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Abstract. Preeclampsia (PE) is a severe pregnancy complica-
tion, which is a leading cause of maternal and fetal mortality. 
The present study aimed to screen potential biomarkers for the 
diagnosis and prediction of PE and to investigate the underlying 
mechanisms of PE development based on the differential expres-
sion network (DEN). The microarray datasets E‑GEOD‑6573 
and E‑GEOD‑48424 were downloaded from the European 
Bioinformatics Institute database. Differentially expressed 
genes (DEGs) between the PE and normal groups were 
screened by Significant Analysis of Microarrays with the cutoff 
value of a |log2 fold change| of >2, and a false discovery rate 
of <0.05. The DEN was constructed based on the differential 
and non‑differential interactions observed. In addition, genes 
with higher connectivity degrees in the DEN were identified on 
the basis of centrality analysis, while disease genes were also 
extracted from the DEN. In order to understand the functional 
roles of genes in DEN, Gene Ontology (GO) and pathway 
enrichment analyses were performed. The present results 
indicated that a total of 225 genes were considered as DEGs in 
the PE group, while 466 nodes and 314 gene interactions were 
involved in the DEN. Among these 466 nodes, 4 nodes with 
higher degrees were identified, including ubiquitin C (UBC), 
small ubiquitin‑like modifier 1 (SUMO1), SUMO2 and RAD21 
homolog (S. pombe) (RAD21). Notably, UBC was also found 
to be a disease gene. UBC, RAD21, SUMO2 and SUMO1 were 
markedly enriched in the regulation of programmed cell death, 
as well as in the regulation of apoptosis, cell cycle and chromo-
somal part. In conclusion, based on these results, we suggest that 
UBC, RAD21, SUMO2 and SUMO1 may be reliable biomarkers 
for the prediction of the development and progression of PE.

Introduction

Preeclampsia (PE) is a severe pregnancy complication, charac-
terized by hypertension and large amounts of urine protein (1). 
PE increases the risk of red blood cell breakdown, impaired 
liver function and kidney dysfunction  (2,3). According to 
the World Health Organization, approximately 2‑8% of 
pregnancies are affected by PE worldwide (4). Additionally, 
~29,000 cases of mortality were reported in 2013 (5). However, 
a specific treatment for PE and methods for its early diagnosis 
or prediction have not been adequately developed. Therefore, 
understanding the molecular mechanisms underlying PE is 
essential.

PE is know to be associated with the dysregulation of suscep-
tibility genes. Recently, the molecular mechanism and therapy 
of PE has been investigated in a number of studies. For instance, 
Yong et al (6) have demonstrated that several susceptibility 
genes, including inhibin β A, angiotensinogen, interleukin‑6, 
interferon and transforming growth factor  β1 genes, serve 
an important role in the development and progression of PE 
through apoptosis and cell signaling. Similarly, expression of 
fms‑like tyrosine kinase‑1 and kinase insert domain containing 
receptor has been reported to contribute to the pathogenesis of 
PE (7,8). A previous study has also indicated that the increased 
level of vascular endothelial growth factor may be an important 
mechanism underlying PE via regulating angiogenesis and 
blood flow (9). Furthermore, Long et al (10) have suggested 
that inactivating killer‑cell immunoglobulin‑like receptors 
may affect the risk of PE possibly by lowering the activation of 
uterine natural killer cells. The gene V‑set and immunoglobulin 
domain containing 4 has been identified to be upregulated in 
the peripheral blood mononuclear cells from PE patients (11). 
However, PE is a multi‑system disorder and its underlying 
molecular mechanism remains unclear.

Currently, microarray analysis is widely utilized to study 
the development and progression of various diseases, as well 
as to determine the underlying biomarkers of diseases, due to 
the lower expense and advancements in this technique (12). 
The gene profile dataset E‑GEOD‑6573 established by 
Herse et al (13) screened differentially expressed genes (DEGs) 
from PE and control tissue samples, based on the presence of 
a 4‑fold change in gene expression. The identification of DEGs 
and Gene Ontology (GO) functional annotation of PE and 
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control samples are also performed in the gene profile dataset 
of E‑GEOD‑48424 provided by Textoris et al (14). 

