promoting wound healing  (41). However, the method 
used to promote the PDRN late release will directly affect its 
therapeutic effect on the chronic soft tissue ulcer.

To date, limited information is available regarding the 
dosage of HPE required for wound healing. In the present 
study, aqueous HPE was encapsulated in a novel nanofiber 

Figure 3. In vitro release profiles of the HPE encapsulated in nanofiber gels in phosphate‑buffered saline (pH 7.2) at 37˚C.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  11:  1447-1452,  2016 1451

gel prepared by the appropriate formulation of IKVAV, RGD, 
RAD16 and FGL‑PA through LbL assembly. Subsequently, 
the morphology, particle size, drug loading efficacy, encap-
sulation rate, release efficacy and structure validation were 
examined. The results showed that the particle size of the 
HPE nanofiber gel was 212 nm, which was included in the 
1‑1,000 nanometer materials. Following the detection of the 
encapsulation efficiency and drug loading, the HPE nanofiber 
gel was found to have high drug loading (5.15 mg/g) and high 
encapsulation efficiency (96.6%). Furthermore, the HPE 
nanofiber gel exhibited a slow‑releasing profile (>4 days). 
Investigation of the crystal diffraction structure confirmed 
that the structure of HPE that was encapsulated in the nano-
fiber gel did not undergo any apparent changes. Therefore, 
these novel composite nanocapsules may offer a promising 
delivery system for HPE.
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