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Abstract. The epileptic state, or status epilepticus (SE), is the 
most serious situation manifested by individuals with epilepsy, 
and SE events can lead to neuronal damage. An understanding 
of the molecular, biochemical and physiopathological mecha-
nisms involved in this type of neurological disease will enable 
the identification of specific central targets, through which 
novel agents may act and be useful as SE therapies. Currently, 
studies have focused on the association between oxidative 
stress and SE, the most severe epileptic condition. A number of 
these studies have suggested the use of antioxidant compounds 
as alternative therapies or adjuvant treatments for the epileptic 
state.
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1. Overview of status epilepticus (SE)

Epilepsy generalities. Epilepsy is a group of different types 
of disorders that share an abnormally increased tendency to 
cause convulsive seizures (1). Epilepsy is a chronic neuro-
logical disorder characterized by abnormal organization of 
neuronal electrical activity leading to alterations in a neuronal 
population, which manifests in seizures, behavioral changes 
or impaired neuronal activity (1-4). The International League 
Against Epilepsy (ILAE) defines epilepsy as ‘a pathological 
condition because of the presence of two or more recurrent 
seizures over a period longer than 24 h unprovoked’ (5,6). 
The incidence of this neurological disease is high in chil-
dren, stable in adults and increases in the final decades of 
life (7-11).

Classification of seizures. Based on their etiology, the 
seizures are classified as follows: i) Idiopathic (primary), 
associated with heredity; ii) symptomatic (secondary), asso-
ciated with damage in the brain, including trauma, tumors, 
bleeding, infection, vascular malformations or metabolic 
abnormalities; and iii) cryptogenic, seizures with an unknown 
cause (12-14).

Seizures are focal or generalized, depending on the 
location of hypersynchronic activity (13-16). Focal seizures 
are caused by an electrical shock in a particular region of 
the brain, and can spread to the entire brain. Patients with 
focal seizures may or may not experience loss of conscious-
ness (simple or complex seizures, respectively) (13-17). 
Generalized seizures are those in which the altered 
electrical activity occurs in the two cerebral hemispheres 
concurrently (3,9). In this type of seizure, a generalized 
motor impairment with or without autonomic disruption can 
occur, characterized by an electroencephalogram pattern 
that is bilateral, synchronous and symmetrical in the hemi-
spheres (14-16).
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Generalities of status epilepticus (SE)
SE is a term used to describe a condition resulting from the 
failure of the mechanisms associated with seizure termination, 
or from the initiation of mechanisms that lead to prolonged 
seizures (18). According to the ILAE in 2015, a recent classifi-
cation of SE has been proposed based on a clinical diagnosis, 
and on an investigation and therapeutic approaches for each 
patient (19). The following operational definition of SE has 
been proposed: In adults and children >5 years old was defined 
as ≥5 min of continuous seizure or ≥2 seizures during which 
there is incomplete recovery of consciousness (19,20). There 
are 3 principal factors that determine the risk of mortality and 
morbidity in SE: i) Etiology of seizure (principally infection 
in children; trauma, metabolic disruptions or intoxication in 
adults); ii) age ≥60 years old; and iii) duration and develop-
ment of SE (the majority of patients with SE have no history 
of seizures, presenting a risk of development of chronic 
epilepsy) (21-25). Generalized convulsive SE is the most 
frequently observed type, however, non‑convulsive SE is diffi-
cult to diagnose as it can be confused with other neurological 
and psychiatric disorders (26).

Etiology, initiation and propagation of SE. SE results 
from an alteration of the mechanisms that usually terminate 
a single and prolonged seizure (27). This alteration may result 
in constant neuronal excitation, or in failure of the inhibition 
mechanisms, and it has been suggested that reverberating 
seizure activity is induced in hippocampal structures and 
its progress is a sequence of distinct electrophysiological 
changes (28).

In temporal lobe epilepsy (TLE), an SE episode is generally 
considered a trigger that initiates epileptogenesis. It has been 
suggested that seizure initiation is produced by a dysregula-
tion between the excitatory and inhibitory systems, leading 
to irregular neuronal activity (27). Furthermore, it has been 
suggested that protein phosphorylation, ion channel opening 
and closure, release of neurotransmitters and modulators and 
receptor desensitization occur during the first few seconds of a 
seizure. In addition, within seconds to minutes the movement 
of existing receptors to the synaptic membrane occurs. This 
process alters the activity of inhibitory and excitatory recep-
tors available in the synaptic cleft (29). Furthermore, within 
minutes to hours, plastic changes in neuropeptide modulators 
occur, leading to a state of increased excitability (27).

