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Abstract. Sepsis is defined as the systemic inflammatory 
response to infection and is one of the leading causes of 
mortality in critically ill patients. The goal of the present 
study is to elucidate the molecular mechanism of sepsis. 
Transcription profile data (GSE12624) were downloaded that 
had a total of 70 samples (36 sepsis samples and 34 non‑sepsis 
samples) from the Gene Expression Omnibus database. 
Protein‑protein interaction network analysis was conducted 
in order to comprehensively understand the interactions of 
genes in all samples. Hierarchical clustering and analysis of 
covariance (ANCOVA) global test were performed to identify 
the differentially expressed clusters in the networks, followed 
by function and pathway enrichment analyses. Finally, a 
support vector machine (SVM) was performed to classify the 
clusters, and 10‑fold cross‑validation method was performed 
to evaluate the classification results. A total of 7,672 genes 
were obtained after preprocessing of the mRNA expression 
profile data. The PPI network of genes under sepsis and 
non‑sepsis status collected 1,996/2,147 genes and 2,645/2,783 
interactions. Moreover, following the ANCOVA global test 
(P<0.05), 24 differentially expressed clusters with 12 clusters 
in septic and 12 clusters in non‑septic samples were identi-
fied. Finally, 207 biomarker genes, including CDC42, CSF3R, 
GCA, HMGB2, RHOG, SERPINB1, TYROBP SERPINA1, 
FCER1 G and S100P in the top six clusters, were collected 
using the SVM method. The SERPINA1, FCER1 G and S100P 
genes are thought to be potential biomarkers. Furthermore, 
Gene oncology terms, including the intracellular signaling 
cascade, regulation of programmed cell death, regulation of 
cell death, regulation of apoptosis and leukocyte activation 
may participate in sepsis.

Introduction

Sepsis is defined as the systemic inflammatory response to 
infection and is one of the leading causes of mortality in 
critically ill patients despite the application of numerous 
antibiotics and resuscitation therapies (1). Sepsis syndromes 
could be classified as systemic inflammatory response 
syndromes (SIRSs), sepsis, severe sepsis and septic shock 
according to the American College of Chest Physicians and 
the Society of Critical Care first published Care (2). In addi-
tion, the incidence of sepsis is increasing worldwide. In the 
USA the current incidence of sepsis is ~3 in 1,000 people, 
whereas severe sepsis leads to at least 200,000 deaths per 
year (3). Furthermore, severe sepsis and septic shock account 
for 30‑50% of hospital‑reported mortality  (4). Recently, 
consensus on the treatment of sepsis includes advanced 
supportive care in the intensive care unit and use of bundle 
therapies (5). However, due to the non‑specific nature of the 
signs and symptoms of sepsis, the diagnosis and treatment of 
sepsis are complicated.

Recently, numerous studies have been performed to iden-
tify the pathogenesis of sepsis (6-8). A number of biomarkers 
can be used in the diagnosis of sepsis, however, none of 
them has sufficient specificity or sensitivity in the clinical 
setting  (9-11). C‑reactive protein  (CRP) and procalcitonin 
(PCT) have been widely used because of their relatively better 
specificity and prognostic capability (12‑14). The concentra-
tion of CRP is <0.8  mg/l and can increase 1,000‑fold in 
response to an acute‑phase stimulus (15). CRP is a protein 
that is synthesized in the liver and rises in response to 
inflammation  (16). Moreover, it may help macrophages 
remove microorganisms by binding the phospholipid compo-
nents (17). Nowadays, CRP is also treated as a biomarker for 
evaluating sepsis severity and prognosis or to monitor treat-
ment response (12). PCT, which is produced by parafollicular 
cells of the thyroid and neuroendocrine cells of the lungs and 
the intestines is a 116 amino acid polypeptide precursor of 
the hormone calcitonin. PCT was first linked to infectious 
disease by Assicot et al (18) and was formally proposed as an 
adjunctive diagnostic biomarker in 2008 (19). It is maintained 
at a low level in healthy people and increases 1,000‑fold 
during active infection  (20). Furthermore, there are also 
several meta‑analyses demonstrating that PCT could be used 
as a diagnostic marker in sepsis (21,22).
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Nevertheless, there is currently no gold biomarker that 
exists as a marker of sepsis. Thus, identification of a new 
biomarker is urgently required. In order to further identify the 
molecular pathogenesis of sepsis, microarray data were firstly 
downloaded, then the raw data were analyzed to construct 
a protein‑protein interaction (PPI) network. Subsequently, 
differentially expressed clusters in the PPI network were 
identified and significantly enriched pathways and functions of 
the genes in the clusters were also screened. Finally, potential 
molecular markers were identified using the support vector 
machine (SVM) method.

