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Abstract. Allicin is the active constituent of garlic, a widely 
used spice and food. The remedial properties of garlic have also 
been extensively researched and it has been demonstrated that 
allicin is able to inhibit the transient outward potassium current 
(Ito) in atrial myocytes. However, the direct effect of allicin 
on Ito in ventricular myocytes has yet to be elucidated. In the 
present study, the effects of allicin on Ito in ventricular myocytes 
isolated from mice were investigated, using the whole‑cell 
patch recording technique. The results revealed that Ito current 
was not significantly suppressed by allicin in the low‑dose 
group (10  µmol/l; P>0.05). However, Ito was significantly 
inhibited by higher doses of allicin (30, 100 and 300 µmol/l; 
P<0.05 vs. control; n=6) in a concentration‑dependent manner 
(IC50=41.6 µmol/l). In addition, a high concentration of allicin 
(≥100 µmol/l) was able to accelerate the voltage‑dependent 
inactivation of Ito in mouse ventricular myocytes. In conclusion, 
the present study revealed that allicin inhibited the Ito in mouse 
ventricular myocytes, which may be the mechanism through 
which allicin exerts its antiarrhythmic effect.

Introduction

Allicin is the active compound in garlic, a well‑researched 
remedy that is widely used as a spice and food (1,2). It has 
been reported that garlic may reduce cholesterol levels, lower 
blood pressure, inhibit platelet aggregation, activate fibrino-
lysis and prevent atherosclerosis, while it also has antioxidant 
and anticancer effects (3‑12). Garlic has also been reported to 
have an antiarrhythmic effect (13,14), which has been observed 
in ventricular and supraventricular arrhythmias  (13). The 
incidence of ischemia/reperfusion‑induced ventricular fibril-
lation in isolated perfused rat hearts was found to be reduced 

by garlic powder (15). Garlic significantly decreases the upper 
limit of vulnerability of ventricular fibrillation and improves 
defibrillation efficacy in a dose‑dependent pattern (16,17). 
Martín et al (18) revealed that allicin inhibited the myocardial 
contraction and slowed the sinus rhythm. In a further study, 
Martín et al (19) demonstrated that garlic dialysate was able 
to prolong the effective refractory period and the sinus node 
recovery time of isolated rat atria, in addition to suppressing 
premature ventricular contractions and ventricular tachycardia 
in ouabain‑intoxicated canines.

A study by Deng et al (20) revealed that allicin was able 
to inhibit transient outward potassium currents (Ito) in human 
atrial myocytes. However, the direct effect of allicin on Ito in 
ventricular myocytes has yet to be elucidated. Therefore, in 
the present study, the effects of allicin on Ito in ventricular 
myocytes isolated from mice were investigated, using the 
whole‑cell patch clamp recording technique to test the effect 
of allicin on Ito, as detected via Ito amplitude and kinetics, 
including Ito activation, inactivation and recovery.

Materials and methods

Ethical approval. All animal procedures were approved by 
the Institutional Animal Care and Use Committee at Renmin 
Hospital of Wuhan University (Wuhan, China). The animals 
used in the present study were male C57 mice, aged 8‑10 weeks.

Drugs and solution. Tyrode's solution was composed of the 
following: 130 mmol/l NaCl, 5.4 mmol/l KCl, 1.8 mmol/l 
CaCl2, 1 mmol/l MgCl2, 0.3 mmol/l Na2HPO4, 10 mmol/l 
HEPES and 10 mmol/l glucose. The pH of the solution was 
adjusted to pH 7.4 using NaOH. In addition, Ca2+‑free Tyrode's 
solution was used, without CaCl2. The collagenase solution was 
composed of Ca2+‑free Tyrode's solution containing 0.6 mg/ml 
collagenase type II (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA), 0.1% bovine serum albumin, 20 mM 
taurine and 30 µM CaCl2. Kraft‑Brühe (KB) solution included 
10 mmol/l taurine, 70 mmol/l glutamic acid, 25 mmol/l KCl, 
10 mmol/l KH2PO4, 22 mmol/l glucose and 0.5 mmol/l ethylene 
glycol tetraacetic acid (EGTA). The pH of the KB solution was 
adjusted to pH 7.2 using KOH. Tyrode's solution was supple-
mented with 10, 30, 100 and 300 µmol/l allicin during allicin 
treatment. Furthermore, the pipette solution used in the study 
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consisted of 110 mmol/l K‑aspartate, 20 mmol/l KCl, 8 mmol/l 
NaCl, 1 mmol/l MgC12, 1 mmol/l CaC12, 4 mmol/l MgATP, 
0.1 mmol/l EGTA and 10 mmol/l HEPES, and was adjusted to 
pH 7.2 using KOH. Allicin was purchased from Xuzhou Ryen 
Pharm Co., Ltd (Xuzhou, China).