When measured by in vivo intracerebral microdialysis, an 
increase in the levels of glutamate is the beginning of seizure 
activity in adults with TLE (30-32). The same mechanism may 
happen during the onset of generalized seizures. Inhibitory 
neurotransmitters increase in the seizure site and reestablish 
the balance between excitation and inhibition response (31).

Neurotoxicity and neuroprotection in SE. In SE, neuronal 
damage is the consequence of sustained N-methyl-D-aspartate 
receptor stimulation that leads to apoptosis. The cell destruc-
tion that is generated in this manner can be reversed if the 
SE is terminated within the first hour (27). The investigation 
for acute or chronic therapies should be based on the patient 
age, gender and genetic predisposition in addition to the SE 
etiology. In this manner, understanding the spectrum of SE 
may lead to the identification of neuroprotective treatments 
that are specific for the developing central nervous system, to 
diminish the consequences of SE.

Experimental models of SE. SE models are currently used 
to study the transition from a single SE episode to chronic 
epilepsy. Experimental models are used that comprise the 
seizure-initiating mechanisms, and that may facilitate the 
identification of novel therapeutic strategies for improving the 
treatment of SE (26). Systemic administration of pilocarpine 
(a muscarinic receptor agonist), systemic or local administra-
tion of kainic acid as a potent glutamate receptor agonist or 
protocols that electrically stimulate specific brain areas are the 
animal model most used for the study of SE (33-36).

Systemic or local convulsant chemicals. Systemic or 
intracerebral injection of pilocarpine induces seizures that 
originate in limbic regions. This results in structural damage 
and possible spontaneous recurrent seizures that resemble the 
etiology of human complex partial seizures, such as between 
human TLE and the pilocarpine model. Neurotrophins have 
been demonstrated to be altered in the hippocampus of patients 
with mesial TLE and in the hippocampus and neocortex of 
pilocarpine-treated rats (37,38). Furthermore, cognitive and 
memory deficits are commonly observed in TLE patients and 
are also present in pilocarpine-injected rats (26,39).

In addition, SE has been induced by intracerebral adminis-
tration in the amygdala or hippocampal structures. Pilocarpine 
(intrahippocampal injection of 2.4 mg/µl; injected volume 
1.0 µl) induces SE and spontaneous recurrent seizures with 
low mortality (40).

Kainic acid was one of the first compounds used in the 
TLE rodent model (systemic or intracerebral administration). 
It induces neuronal depolarization, and often generalized 
seizures secondary to partial seizures, commonly begin in the 
hippocampus. Rodents exhibit remarkable hippocampal scle-
rosis as a consequence of the neurological damage induced by 
the seizures. Kainic acid has the advantage of causing injuries 
that are usually restricted to the hippocampus, in comparison 
with pilocarpine, which can also result in lesions in neocortical 
areas (26,39). Lower doses of kainic acid produce low mortality 
and seizures rates with relatively long latent periods (40).

SE induction by electrical stimulation. Perforant path stim-
ulation (PPS) is widely used to produce continuous seizures in 
rats and was established by Sloviter in 1991 (41). In this model, 
anesthetized rats receive discontinuous PPS for one day, which 
is usually caused by a bipolar stimulating electrode implanted 
into the angular bundle of the perforant pathway resulting in 
brain lesions based on the stimulated area, time and intensity 
of the stimulus (26). The histopathological findings are similar 
to the kainic acid and pilocarpine model although with less 
neurodegeneration.

The self-sustained limbic SE model by Lothman et al (42) 
is provoked by continuous and localized electrical stimulation 
of the hippocampus. In this model, a normalized electrical 
stimulus is determined by each rat and in adequate condi-
tions (length and side of stimuli or kindling application), the 
SE persists for hours after ceasing the stimulus. This model 
induces SE without producing the excitotoxic effect observed 
in the kainic acid or pilocarpine models.

SE models in immature animals. Clinical studies have 
noted that a broad range of children have suffered an episode 
of convulsive SE, and that incidence varies widely glob-
ally (13-74%). Thus, animal models of SE are important for 
investigating whether long-lasting seizures in the developing 
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brain can result in neuronal disorganization, epileptogenesis 
or cognitive impairment (22,43,44).