In the present study, the differential expression network 
(DEN) strategy was employed to trace the dysfunctional 
interactions associated with the development and progression 
of PE (15). DEN is a novel network that includes differential 
genes and networks, and also covers non‑differential interac-
tions associated with the disease, which are not considered 
in the differential network (15). In order to obtain further 
insight into the mechanism underlying PE development and 
progression, two gene expression microarray datasets of 
PE were downloaded from the European Bioinformatics 
Institute (EMBL‑EBI) database and merged, followed by the 
identification of DEGs. In addition, DENs were constructed 
by screening the differential interactions and non‑differential 
interactions. Subsequently, hub genes and disease genes were 
extracted from the DEN. GO and pathway enrichment analysis 
were also conducted for the genes in DEN. The results suggest 
that hub genes and disease genes identified in the present study 
provide a theoretical basis for the treatment of PE.

Materials and methods

Microarray data. In total, two microarray datasets were 
downloaded from the EMBL‑EBI database, including the 
E‑GEOD‑6573 (13) and E‑GEOD‑48424 datasets (14). Gene 
expression data from E‑GEOD‑6573, containing abdominal 
adipose, muscle and placenta samples from 10 PE women and 
10 women with uneventful pregnancies, were obtained using 
the GPL570 platform of Affymetrix Human Genome U133 
Plus 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA). 
The microarray data of E‑GEOD‑48424 included 19  PE 
samples and 19 normal pregnancy tissue samples and were 
obtained based on the GPL6480 platform of Agilent‑014850 
Whole Human Genome Microarray 4x44 K G4112F (Agilent 
Technologies, Santa Clara, CA, USA).

Data preprocessing. Prior to analysis, the 'expresso' function 
of the Affy package (16) was used to preprocess the gene 
profile data of E‑GEOD‑6573. The specific steps of the 
preprocessing were as follows: The 'rma' function (17) was 
applied to perform background correction, and then normal-
ization was performed using the quartile function in order 
to eliminate the influence of nonspecific hybridization (18). 
Subsequently, the perfect match probe correction was 
performed via MAS (19), followed by the expression summary 
through median polish. AffyBatch data were converted into 
expression measurements and the 'featureFilter' function was 
then utilized to filter the data for removing the redundant and 
irrelevant features. Finally, the probe sets were aligned to the 
genes using the 'getSymbol' function.

Simultaneously, processed data and the gene annotation 
file of E‑GEOD‑48424 were downloaded. Subsequently, 
the probe sets were mapped to the genes using the 
̔getSymbol̓  function in Package ̔annotate̓ (version 1.49.1; 
http://www.bioconductor.org/).

Identification of DEGs in PE. In the analysis performed 
in the present study, the merge function from Package 
̔inSilicoMerging̓ (version 1.10.1; https://www.bioconductor.

org/packages/release/bioc/html/inSilicoMerging.html) was 
used to merge the two microarray datasets into one global 
dataset, in order to further obtain a merged data set by 
means of the geNorm normalization method  (20). Next, 
Significant Analysis of Microarrays (R package; version 1.25; 
https://www.r‑project.org/) was used to identify DEGs 
in the PE samples relative to normal samples  (21). The 
Benjamini‑Hochberg approach (22) was employed to adjust 
the raw P‑value into the false discovery rate (FDR). Several 
genes were considered as DEGs when the |log2 fold change| 
was >2, and the FDR was <0.05.

Construction of protein‑protein interactions (PPI) network. 
Initially, all human PPIs, involving 15,750 genes and 
248,584 interactions were downloaded from the Biological 
General Repository for Interaction Datasets (BioGrid; 
http://thebiogrid.org/) database. Subsequently, all genes of the 
two microarray datasets used in the present study were aligned 
to the compiled PPI network to filter several unnecessary 
interactions. A total of 9,427 genes with 151,836 interactions 
were selected.

Spearman's correlation coefficient calculation. In the current 
study, Spearman's correlation coefficient was calculated 
to determine the interactions among genes. Subsequent to 
obtaining gene expression values between normal and PE 
samples, Spearman's correlation coefficient was calculated for 
the 151,836 interactions in different conditions, which were 
represented by the normal and PE samples, named as A1 and 
A2, respectively. Similarly, the absolute value of the differ-
ence in the Spearman's correlation coefficient between the two 
groups, defined as |A1‑A2|, was also calculated.

Construction of DEN. Two PPI models were randomly 
constructed (one for normal samples and the other for PE 
samples) to select gene interactions for subsequent analysis, 
with 500,000 gene interactions present in each model. Next, 
the Spearman's correlation coefficients of the interactions in 
the two PPI models (A1 and A2) were computed, and |A1‑A2| 
was also calculated. Subsequently, |A1‑A2| was ranked in 
descending order, and |A1‑A2| was found to be 0.548 when 
the P value was 0.05. A differential interaction was considered 
in cases where the |A1‑A2| value was >0.548 and at least one 
of A1 and A2 was >0.7. By contrast, if the |A1‑A2| value of 
a gene interaction was ≤0.548 and two corresponding nodes 
(linked genes or coded proteins) were both DEGs, the edge 
was regarded as a non‑differential interaction. The DEN was 
then constructed by incorporating all the differential and 
non‑differential interactions.

