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Abstract. The aim of the present study was to investigate 
the pathogenesis of Candida albicans in human umbilical 
vein endothelial cells (HUVECs) and to screen for aberrantly 
expressed genes during the process of infection. GSE7355 
(accession no.) was downloaded from the National Center of 
Biotechnology Information Gene Expression Omnibus data-
base and used to identify the differentially‑expressed genes 
(DEGs) between the two groups, which included 4 samples 
from an untreated HUVEC control group, and 4 samples from 
HUVECs exposed to C. albicans. Subsequently, the gene 
ontology (GO) function package was used to perform GO and 
pathway enrichment analysis, prior to the extraction of DEG 
correlations in the Kyoto Encyclopedia of Genes and Genomes. 
A protein‑protein interaction (PPI) network was constructed 
using the String database. In total, 77 DEGs were identified, 
including 69 upregulated and 8 downregulated DEGs in the 
C. albicans‑infected HUVEC samples. DEGs were signifi-
cantly enriched in response to external stimuli and chemokine 
activity. In addition, DEG FBJ murine osteosarcoma viral 
oncogene homolog (FOS) and interleukin (IL)‑6 were signifi-
cantly enriched in the Toll‑like receptor signaling pathway. 
Nuclear factor κ light polypeptide gene enhancer in B cells 2 
(NFKB2) was significantly enriched in the mitogen‑activated 
protein kinase signaling pathway. In the interaction network of 
DEGs, according data included in the KEGG database, FOS 

and NFKB2 had higher connectivity degrees. Notably, FOS, 
IL‑6 and intercellular adhesion molecule 1 were demonstrated 
to have higher connectivity degrees in the PPI network. FOS, 
IL‑6 and NFKB2 may be important genes for C. albicans 
infection in HUVECs, and these genes may act as therapeutic 
targets to treat patients infected with C. albicans.

Introduction

The Candida species causes nosocomial bloodstream infections 
under certain circumstances (1). Candida albicans is a type of 
Candida species that may act as an opportunistic pathogen in 
immunocompromised or immunosuppressed patients (2). The 
incidence of candidemia is 1.1‑24 cases/100,000 individuals, 
and the associated mortality is >30%, even when patients are 
treated with antifungal agents (1,3,4). Therefore, elucidating 
the molecular mechanism underlying C. albicans infection 
and developing novel clinical approaches is urgently required.

In recent years, the mechanism underlying C. albicans 
infection has been clarified. Sun et al (5) demonstrated that 
Ssa1 plays a key role in the ability of C. albicans to damage 
host cells via binding to host endothelial cell cadherins and 
inducing host cell endocytosis in the models of oropharyngeal 
candidiasis. Furthermore, a previous study demonstrated that 
endothelial cells respond to infection with C. albicans by 
synthesizing interleukin (IL)‑8 in vitro (6). Müller et al (7) 
suggested that activation of the p38 mitogen‑activated protein 
kinase (MAPK) cascade is important for Candida‑induced 
expression of chemokine (C‑X‑C Motif) ligand  8/IL‑8 in 
endothelial cells. Several studies have demonstrated that the 
pathogenicity of C. albicans is induced by hyphae and epithe-
lial cell damage (8,9). Notably, Moyes et al (10) demonstrated 
that the MAPK/MKP1/c‑Fos signaling pathway is important 
for the formation of C. albicans hyphae in oral epithelial 
cells. However, the molecular mechanism underlying the host 
immune response and pathogen recognition is complex, and 
therefore our understanding of C. albicans infection is not 
fully complete.

Gene expression microarray analysis is used to 
observe changes in gene expression levels in various types 
of disease  (11,12). Müller  et  al  (7) provided the micro-
array data of GSE7355 (accession no.), and analyzed the 
differentially‑expressed genes (DEGs) of human umbilical 
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vein endothelial cells (HUVECs) following exposure to 
C. albicans. In addition, they investigated the nuclear factor 
(NF)‑κB and p38 MAPK signaling pathways in C. albicans 
infection. However, the interaction between DEGs was not 
analyzed, and a protein‑protein interaction (PPI) network was 
not constructed.