Isolation of ventricular cardiac myocytes. A total of 
36 C57BL/6 mice, weighing 25.1±3.4 g, were heparinized 
[100 U; intraperitoneal injection (i.p.); Wangbang Co., Xuzhou, 
China] 15 min prior to sacrifice, anaesthetized by pentobarbital 
sodium (60 mg/kg; i.p.; Sigma‑Aldrich, St. Louis, MO, USA) 
and sacrificed by cervical dislocation. Hearts were rapidly 
removed and retrogradely perfused at a temperature of 37˚C 
with the following solutions, according to Langendorff tech-
nique (21): i) Tyrode's solution (5 min); ii) Ca2+‑free Tyrode's 
solution (5 min); iii) collagenase solution (15 min); and iv) KB 
solution (5 min). Subsequent to the perfusion, the left ventric-
ular free wall was dissected from the heart and placed in 
ice‑cold KB solution. The tissue was then minced and titrated 
to free individual myocytes. Isolated cardiac myocytes were 
stored in KB solution at 4˚C until required.

Electrophysiology recording. Whole‑cell patch clamp was 
performed on the myocytes using an EPC‑9 amplifier (Heka 
Elektronik, Lambrecht, Germany), as previously described (21), 
and data was recorded and analyzed with a Pulse/Pulsefit 
software interface (version 8.31; Heka Elektronik). During the 
experiments, 1.5 ml myocytes were placed in the experimental 
chamber and mounted on the stage of an inverted microscope 
(IX70; Olympus Corporation, Tokyo, Japan) and perfused 
with Tyrode solution supplemented with 10, 30, 100 and 
300 µmol/l allicin for 5 min at a rate of 2‑3 ml/min at room 
temperature. In order to elucidate the effect of allicin on Ito in 
mouse ventricular myocytes, 6 cells were observed per solution 
influx, in triplicate. Pipettes had resistances of 2.5‑3.5 MΩ when 
filled with pipette solution. Series resistance (Rs) was between 
4‑8 MΩ and was compensated by 80‑90% to reduce the Rs. 
Current signals were filtered at 3 kHz by an 8‑pole Bessel 
filter, digitized at a sampling rate of 1 kHz and recorded on a 
computer running Pulse/Pulsefit software, which was addition-
ally used for the generation of voltage pulses and data analysis.

Ito recording. The total Ito was determined by 500 msec depolar-
izing pulses varying from ‑50 to +60 mV in 10 mV increments 
from a holding potential of ‑80 mV. In order to examine Ito, 
pre‑pulse (100 msec, ‑40 mV) was used to inactivate Ito prior to 
activation steps with allicin, and Ito was measured by subtracting 
the currents before and after that pre‑pulse. By dividing the 
measured current amplitude by the membrane capacitance 
(pA/pF), Ito values were reported as current densities. 

The IC50 of allicin on Ito was fitted with Hill function using 
OriginPro version 8.0 software as follows: E = Emax[1+(D⁄C)b], 
where E is the effect at concentration C, Emax is the maximum 
effect, D is the concentration for half‑maximum action (IC50) 
and b is the Hill coefficient.

Steady‑state activation curve of Ito. Using the current‑voltage 
(I‑V) association for Ito, the voltage‑dependent of steady‑state 
activation curve for Ito was fitted to the Boltzmann equation 
as follows: I/Imax  =  1/[1+exp((VT  ‑  V1/2)/k)], where Imax is 
maximum current, VT is the membrane potential, V1/2 is the 
midpoint potential for activation and K is a slope factor (22). 

Steady‑state inactivation of Ito. The two‑step voltage‑clamp 
protocol was applied for steady‑state inactivation of Ito, as 
previously described (21). The process involved an inacti-
vating pre‑pulse period that varied from ‑110 mV to +10 mV 
with a 1 sec pre‑pulse, followed by a fixed 400 ms test pulse 
to +40 mV. The test current amplitude of Ito at each pulse 
potential was normalized to the maximal amplitude of this 
current (I/Imax). Data were fitted to the Boltzmann equation.

Recovery from inactivation of Ito. The time‑dependence 
of reactivation was measured using an inactivating pulse 
(‑40 mV, maintained for 500 msec). Following this, at variable 
time intervals (10‑200 msec), a 500 msec test pulse at +40 mV 
was performed. The ratio of the current amplitude produced 
by the test pulse to the inactivating pulse (P2/P1) was plotted 
as a function of the time intervals. The time constant was 
calculated by data fitted to exponential functions.