Identifying the disease genes associated with PE in the DEN. 
The PE‑associated genes (regarded as disease genes) were 
obtained from the GeneCards database (www.genecards.org). 
Only those genes whose expressions were examined in the 
DEN were selected in the present study.

Centrality analysis. The measures of centrality are broadly 
applied in network analysis, and include the degree, closeness, 
betweenness and Eigenvector centrality (23). Among these, the 
degree is the simplest indicator of centrality. Degree is defined 
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as the number of links that a node has with other nodes (24). 
In the present study, the degree distribution was examined and 
the nodes with the top 1% degrees of centrality were identified 
as the hub genes.

Functional enrichment analysis for the genes in DEN. The 
GO database (www.geneontology.org) frequently provides 
biological information on large‑scale genes (25). In addition, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG; www.
genome.jp/kegg) is a bioinformatics database that includes a 
variety of biochemistry pathways (26), while the Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
http://david.abcc.ncifcrf.gov/) is an analytic tool used in the 
determination of the biological meaning for a large number of 
genes (27). In the current study, DAVID was applied for GO 
functional annotation and KEGG pathway enrichment anal-
ysis of genes in the DEN. The expression analysis systematic 
explorer test was applied to assess the significant categories. 
Significant enrichment was determined based on the presence 
of at least two target genes and a P‑value of <0.01 in the GO 
and pathways.

Results

Microarray data analysis. A total of 20,102 and 18,411 genes 
were identified in the gene expression data of E‑GEOD‑6573 
and E‑GEOD‑48424, respectively. Furthermore, a total of 
11,269 genes were obtained subsequent to merging. Microarray 
analysis identified 225 genes as DEGs, including 9 upregulated 
and 216 downregulated genes.

DEN construction. The distribution of Spearman's corre-
lation coefficient of interactions for the normal and PE 
conditions is exhibited in Fig.  1. The mean Spearman's 
correlation coefficients were found to be 0.0688 and 0.0640 
in the normal and PE groups, respectively. A decrease was 
identified in Spearman's correlation coefficient distribution 
(0.1‑0.6) of 33,653 interactions in the PE network relative 
to 35,035 interactions in the normal network. By contrast, 
an increase in Spearman's correlation coefficient distribu-
tion (‑0.2 to 0.1) of interactions in PE (29,019 interactions) 
relative to those in the normal network (28,406 interactions) 
was observed. Next, the |A1‑A2| distribution of interactions 
for these two groups was calculated (Fig.  2). A total of 
283 differential interactions were identified, with a |A1‑A2| 

of >0.548, as well as at least one of the A1 and A2 values 
being >0.7. Furthermore, 31 non‑differential interactions 
were observed in edges with |A1‑A2| of ≤0.548 and DEGs 
in two corresponding nodes. Hence, a total of 466 nodes and 
314 gene interactions were involved in the DEN. Fig. 3 shows 
the detailed main network.

Figure 1. Distribution of Spearman's correlation coefficient distribution of 
interactions in the normal and PE groups. PE, preeclampsia.

Figure 2. Distribution of absolute value of the difference of Spearman's 
correlation coefficient between normal (A1) and PE (A2) groups, shown as 
|A1‑A2|. Top panel, distribution between absolute values 0.0 and 1.3; bottom 
panel, distribution between absolute values 0.6 and 1.3. PE, preeclampsia.

Table I. Genes with the top 1% degrees of centrality in the dif-
ferential expression network.

Gene symbol	 Centrality degree

UBC	 29
SUMO2	   5
SUMO1	   5
RAD21	   5

UBC, ubiquitin C; SUMO, small ubiquitin‑like modifier; RAD21, 
RAD21 homolog (S. pombe).
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Identifying the disease genes associated with PE in DEN. In 
total, 20 disease genes with 55 differential interactions were 
identified. Among those 20 disease genes, ubiquitin C (UBC) 
was found to possess the highest connectivity degree (degree, 
29).