To fully understand the HUVEC response to C. albicans, in 
the present study the microarray profile of HUVECs infected 
with C. albicans were analyzed and compared to a control. 
The DEGs between the two groups were screened, and a gene 
ontology (GO) function package was used to perform GO and 
pathway enrichment analysis of the DEGs. The extraction of 
the correlations among the DEGs were then carried out using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
Finally, a PPI network was constructed.

Materials and methods

Analysis of microarray data. The gene expression data 
GSE7355  (7) was downloaded from the National Center 
of Biotechnology Information Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) using the GPL96 plat-
form of Affymetrix Human Genome U133A Arrays. A 
total of 8 samples were used in the present study, including 
4 samples from untreated HUVEC monolayers (GSM177134, 
GSM177140, GSM17177141 and GSE177142) that served as 
the control group, and 4 samples from HUVECs exposed to 
C. albicans (GSM177136, GSM177137, GSM17177138 and 
GSE177139) that served as the experimental group. Raw data 
were downloaded for further analysis.

Data preprocessing and identif ication of DEGs. The 
Affy package (http://www.bioconductor.org/packages/rel 
ease/bioc/html/affy.html) (13) of Bioconductor (http://biocon-
ductor.org/) was used to calculate the gene expression levels. 
Subsequently, a robust multiarray average algorithm (13) was 
used to perform the quartile data normalization. A t‑test was 
carried out using the Limma package (http://www.biocon-
ductor.org/packages/release/bioc/html/limma.html) (14) and 
applied to screen for DEGs between the two groups. P<0.05 
and |log FC|>0.58 were selected as the criterion for DEGs.

GO and pathway enrichment analysis. Frequently, GO is used 
to conduct the functional enrichment analysis for large‑scale 
genes (15). To identify the functions of the DEGs between the 
control and experimental samples, GO enrichment analysis was 
performed. In addition, KEGG pathway enrichment analysis 
was carried out for the DEGs, and bioinformatics databases 
containing all types of biochemistry signaling pathways were 
assessed (16). The GOFunction package (http://www.biocon-
ductor.org/packages/release/bioc/html/GOFunction.html) of 
Bioconductor was used to perform the GO and pathway enrich-
ment analysis. A P<0.05 and gene counts ≥2 were considered 
as the cut‑off value. Furthermore, the correlation among DEGs 
was extracted according to the interactions of the genes in  
the KEGG.

Construction of a protein‑protein interaction (PPI) network. 
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http://string‑db.org/) (17) is an online 

database that provides information on the interaction between 
proteins. In the present study, the STRING database was used 
to screen functional interactions between DEGs. A combined 
score >4 were regarded as the threshold. According to the 
criterion, Cytoscape (http://cytoscapeweb.cytoscape.org/) (18) 
was then used to display the PPI network.

Results

Identification of DEGs. Compared with the untreated HUVEC 
samples, a total of 77  DEGs were identified, including 
69 upregulated DEGs corresponding to 187 transcripts, and 
8 downregulated DEGs corresponding to 16 transcripts in the 
candida‑infected HUVEC samples. The cluster heat map of 
77 DEGs is presented in Fig. 1.

GO and pathway enrichment analysis. The GOfunction 
package was used to identify GO functions and signaling 
pathways for the significant DEGs. Notably, DEGs from 
the Candida‑infected HUVEC samples were significantly 
enriched in response to external biological process stimuli 
(P<1.00E‑15), chemokine activity (P=5.58E‑08) and cytokine 
activity of molecular function (P=4.17E‑07; Table I). In addi-
tion, DEGs were significantly enriched in the nodulation‑like 
receptor signaling pathway (P=1.82E‑08), toll‑like receptor 
signaling pathway (P=1.00E‑02) and MAPK signaling 
pathway (P=2.30E‑02). The results of the pathway enrichment 
analysis are displayed in Table II.

