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Abstract. Initially identified as a T cell and mast cell 
growth factor, interleukin (IL)-9 has long been recognized 
as an important mediator of asthma. Recently, accumulating 
results from transgenic mice demonstrated that systemic or 
lung‑specific overexpression of IL‑9 caused asthma‑associated 
symptoms. Moreover, anti‑mIL‑9 antibody (Ab) blocking 
treatment alleviated disease in animal models of asthma. In 
light of the large quantity of data from the murine models, 
MEDI-528, a humanized anti-IL-9 monoclonal Ab has been 
produced to assess the activity of IL‑9 on human asthma. 
In order to ascertain whether it is a successful translation 
from bench to bedside, the biological features of IL-9 were 
evaluated and up‑to‑date information regarding the role of 
IL‑9 in different experimental murine models and human 
asthma were summarized.
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1. Introduction

Asthma is characterized by recurrent and reversible airflow 
obstruction associated with airway hyperresponsiveness 
(AHR) and airway inflammation. Asthma currently affects 

~300 million people worldwide, with a large socioeconomic 
burden (1). Until recently, the etiology and pathogenesis of 
asthma remained elusive. It is clear, however, that airway 
inflammation induced by the release of inflammatory cyto-
kines is critical in the chronicity and progression of the 
disease (1).

Interleukin (IL)‑9 belongs to a member of the four‑helix 
bundle cytokine family. Initially identified as a T cell and 
mast cell growth factor, IL-9 has long been recognized as an 
important mediator of allergic inflammation (2,3). A resur-
gence of interest in IL-9 has been spurred by recent work 
demonstrating its incremental targets and broader cellular 
sources (4). Indeed, in asthma, a series of experimental studies 
have demonstrated its diverse functions. Accumulating results 
from transgenic mice revealed that systemic or lung‑specific 
overexpression of IL‑9 caused an asthmatic phenotype, 
such as eosinophilic and lymphocyte inflammation, goblet 
cell hyperplasia, increased mucus production, increased 
immunoglobulin E (IgE) production, subepithelial collagen 
deposition and mast cell hyperplasia (5-7). Moreover, inde-
pendent studies with anti-mIL-9 antibody (Ab) blocking 
treatment alleviated asthma‑associated symptoms (8-11). In 
light of the profound effects that IL‑9 has on various cells, 
and considering the large amount of data from the murine 
models, MEDI-528, a humanized anti-IL-9 monoclonal Ab 
has been produced to assess the activity of IL‑9 on human 
asthma (12-14).

In the present study the biological features of IL-9 will 
be discussed, with a focus on the role of IL-9 in different 
experimental murine models and human asthma.

2. IL‑9 and IL‑9 receptor structure

IL-9 is a 14-kDa glycoprotein consisting of 144 amino acids, 
including a signal sequence of 18 amino acids (15), and 
belongs to the four-helical cytokine family. The human IL-9 
gene is located within the T helper (Th) 2 cytokine region 
on chromosome 5 (5q31-35), which also encodes IL-3, IL-4, 
IL-5, CD14 and granulocyte-macrophage colony-stimulating 
factor (16,17). It has been reported that polymorphisms and 
linkage disequilibrium in this region have close associa-
tions with the development of asthma phenotype, including 
bronchial hyperresponsiveness, atopy and elevated total IgE 
levels (18-20). IL‑9 was initially identified as a Th2 cytokine 
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and numerous of the initial functions of IL‑9 were examined 
in Th2-associated models. Later on, a specialized subset of 
T cells dedicated to producing IL-9 termed Th9 cells was 
reported (21,22). Moreover, other Th subsets, including Th17, 
natural regulatory T cells also appear to have the potential 
for IL-9 production (23). Considering there are so many 
potential cellular sources of IL-9, the production and effect 
of IL-9 in vivo may be under a complicated regulation.

The IL-9 receptor (IL-9R), unlike IL-9, is a heterodimer. 
It is composed of the α-chain (IL-9Rα) and the common 
γ-chain receptor shared by other cytokines including IL-2, 
IL-4, IL-7 and IL-15 (24,25). Consistent with its pleiotropic 
functions, IL‑9R is expressed on various cell types, including 
mast cells (26), macrophages (27), dendritic cells (28) and Th 
cell subsets Th2 and Th17 (29). Interestingly, genetic studies 
revealed that IL‑9R is also associated with susceptibility to 
asthma (30-32). In 57 Caucasian families, Holroyd et al (30) 
provided evidence of l inkage between a genomic 
region containing the IL-9R gene and asthma or AHR. 
Furthermore, haplotype analyses revealed that a specific 
haplotype (GAGC) had a protective effect against wheezing 
and against the development of sensitization (31). In addi-
tion, Melén et al (32) demonstrated that IL-9R (rs731476), in 
combination with IL-4 Rα (rs1801275), exerts a major influ-
ence on susceptibility to asthma.