Centrality analysis. Among the 466 nodes in the DEN, 4 nodes 
presented centrality degrees in the top 1%, as shown in Table I. 
These nodes involved the following genes: UBC (degree, 29), 
small ubiquitin‑like modifier 2 (SUMO2; degree, 5), SUMO1 
(degree, 5), RAD21 homolog (S. pombe) (RAD21; degree, 5).

GO functional annotation and KEGG enrichment analysis of 
genes in the DEN. Based on the presence of <2 target genes 
and P<0.01, as shown in Table II, the significant functions 
in the biological process (BP) term of GO included negative 
regulation of macromolecule metabolic process, regulation of 
programmed cell death, regulation of apoptosis and cell cycle, 
while significant functions in the cellular component (CC) 
term included the chromosomal part, nuclear and organelle 

lumen. More specifically, UBC, a disease and hub gene, was 
significantly involved in the regulation of programmed cell 
death, as well as in the regulation of apoptosis in the BP. 
Genes such as SUMO2 and SUMO1 were mainly involved in 
the chromosome and chromosomal part in the CC.

Notably, 27 pathways were obtained using KEGG analysis. 
The top  10 pathways are presented in Table  III. Among 
these, the most significant pathway was found to be chronic 
myeloid leukemia. Other significant pathways included the 
neurotrophin signaling pathway, pathways in cancer and cell 
cycle. DEGs, including RAD21, participated in the determined 
pathway, such as in the cell cycle.

Discussion

In order to clarify the molecular mechanisms underlying PE 
development, we comprehensively analyzed the gene expres-
sion profiles in the E‑GEOD‑6573 and E‑GEOD‑48424 
datasets using DEN analysis. A total of 225  DEGs were 
selected from the PE samples, and the hub genes were found to 

Figure 3. Construction of differential expression network involving 466 nodes and 314 gene interactions. Purple nodes represent the genes, the edges represent 
the association of the genes, and the light blue nodes represent the hub genes (UBC, RAD21, SUMO1 and SUMO2).
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be UBC, RAD21, SUMO2 and SUMO1, since they had higher 
connectivity degrees in the DEN. Furthermore, UBC, RAD21, 
SUMO2 and SUMO1 were markedly enriched in the regula-
tion of programmed cell death, as well as in the regulation of 
apoptosis, cell cycle and chromosomal part.

The molecular network is characterized by the intricate 
interactions that regulate gene expression and cellular func-
tions, thus playing an important role in disease development 
and progression (28,29). The PPI and gene regulatory networks 
have been developed to identify available genes on the basis 

of biomolecular networks (30,31). Nevertheless, several genes 
may be ignored if their expression is not found to be highly 
associated across the entire dataset (32). On the contrary, DEN 
is a novel network that not only includes differential genes and 
networks, but also covers non‑differential interactions asso-
ciated with disease, which are not considered in differential 
networks  (14). Furthermore, a previous study has demon-
strated that DEN analysis may obtain 3‑4 times more known 
disease genes compared with the traditional DEG method (15). 
For instance, the disease gene UBC identified in the current 
study was not a DEG, and thus would have not been identi-
fied by the traditional DEG method. Accordingly, the present 
results suggest that DEN can fully extract disease genes and 
interactions more accurately.

In the present study, we found that UBC was a disease 
gene, and was involved in the regulation of programmed, cell 
death, as well as in the regulation of apoptosis in the BP of GO. 
It is well documented that increased trophoblast cell apoptosis 
is a typical characteristic of PE placenta (33,34). Dysregulation 
of ubiquitin‑proteasome system is related with the gestational 
trophoblast disorder (35,36). Notably, the UBC gene encodes 
protein products required to further generate free ubiquitin 
in eukaryotes  (37). Furthermore, Kugawa and Aoki  (37) 
have reported that UBC promoter regulates to various types 
of stress, for example, pro‑apoptotic stimulus. Thus, we 
hypothesize that the UBC‑mediated apoptotic mechanism of 
PE through regulation of the ubiquitin‑proteasome system is 
greatly significant.

The abnormal placenta formation is known to be the first 
stage of PE (38), and placental trophoblast cells have abnormal 

Table II. Top 10 BP and CC terms of GO functional annotation of genes in the differential expression network.