Pentylenetetrazol [a non-competitive γ-aminobutyric acid 
(GABA) antagonist] also leads to SE in immature animals 
when administered systemically at postnatal day 10 or 21 (45), 
similar to the models of kainic acid, lithium-pilocarpine and 
electrical stimulation protocols but with lower doses. In these 
models, seizure manifestation increases with age and induces 
neuronal loss in the hippocampus, amygdala and mediodorsal 
nucleus of the thalamus of a developing brain. However, 
the exact mechanisms have not been fully characterized. 
Nevertheless, young rats do not display the clear neuronal 
reorganization that is frequently observed in adults (26,46-51).

Recently, Mareš et al (52) demonstrated that SE induced 
by pilocarpine at P12 and P25 produced cognitive damage that 
increased with age and is correlated with the portion of the 
injured brain, but not with seizure parameters.

2. Oxidative stress in status epilepticus

Oxidative stress in epilepsy. The study of different illnesses 
of the nervous system has focused on the imbalance between 
the oxidant and antioxidant system since 1990 (53,54). The first 
experimental evidence describing an association between oxida-
tive stress and epilepsy was presented by Armstead et al (55) 
in 1989. The authors demonstrated that the enzyme superoxide 
dismutase (SOD) was increased in newborn pigs that were 
subject to seizure with bicuculline (a competitive antagonist of 
GABA), compared with control pigs and those pretreated with 
indomethacin. The authors concluded that superoxide reac-
tive species formed by the newborn pig brain during seizures 
induced by bicuculline and cyclooxygenase metabolism of 
arachidonic acid may be generating this radical (55). Other 
reports have demonstrated the relevance of oxidative stress 
in different experimental models (55-62)and patients (60-68) 
with epilepsy. Currently, there is particular attention paid to 
clarifying the role and relevance of oxidative stress in epilepsy, 
particularly in severe cases, such as SE or other epileptic states.

In the early 2000s, oxidative stress was studied in the 
epileptic state. The evidence suggested that oxidative stress 
was important in this neurological pathology. In particular, 
SE induced by lithium-pilocarpine, pilocarpine, kainic acid, 
pilocarpine and sleep deprivation or cocaine in animal models 
(mouse and chick) causes an increase in reactive oxygen 
species, nitrite levels and lipid peroxidation production. It can 
also cause a reduction in antioxidant activity of certain enzymes 
such as nitric oxide synthases (NOS), catalase (CAT), SOD, 
glutathione peroxidase and glutathione reductase, in addition to 
reduced glutathione (GSH) levels in the hippocampus, striatum, 
thalamus, cortex or the whole brain. On the other hand, pretreat-
ment with rosiglitazone (peroxisome proliferator-activated 
receptor γ agonist), tempol (SOD mimetic), muscimol (GABA 
agonist), FK506 (immunosuppressive agent) or buspirone 
(partial agonist of the 5-HT1A receptor) diminished the oxida-
tive status while stimulating the antioxidant system (69-81). 
The complete information is available upon request.

Different antioxidants for the treatment of SE. Although 
the use of antioxidants as a therapy against epilepsy has 
been described since 1970s, extensive studies on the use of 

antioxidants for treatment of SE have been reported since 2000. 
Different studies have demonstrated the use of antioxidants 
in SE, for the treatment of SE, indicating that pretreatment 
with vitamin E, vitamin C, coenzyme Q10, N-acetyl-cysteine, 
7-nitroindazole, melatonin and various plant extracts or flavo-
noids reduces lipid oxidation and restores the activities of SOD, 
CAT and NOS and the levels of GSH in the rat hippocampus, 
striatum or cortex (82-100). The complete information is avail-
able upon request.

3. Physiological and therapeutic relevance

These results will increase the understanding of the close 
connection between oxidative stress and epileptic state, and 
provide direct evidence of this association in the experimental 
models of epilepsy.

Oxidative stress in the epileptic state is a potential condi-
tion that requires recognition and management in clinical 
studies. Therefore, further studies dissecting physiological 
processes are required in order to establish the most effective 
and beneficial actions for clinical practice. The comprehen-
sion of these processes may lead to novel therapies and 
treatments that prevent or reduce brain injuries. Furthermore, 
anti‑epileptic drugs are beneficial to the regulation, prevention 
or inhibition of seizures, although it has been demonstrated 
that long-term use increases oxidative stress in experimental 
models and in humans (101). The present study suggests 
that the use of antioxidants with conventional therapies may 
provide a beneficial treatment for SE, by diminishing brain 
oxidative stress induced by these seizures. However, further 
evidence is required to validate this hypothesis.
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