Statistical analysis. All data are expressed as the mean ± stan-
dard deviation. Statistical analysis was performed using 

Figure 1. Effects of allicin on transient outward potassium currents (Ito) in mouse ventricular myocytes. The data reveal the representative voltage‑dependent 
Ito (A) under control conditions, and (B) in the presence of 10 µmol/l allicin, (C) 30 µmol/l allicin, (D) 100 µmol/l allicin and (E) 300 µmol/l allicin. Data are 
presented as mean ± standard deviation.

  A   B

  C   D

  E
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a Student's t  test and analysis of variance, performed on 
SPSS version 17.0 software (SPSS, Inc. Chicago, IL, USA). 
Patch‑clamp data were analyzed using Origin version 8.0 
(OriginLab Corporation, Northampton, MA, USA). P<0.05 
was considered to indicate a statistically significant differ-
ence.

Results

Effects of allicin on voltage‑dependent Ito. Allicin at 10, 30, 
100 and 300 µmol/l was applied, respectively. Ito was blocked 
by allicin in a concentration‑dependent manner. Currents were 
gradually decreased with the increase of allicin concentration. 

The representative current blocked by allicin at 10, 30, 100 
and 300 µmol/l is shown in Fig. 1.

Fig. 2 displays the I‑V association for Ito density prior to 
and following the application of 10, 30, 100 and 300 µmol/l 
allicin. The Ito was not significantly suppressed by allicin in 
the low dose (10 µmol/l; P>0.05); however, it was significantly 
suppressed by higher doses (30, 100 and 300 µmol/l; P<0.05; 
n=6) compared with the control.

In addition, Fig. 3 shows the dose‑response association for 
the inhibition of Ito by allicin. At a potential of +60 mv, treat-
ment with 1, 10, 30, 100 and 300 µmol/l allicin decreased the 
peak Ito by 1.5, 17.8, 35.3, 63.2 and 76.9%, respectively. The 
IC50 of allicin on Ito was fitted with Hill function and calculated 

Figure 2. Current‑voltage association for Ito in mouse ventricular myocytes 
following treatment with various allicin concentrations. Allicin inhibited Ito 
in a concentration‑dependent manner. Data are presented as the mean ± stan-
dard deviation. *P<0.05 vs. control, n=6. Ito, transient outward potassium 
current.

Figure 3. Dose‑response association for inhibition of Ito by allicin. At a poten-
tial of +60 mV, treatment with 1, 10, 30, 100 and 300 µmol/l allicin decreased 
the peak Ito current by 1.5, 17.8, 35.3, 63.2 and 76.9%, respectively. The IC50 
of allicin on Ito was fitted with Hill function and calculated to be 41.6 µmol/l, 
using OriginPro version 8.0 software (n=6). Ito, transient outward potassium 
current.

Figure 4. Voltage‑dependent activation curve of Ito using the current‑voltage 
association for Ito. Allicin had no significant effect on the voltage‑dependence 
of the steady‑state activation curve of Ito (P>0.05). Data are presented as the 
mean ± standard deviation. Ito, transient outward potassium current; Imax, 
maximum current.

Figure 5. Voltage dependence of the inactivation (I/Imax) of Ito following 
treatment with various allicin concentrations. The voltage dependence of 
the inactivation of Ito was negatively shifted after treatment with high con-
centrations of allicin (100 and 300 µmol/l; *P<0.05 vs. control; n=6).Data 
are presented as the mean ± standard deviation. I/Imax, current / maximum 
current; Ito, transient outward potassium current.
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as 41.6 µmol/l (n=6 cells in each group) using OriginPro 8.0 
software.

Effects of allicin on the steady‑state activation curve of 
Ito. Allicin was not found to have a significant effect on the 
voltage‑dependence of the steady‑state activation curve of Ito 
(P>0.05; Fig. 4).

Effects of allicin on the steady‑state inactivation of Ito. The 
results revealed that a low dose of allicin had no signifi-
cant effect on the voltage‑dependence of the inactivation 
(I/Imax) of Ito (control, V1/2 = ‑28.2±4.7 mV; 10 µmol/l allicin, 
V1/2 = ‑32.2±3.8 mV; 30 µmol/l allicin, V1/2 = ‑30.1±3.6 mV; 
n=6; P>0.05, compared with the control). However, as 
shown in Fig. 5, high doses of allicin significantly shifted 
the voltage‑dependence of the inactivation of Ito toward the 
negative potential (100 µmol/l allicin, V1/2 = ‑36.9±4.1 mV; 
300 µmol/l allicin, V1/2 = ‑55.3±5.0 mV; n=6; P<0.05 compared 
with the control).