3. Signaling pathway

Janus kinase (JAK)/signal transducer and activator of the 
transcription (STAT) pathway is critical for signal transduc-
tion by IL-9/IL-9R. IL-9Rα and the common γ-chain bind 
to JAK1 and JAK3, respectively (33). Moreover, ligation 
of IL‑9R activates the JAK proteins phosphorylation. This 
leads to the downstream activation of STAT complexes. 
Consequently, STAT1, STAT-3 and STAT5 form homodi-
mers, whereas STAT1 and STAT3 form heterodimers (34). 
Consequently, dimerized STAT molecules translocate to the 
nucleus, inducing the expression of effector genes. It was 
recently demonstrated that IL‑9 induced JAK/STAT activa-
tion is crucial in cell proliferation, survival and secretion of 
inflammatory mediators (35,36).

In addition, there are to some extent two more pathways 
involved in IL‑9 signaling: The insulin receptor substrate 
(IRS)‑phosphoinositide 3‑kinase and Erk mitogen‑activated 
protein kinase pathways (37). Although they are different from 
the JAK/STAT pathway, these two pathways appeared to be 
restricted to certain cell types (37). In several hematopoietic 
cell lines, IL-9 was reported to induce the phosphorylation 
of IRS-1 and IRS-2 (33). In addition, IL-9 was able to induce 
a transient phosphorylation of Erk2 in the murine Th cell 
line TS1, the mast cell line MC9 and in Ba/F3 and 32D cells 
transfected with the human IL-9 receptor (38). However, 
further investigation is required in order to determine the 
downstream effectors and the biological significance of these 
two signaling pathways.

4. IL‑9 in asthma

It has been reported that IL-9 concentrations increased in the 
bronchoalveolar lavage fluid (BALF) in the murine model 

of asthma (11). IL‑9 expression has clearly been confirmed 
in BALF from atopic asthmatic patients using quantitative 
polymerase chain reaction and ELISA together with immu-
nocytochemistry (39). Elevated levels of IL‑9 have also been 
detected in lungs (40,41), sputum (42) and serum (43) of 
asthmatic patients. Moreover, serum IL‑9 levels were associ-
ated with the percentage of apoptotic eosinophils, which was 
recognized as a predominant feature of allergic asthma (43). 
Consistent with its initial identification as a mast cell growth 
factor, IL‑9R is observed on mast and polymorphonuclear 
cells in the lungs of asthmatic individuals but not in healthy 
controls (44). These results also indicate a potential role of 
mast cells in asthma pathogenesis. Indeed, there is compel-
ling evidence that an IL‑9‑mast cell axis is central to not only 
the acute symptoms of asthma but also the allergen-induced 
chronic inflammation (10).

5. Targeting IL‑9 in murine asthma models

With these observations in mind, several investigators have 
studied targeting IL-9 as a therapy in murine asthma models 
since the late 1990s (5-11,45-49). Results from transgenic 
mice revealed that systemic or lung‑specific overexpression of 
IL-9 caused an asthmatic phenotype, such as eosinophilic and 
lymphocyte inflammation, goblet cell hyperplasia, increased 
mucus production, increased IgE production, subepithelial 
collagen deposition and mast cell hyperplasia (Table I) (5-7). 
It is noteworthy that systemic IL‑9 overexpressing transgenic 
mice only appear to exhibit the asthmatic phenotype after 
antigen exposure (6,7), while unchallenged transgenic mice in 
the present study were relatively normal (6). By contrast, the 
transgenic mouse model of lung selective overexpression of 
IL‑9 displayed massive airway inflammation, mast cell accu-
mulation, increased subepithelial deposition of collagen and 
hyperresponsiveness without the presence of an antigen (5). 
The main reason for this discrepancy may be the difference 
between IL‑9 expression levels, the location of IL‑9‑producing 
cells or possibly a more complicated temporal and spatial 
regulation involved in the IL‑9 overexpressed mouse model. 
These data, appear to indicate that IL-9 may be a promising 
target for the treatment of patients with asthma. However, 
there are contradictions in the literature regarding the role 
of IL‑9 in the fibrotic process. A study by Arras et al (45) 
revealed that the same systemic overexpression of IL‑9 
protects mice against alveolar fibrosis induced by silica. 
Additionally, an IL‑9 intraperitoneal injection into C57BL/6 
mice also reduced the amplitude of silica‑induced lung fibr
osis. Therefore, these data appear to indicate that IL-9 can 
either have an anti‑ or pro‑fibrotic role in IL‑9 overexpressing 
murine models of asthma, depending upon the localization of 
fibrosis and/or the varying effector cells involved. Consistent 
with the data from IL‑9 overexpressing mice (FVB/N‑TG5), 
two independent in vivo studies confirmed that intratracheal 
instillation of rmIL-9 into C57BL/6 mice increased eosino-
phils in the BAL and significantly elevated the total serum 
IgE (Table II) (46,47). Moreover, intratracheal administration 
of IL‑9 significantly increased the levels of IL‑5Rα in the 
lung of B6 mice (46). Since several authors have linked the 
IL-5 and its receptor to the recruitment of eosinophils to the 
lung and since eosinophilic inflammation is a central feature 
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of atopic asthma, it is conceivable that IL‑9 also serves a 
significant role in eosinophilic inflammation in asthma.