The interaction network between the DEGs extracted from 
the KEGG, including 12 nodes and 10 edges, is shown in 
Fig. 2. In this network, FBJ murine osteosarcoma viral onco-
gene homolog (FOS) and nuclear factor κ light polypeptide 
gene enhancer in B cells 2 (NFKB2; p49/p100) had the highest 
connectivity degrees.

Construction of the PPI network. In the present study, 52 nodes 
and 226 edges were used to construct the PPI network (Fig. 3). 
Notably, several nodes exhibited higher connectivity degrees: 
FOS (degree, 30), IL‑6 (degree, 26), intercellular adhesion 
molecule  1 (degree,  22) and prostaglandin‑endoperoxide 
synthase 2 (prostaglandin G/H synthase and cyclooxygenase; 
degree, 21).

Discussion

The present study examined the gene expression data 
GSE7355 and investigated the HUVEC reaction patterns 
to the fungal pathogen C. albicans. In total, 77 DEGs were 
identified, including 69 upregulated DEGs corresponding to 
187  transcripts and 8 downregulated DEGs corresponding 
to 16 transcripts in C. albicans‑infected HUVEC samples. 
Notably, DEGs such as FOS and IL‑6 were significantly 
enriched in the toll‑like receptor signaling pathway, whereas 
NFKB2 was significantly enriched in the MAPK signaling 
pathway. In addition, FOS and IL‑6 exhibited high connec-
tivity degrees in the PPI network.

Toll‑like receptors are the primary innate recognition 
system for microbial invaders in vertebrates, and are respon-
sible for the immune response to microbial pathogens (19). 
Accumulating evidence suggests that the activation of toll‑like 
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receptors is important for Candida infection (20,21). Notably, 
Zakikhany et al  (22) suggested that hypha formation was 
crucial for the pathogenicity of C. albicans as well as the 
proinflammatory responses of mucosal tissues, which protect 
against subsequent fungal infection mediated by toll‑like 

receptor 4 signaling (23). In the current study, FOS and IL‑6 
were significantly enriched in the toll‑like receptor signaling 
pathway. FOS activation is mediated by hypha‑associated 
surface moieties including MKP1 (24). Previously, a study 
demonstrated that hypha formation is dependent on the MAPK 

Table I. Gene ontology functional enrichment analysis of DEGs.

Gene ontology	                 Function	 Total genes (n)	 Enriched DEGs (n)	 P‑value

BP	 Response to external stimulus	 1,941	 41	 1.00E‑15
	 Response to stress	 3,341	 45	 7.33E‑15
	 Cell migration	 1,015	 26	 5.02E‑14
	 Response to stimulus	 7,662	 63	 2.77E‑13
	 Cell motility	 1,095	 26	 2.94E‑13
CC	 Extracellular space	 1,212	 19	 2.67E‑07
	 I‑κB/NF‑κB complex	 5	 3	 6.61E‑07
	 Bcl‑3/NF‑κB2 complex	 2	 2	 1.66E‑05
	 Side of membrane	 300	 8	 3.10E‑05
	 Cell surface	 645	 10	 2.90E‑04
MF	 Protein binding	 8,384	 61	 5.89E‑09
	 Chemokine activity	 46	 6	 5.58E‑08
	 Chemokine receptor binding	 56	 6	 1.87E‑07
	 Cytokine activity	 210	 9	 4.17E‑07
	 Binding	 12,580	 70	 2.53E‑06 

DEG, differentially‑expressed gene; BP, biological process; CC, cellular components; MF, molecular function.; I‑κB, inhibitor of κB; NF‑κB, 
nuclear factor κB; Bcl‑3, B cell lymphoma 3.
 

Table II. KEGG signaling pathway analysis of DEGs.