Effects of allicin on the recovery from inactivation of Ito. Allicin 
was not found to have a significant effect on the recovery from 
the inactivation of Ito following allicin treatment (P>0.05; 
Fig. 6).

Discussion

In the present study, allicin significantly inhibited Ito in mouse 
ventricular myocytes in a concentration‑dependent manner. 
High‑dose allicin (≥100 µmol/l) was able to significantly shift 
the voltage‑dependence of the steady‑state inactivation curve 
of Ito towards an increasingly negative potential. However, 
allicin did not have a significant effect on steady‑state activa-
tion, or recovery from the inactivation of Ito.

Traditional Chinese medicine has been used for thousands 
of years for the treatment of cardiovascular diseases (23,24). 

In recent decades, garlic has been found to possess anti-
arrhythmic effects  (13,14). Several reports  (25‑27) have 
indicated that allicin is the predominant active component that 
is responsible for the majority of the biological activities of 
garlic, including attenuating ischemic injury, lowering blood 
pressure and antiarrhythmic effects (6,28,29). The chemical 
structure of allicin is CH2=CH‑CH2‑S(O)‑S‑CH2‑CH=CH2, 
and it has been has been manufactured synthetically and 
produced worldwide (18). Although garlic has been discovered 
to be a significant antiarrhythmic agent, the exact mechanism 
has yet to be elucidated.

In the present study, allicin significantly inhibited Ito in 
mouse ventricular myocytes; however, it had no significant 
effect on steady‑state activation, or recovery from inactivation 
of Ito, which is in agreement with previous findings (20). In 
the study by Deng et al (20), the research target was human 
atrial myocytes, and it was demonstrated that 30 µmol/l allicin 
was able to negatively shift the voltage‑dependence of the 
steady‑state inactivation curve of Ito. By contrast, in the present 
study, only high‑dose allicin (≥100 µmol/l) was able to signifi-
cantly shift the steady‑state inactivation curve of Ito towards 
an increasingly negative potential. This may be due to allicin 
having different effects in different tissues and species. Allicin 
exerts its suppressive effect on Ito by changing the quantity and 
kinetic properties of Ito. In human atrial monocytes, Ito contrib-
utes to cardiac repolarization, whilst in the hearts of mice, Ito 
has a role in action potential repolarization (30,31). Notably, Ito 
is not uniformly distributed within the left ventricle in humans, 
mice and certain other mammals (32‑35). In the left ventricular 
free wall, Ito is larger in epicardial compared with endocardial 
regions, which contributes to the regional variations of action 
potential (AP) profiles and results in a prominent AP notch in 
the epicardium, but not in the endocardium (36). It has been 
confirmed that a prominent Ito is important in physiological 
and pathophysiological process (37‑41). The high incidence of 
phase 2 reentry and ventricular fibrillation during myocardial 
ischemia was partly due to the prominent Ito‑mediated epicar-
dial AP dome (42). In patients with coronary heart disease, the 
incidence of sudden mortality in men was significantly higher 
compared with that in women (43,44). This may be a result of 
a more prominent Ito in men compared with women (39). Thus, 
Ito block may be an effective therapy for arrhythmia (37).

In the present study, it was revealed that allicin was able to 
inhibit Ito, and may be the mechanism through which allicin 
exerts its antiarrhythmic effect. Antiarrhythmic therapeutics 
with low toxicity and low reverse use‑dependence (RUD) 
effects are a focal point in antiarrhythmic drug research. 
Xing et al (23) confirmed that allicin has similar effects to 
amiodarone on the conduction system and cardiac electro-
physiology. However, allicin possesses no RUD and this may 
contribute to multi‑channel blockers. Furthermore, allicin 
appears to be safe for use in the majority of conditions (2) and 
is therefore likely to be a promising antiarrhythmic therapy.

In conclusion, the present study revealed that allicin 
inhibits Ito in mouse ventricular myocytes, which may be the 
mechanism through which allicin exerts its antiarrhythmic 
effect. Thus, allicin has demonstrated potential to be a prom-
ising antiarrhythmic therapy in the future; however, whether 
allicin exerts the same effect in other tissues or species requires 
further investigation.

Figure 6. Effects of allicin on recovery from the inactivation of Ito. Allicin 
was not found to have a significant effect on the recovery from the inactiva-
tion of Ito (P>0.05 vs. control). Ito, transient outward potassium current; I/Imax, 
current / maximum current.
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