However,  in the IL‑9‑def icient mouse model, 
McMillan et al (48) revealed that IL‑9 is not obligatory for 
the pathophysiological features of the allergic pulmonary 
response-AHR and eosinophilia. Goblet cell hyperplasia, 
sera total and ovalbumin (OVA)‑specific IgE production 
and Th2 cytokines including IL‑4, IL‑5 and IL‑13 levels 
in BAL were also unaffected by the lack of IL-9 (48). Data 
from Pae et al (49) also indicated that IL-9 was not required 
for the bronchial accumulation of mast cells. Collectively, 
these observations indicate that there are other alternative 
pathway substitutes for IL‑9 in the development of asthma. 
Four independent studies with anti-mIL-9 Ab treatment in an 
OVA‑sensitized mouse model revealed significantly reduced 
AHR, the numbers of eosinophils and lymphocytes, which 
resembles the classical features of asthma (Table II) (8-11). 
Discordance between published observations in IL‑9 
gene‑deficient mice and an Ab blocking study may be attrib-
utable to protocol differences. As any knockout mice were 
generated during the embryonic stage, disruption of IL-9 at 
this early stage may have developed other adaptations.

6. Targeting IL‑9 in asthma patients

Despite the conflicting results from murine models, the 
overall effects observed in these models indicated that 
targeting IL‑9 might offer a novel approach to the treated 

patients with asthma. MEDI-528, a humanized anti-IL-9 
monoclonal Ab has been produced to assess the activity 
of IL-9 on human asthma. Recently, MEDI-528 had been 
demonstrated with an acceptable safety profile and a linear 
pharmacokinetic (PK) profile when administered intrave-
nously or subcutaneously (12-14).

In a phase IIa study, 36 mild asthma patients (18-65 years), 
enrolled to receive MEDI‑528 (0.3, 1 and 3 mg/kg) or 
placebo subcutaneously twice weekly for 4 weeks, revealed 
that MEDI-528 had no effect on the pulmonary function (13). 
However, another study in 9 adults (18‑50 years) with stable, 
mild to moderate asthma and exercise‑induced broncho-
constriction (EIB) received 50 mg MEDI‑528 or placebo 
subcutaneously twice weekly for 4 weeks, and indicated 
that blocking IL-9 with MEDI-528 may affect EIB (13). 
However, a statistical analysis could not be performed due to 
the limited small sample size. In order to further investigate 
whether anti‑IL‑9 monoclonal Ab has any clinical benefits in 
patients with asthma, a phase IIb study was performed (14). 
The double blind, multicenter, parallel-group study enrolled 
329 adults randomized (1:1:1:1) to subcutaneous placebo or 
MEDI‑528 (30, 100 and 300 mg) every 2 weeks for 24 weeks, 
in addition to their usual asthma medications. Failed to reach 
its primary endpoint, the results revealed that the addition 
of MEDI‑528 to existing asthma controller medications was 
not associated with any improvement in the Asthma Control 
Questionnaire‑6 scores, asthma exacerbation rates or FEV1 
values. This observation may be surprising at the first 

Table I. Targeting the IL-9 gene in murine asthma models.

Models Antigen challenge Results Reference

FVB/N‑TG5 / Massive airway inflammation with eosinophils and lymphocytes,   5
  increased numbers of mast cells within the airway epithelium,
  epithelial cell hypertrophy associated with accumulation of
  mucus-like material within nonciliated cells and increased
  subepithelial deposition of collagen.
FVB/N‑TG5 Aspergillus TG5 mice display significantly enhanced eosinophilic airway   6
 fumigatus inflammation, elevated serum total IgE, and AHR following lung
  challenge with a natural antigen.
FVB/N‑TG5 Alternaria alternata There are more collagen fibers and eosinophils in the lung of Tg5   7
  mice. The concentration of the eosinophil chemoattractant RANTES 
  and the profibrotic mediator CTGF was higher in the BAL of
  challenged Tg5 mice.
FVB/N‑TG5 Crystalline silica The severity of fibrosis was significantly less important in Tg5 mice 45
 particles than in their wild-type counterparts.
IL-9-/- BALB/c  OVA IL‑9 knockout mice developed a similar degree of eosinophilic
  inflammation and AHR to their wild‑type littermates. Goblet cell
  hyperplasia and IgE production were also unaffected. Moreover,
  levels of IL‑4, IL‑5, and IL‑13 in the BAL were comparable between
  wild-type and knockout mice. 48
IL-9-/- BALB/c  OVA IL‑9 was not required for the bronchial accumulation of mast cells 49