Term 	 Term name	 Count	 P‑value

GO‑BP	 Negative regulation of macromolecule metabolic process	   72	 2.32x10‑18

GO‑BP	 Regulation of programmed cell death	   74	 4.07x10‑17

GO‑BP	 Regulation of cell death	   74	 4.96x10‑17

GO‑BP	 Regulation of apoptosis	   73	 8.50x10‑17

GO‑BP	 Cell cycle	   66	 1.09x10‑13

GO‑BP	 Ubiquitin‑dependent protein catabolic process	   34	 5.84x10‑13

GO‑BP	 Response to DNA damage stimulus	   41	 5.26x10‑12

GO‑BP	 Negative regulation of molecular function	   38	 1.33x10‑11

GO‑BP	 Cellular response to stress	   51	 1.53x10‑11

GO‑BP	 Negative regulation of nucleobases	   48	 1.77x10‑11

GO‑CC	 Nuclear lumen	 125	 1.01x10‑30

GO‑CC	 Organelle lumen	 140	 9.76x10‑30

GO‑CC	 Intracellular organelle lumen	 138	 1.31x10‑29

GO‑CC	 Membrane‑enclosed lumen	 140	 7.65x10‑29

GO‑CC	 Nucleoplasm	   90	 1.82x10‑26

GO‑CC	 Non‑membrane‑bound organelle	 151	 1.29x10‑19

GO‑CC	 Intracellular non‑membrane‑bound organelle	 151	 1.29x10‑19

GO‑CC	 Chromatin remodeling complex	   43	 3.72x10‑11

GO‑CC	 Chromosomal part	   37	 5.73x10‑10

GO‑CC	 Ribonucleoprotein complex	   42	 4.05x10‑9

BP, biological process; CC, cellular component; GO, gene ontology.
 

Table III. Top 10 KEGG pathways of genes in the differential 
expression network.

Term name	 Count	 P‑value

Chronic myeloid leukemia	 19	 7.04x10‑10

Neurotrophin signaling pathway	 22	 2.22x10‑8

Pathways in cancer	 35	 3.64x10‑7

Acute myeloid leukemia	 14	 4.27x10‑7

Prostate cancer	 16	 2.67x10‑6

Cell cycle	 19	 2.81x10‑6

Spliceosome	 19	 3.16x10‑6

Adipocytokine signaling pathway	 13	 1.45x10‑5

RIG‑I‑like receptor signaling pathway	 13	 2.67x10‑5

ErbB signaling pathway	 14	 4.79x10‑5

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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cell cycle mechanisms (39). Unek et al (40) have also indicated 
that placental alterations of PE may be connected to the cell 
cycle arrest. In the current study, the cell cycle pathway was 
identified, which is an important pathway, involving the RAD21 
gene that was downregulated. RAD21, as a subunit of a cohe-
sion complex, holds sister chromatids together during the late 
stage of cell division. Notably, the cohesion of sister chromatid 
in the period of DNA replication serves a crucial role in the 
cell cycle of eukaryote (41). Furthermore, Wong and Blobel 
have indicated that RAD21 is localized at mitotic spindles (42), 
whereas another study has demonstrated that RAD21 serves 
a vital role in the transition of phase S to G2 (43). Similarly, 
in an RNA‑sequencing analysis associated with colorectal 
cancer, the underexpression of RAD21 was found to impair 
the assembly of spindle or delay the progression of the 
S phase (44,45). Based on the aforementioned results, it is 
suggested that RAD21 may affect the risk of PE development 
through the regulation of cell cycle.

SUMO2 and SUMO1 are two members of SUMO proteins, 
which are small ubiquitin‑associated modifiers and regulate 
multiple cellular processes including DNA repair  (46). 
Chromosomal DNA damage in pregnancy may be a basic 
pathological feature of PE, and reducing DNA damage may 
improve the health of the mother and the baby (47). In addi-
tion, the changes of placental SUMOylation pathway and free 
SUMOs may contribute to the etiopathogenesis of severe PE 
due to abnormal expression of UBC9 (48). Emerging evidence 
indicated that UBC9‑mediated SUMOylation is helpful in 
maintaining the genome integrity of replicating chromo-
somes  (49). Consistent with this observation, the function 
annotation exhibited that SUMO2 and SUMO1 were signifi-
cantly enriched in the chromosome and chromosomal part GO 
terms. In light of all the aforementioned findings, it can be 
concluded that SUMO2 and SUMO1 may serve an important 
role in PE progression via the aforementioned functions.

In conclusion, UBC, RAD21, SUMO2, SUMO1 and their 
enriched functions in the regulation of programmed cell death, 
regulation of apoptosis, cell cycle and chromosomal part may 
exert important roles in the development and progression of 
PE. Therefore, they may be employed as potential therapeutic 
target in the treatment of PE and enhance the clinical thera-
peutic efficacy in the future. Nevertheless, these hypotheses 
require confirmation using animal experiments in further 
studies.
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