Name	 Total genes (n)	 Enriched DEGs (n)		 P‑value

NOD‑like receptor signaling pathway	 58	 8	 1.82E‑08
Rheumatoid arthritis	 91	 8	 6.56E‑07
Malaria	 51	 6	 3.35E‑06
Cytokine‑cytokine receptor interaction	 265	 11	 8.15E‑06
Osteoclast differentiation	 128	 7	 7.98E‑05
African trypanosomiasis	 35	 4	 1.86E‑04
Pathways in cancer	 326	 10	 2.87E‑04
Chemokine signaling pathway	 189	 7	 0.000877
Chagas disease (American trypanosomiasis)	 104	 5	 0.001629
Epithelial cell signaling in Helicobacter pylori infection	 68	 4	 0.00236
Toll‑like receptor signaling pathway	 102	 4	 0.010011
Amoebiasis	 106	 4	 0.011421
RIG‑I‑like receptor signaling pathway	 71	 3	 0.021015
Leishmaniasis	 72	 3	 0.021802
MAPK signaling pathway	 268	 6	 0.023041
B cell receptor signaling pathway	 75	 3	 0.02426
Small cell lung cancer	 85	 3	 0.033497
Bladder cancer	 42	 2	 0.047575

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially‑expressed genes; NOD, nodulation; RIG, retinoid acid‑inducible 
gene; MAPK, mitogen‑activated protein kinase.
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response, constituted by the activation of FOS and MKP1 (8). 
Moyes et al (10) reported that the MAPK/MKP1/FOS signaling 
pathway is important for the formation of C. albicans hyphae 
in oral epithelial cells. Furthermore, the results of the present 
study demonstrated that FOS was upregulated, results which 
were concordant with those of Moyes et al (25) who demon-
strated that FOS expression levels gradually increased with the 
progression of C. albicans infection in vaginal epithelial cells. 
In addition, hypha formation dependent on FOS activation and 
cell damage can induce the production of cytokines (10). IL‑6 
has been reported to protect against Candida infection (26). 
The present study demonstrated that IL‑6 expression levels 
were upregulated, results which were concordant with those 
of Mostefaoui et al (27). Mostefaoui et al (27) demonstrated 

that IL‑6 mRNA expression levels were significantly upregu-
lated in human oral mucosa tissue following infection with 
C. albicans. These findings demonstrate that FOS and IL‑6 
may have important roles in C. albicans infection via the 
toll‑like receptor signaling pathway.

Infection of epithelial cells with C. albicans causes the 
activation of NF‑κB, as well as a MAPK signaling response, 
which further induces a pro‑inflammatory response  (28). 
Furthermore, a previous study suggested that MAPK signaling 

Figure 3. Protein‑protein interaction network of differentially expressed 
genes. Genes that are upregulated are presented in red; genes that are down-
regulated are presented in green.

Figure 2. Interaction network of differentially expressed genes. Genes that 
are upregulated are presented in red; genes that are downregulated are pre-
sented in green.

Figure 1. Cluster heat map of the 77 differentially expressed genes. The color represents the levels of gene expression in the 8 samples. The horizontal axis 
represents the samples, and the vertical axis represents the differentially expressed genes. Genes with high expression levels are presented in red; genes with low 
expression levels are presented in green.
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pathways may served as targets for antifungal therapy (29). 
Notably, another investigation demonstrated that the MAPK 
signaling pathway enables human epithelial tissues to 
regulate innate immune responses against the hyphae of 
C. albicans  (25). In the present study, NFKB2 expression 
levels were demonstrated to be upregulated and significantly 
enriched in the MAPK signaling pathway. NFKB2 is a 
member of the NF‑κB signal transduction pathway which has 
important roles in inflammatory and immune responses (30). 
Furthermore, fungal infection may be responsible for the 
release of chemotactic molecules in innate immune effector 
cells (31). Therefore, these data suggested that NFKB2 may 
have important roles in C. albicans infection via the MAPK 
signaling pathway.

In conclusion, the results of the present study further eluci-
dated the mechanism underlying the effects of C. albicans 
infection in HUVECs. The screened DEGs, including FOS, 
IL‑6 and NFKB2 may be important genes for the pathogenesis 
of C. albicans infection in HUVECs, and these genes may 
serve as therapeutic targets to treat patients infected with 
C. albicans. However, this study presented some limitations. 
The most important limitation was that the study was conducted 
using bioinformatics methods, but the results have not been 
further demonstrated through experiments. Therefore, further 
investigation using animal experiments should be considered.
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