IL, interleukin; OVA, ovalbumin; IgE, immunoglobulin E; AHR, airway hyperresponsiveness; CTGF, connective tissue growth factor; 
BAL, bronchoalveolar lavage.
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glance, since recent results obtained from phase IIa clinical 
studies, as well as earlier observations in mouse models 
indicated a potential role in asthma. The main reason for this 
discrepancy may be the influence of asthma subtype and the 
heterogeneous group of patients presented here and enrolled 
in the other studies. Thus, it is not surprising that the hetero-
geneous nature of asthma has received increasing attention 
recently, as identification of potential subgroups or personal 
characteristics is likely to be the primary determinant of the 
efficacy with therapeutics such as MEDI‑528.

7. Conclusion

Since it was initially described in the late 1980s, major 
advances regarding the biology of IL‑9 have been achieved. 
Data from both murine models and clinical trials are now 

accumulating to support the involvement of IL‑9/IL‑9R in 
asthma. Yet, the results from the clinical trials in humans with 
asthma reflect the heterogeneity of this disease. Therefore, 
the next challenge before developing successful therapies 
will be the detailed identification of a potential subphenotype 
of human asthma. Finally, the determination of whether the 
asthma phenotype and its underlying mechanisms will allow 
researchers to devise personalized and phenotype‑specific 
therapies for asthma, remains to be investigated.
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Table II. Targeting IL-9 in murine asthma models.

 Antigen
Model challenge Treatment Results Reference

B6D2F1 OVA Anti‑IL‑9 mAb (200 µg/mouse, i.p.) Treatment with anti‑mIL‑9 Ab significantly   8
  was given 2 h before sensitization on reduced pulmonary eosinophilia, serum IgE 
  day 1, 5, 9, and 12. The last dose (on levels, goblet cell hyperplasia, airway epithelial
  day 12) was given 2 h before  damage, and AHR, but had no effect on IL‑4,
  antigen challenge. IL‑5, and IL‑13 mRNA levels in the lungs.
BALB/c  OVA Anti‑IL‑9 mAb (20 µg/mouse, i.v.) Treatment with anti‑mIL‑9 Ab significantly   9
  was given 30 min before OVA prevented AHR. Blockade of IL‑9 reduced
  provocation. the numbers of eosinophils and lymphocytes
   and the concentrations of IL-4, IL-5, and IL-13
   in BALF. Macrophage‑derived cytokine
   expression in the airways was also decreased
   by IL-9 blockade.
BALB/c OVA Anti‑IL‑9 mAb (250 µg/mouse, i.p.) Treatment with anti‑mIL‑9 Ab attenuates MC 10
  was administered 30 min twice numbers in the lung, airway remodeling, and
  during the first week (days 19 and 23)  is associated with decreased expression of
  and once weekly thereafter. VEGF, FGF‑2, and TGFβ.
BALB/c OVA Anti‑IL‑9 mAb (100 µg/mouse, i.p.) Numbers of eosinophils, neutrophils, B cells, 11
  was given once a week during the mast cells, and Th17 cells decreased after
  OVA challenge. administration of anti‑IL‑9 Ab. Total IgE,
   IL‑5, IL‑9, and IL‑17 levels were also lower
   in the anti-IL-9 group.
C57BL/6 / 5 µg/mouse of rmIL‑9 in BSA and Murine trachea insertion of mIL‑9 increased 46
  saline solution (20 µl) were eosinophils in the BAL and significantly
  intratracheal instilled once each day elevated serum total IgE. IL‑9 was also
  to B6 mice for 10 days. found to induce IL-5Rα in vivo and in vitro.
C57BL/6 / 5 µg/mouse of rmIL‑9 in BSA and Murine trachea tissue exhibited muc5ac 47
  saline solution (20 µl) were mRNA upregulation and increased numbers
  intratracheal instilled once each day of periodic acid Schiff/Alcian blue‑positive
  to B6 mice for 9 days. mucous cells.

IL, interleukin; Ab, antibody; OVA, ovalbumin; IgE, immunoglobulin E; AHR, airway hyperresponsiveness; CTGF, connective tissue growth. 
factor; BALF, bronchoalveolar lavage fluid; VEGF, vascular endothelial growth factor; FGF‑2, fibroblast growth factor 2; TGFβ, transforming 
growth factor beta; BSA, bovine serum albumin.
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