Materials and methods

Obtaining and preprocessing of mRNA expression 
profile data. The mRNA expression profiles of sepsis and 
non‑sepsis samples were obtained from the National Center 
of Biotechnology Information Gene Expression Omnibus 
database. The access number was GSE12624 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12624) and 
the datasets of 36  samples with septic shock following 
trauma (sepsis samples) and 34 samples without septic shock 
following trauma (non‑sepsis samples) were used for further 
analysis. The platform used here was called GPL4204 GE 
Healthcare/Amersham Biosciences CodeLink UniSet Human I 
Bioarray. The original data at probe symbol level were first 
converted into expression values at gene symbol level. Next, 
missing data was imputed and median data normalization was 
performed using robust multichip averaging (23). Besides, 
principal component analysis (PCA) (24), which was used as a 
computational procedure for biomarker identification and for 
the classification of multiclass gene expression was performed 
to identify the difference between sepsis and non‑sepsis 
samples.

PPI network construction. PPIs illustrate valuable informa-
tion for the elucidation of cellular function, and protein 
interaction studies have been developed to be a focal point of 
recent biomolecular research. The Human Protein Reference 
Database (HPRD) (25) is a novel protein information resource 
illustrating various features of proteins, including the domain 
architecture, molecular function, tissue expression, subcel-
lular localization, enzyme‑substrate correlation and PPIs. 
In the present study, all the human PPI pairs in HPRD were 
initially collected. Next, the Pearson correlation coefficients 
for all the interacting genes were calculated based on their 
expression values under the sepsis and non‑sepsis status 
with a coefficient <0.5 used as the cut‑off criterion. This was 
done to obtain the PPI networks under these two statuses. 
Furthermore, Cytoscape (26) was used to visualize the PPI 
networks in order to further observe the correlation between 
genes.

Hierarchical clustering and analysis of covariance (ANCOVA) 
global test for differentially expressed clusters. Hierarchical 
clustering is a method of cluster analysis that seeks to build 
a hierarchy of clusters (27). Euclidean distance was selected 
as a measure of distance between pairs of genes in the PPI 
network. The present study used the package hclust (http://
CRAN.R-project.org/package=gplots) in R  language to 

perform the hierarchical clustering of two PPI networks, with 
the requirement that each cluster should have had >5 genes. 
Finally, Package GlobalAncova in R language was employed 
to identify the differentially expressed cluster using the 
ANCOVA global test (28), which focuses on phenotype effects 
and gene‑phenotype interactions. P<0.05 was defined as a 
threshold.

Enrichment analysis of differentially expressed clusters. In 
order to study differentially expressed clusters at the func-
tional level, Gene Ontology (GO) functional enrichment (29) 
and Kyoto Encyclopedia of Gene and Genomes (30) pathway 
enrichment analyses were performed using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
software (31). DAVID software has been widely used to iden-
tify biological processes involving a given list of genes. In the 
present study, a fold change discovery of ≤0.05 was set as the 
cut‑off criterion for enrichment analysis.

Identification of molecular markers by the SVM method. 
The SVM method has been demonstrated to be an useful 
classification and regression method that uses machine 
learning theory to maximize the predictive accuracy while 
avoiding overfitting of data (32). Differential clusters were 
initially ranked according to their P‑ and F‑values (F test), 
and the cluster with the highest P‑value was then defined as 
the class feature. Secondly, the SVM method was employed 
to classify the samples using the ksvm function in the 
kernlab package in R language, and the 10‑fold cross‑vali-
dation method was performed to evaluate the classification 
results. A feature selection error rate of <0.1 was selected 
as the criteria.

Results

Preprocessing of mRNA expression profile data. A total of 
7,672 genes were obtained after preprocessing of the mRNA 
expression profile data. PCA analysis based on gene expres-
sion values revealed that sepsis samples had a great similarity 
with non‑sepsis samples (Fig. 1). Therefore, further bioinfor-
matics analyses were conducted to identify the molecular 
markers for distinguishing sepsis samples from non‑sepsis 
samples.

PPI network construction. The HPRD database was used 
to construct the PPI network and Cytoscape software was 
employed to visualize the network. The PPI network of genes 
under sepsis collected 1,996 genes and 2,645  interactions 
between them; the PPI network of genes under non‑sepsis 
status collected 2,147 genes and 2,783 interactions (Fig. 2). 
Further analysis revealed that there were 1,438 overlapping 
genes and only 992 overlapping interactions between sepsis 
and non‑sepsis samples (Fig. 3).

Screening of differentially expressed clusters. In total, 40 clus-
ters with 20 clusters in both PPI networks were identified by 
hierarchical clustering (Fig. 4). Furthermore, 24 differentially 
expressed clusters, each with 12 clusters in both networks, 
were identified by the ANCOVA global test with a threshold 
of P<0.05.
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Enrichment analysis of differentially expressed clusters. 
Function enrichment analysis revealed that the genes in the 
24 differentially expressed clusters were mainly enriched in 
the following GO terms: Positive regulation of macromolecule 
metabolic processes, transcription factor binding, regulation 
of cell death and the intracellular signaling cascade (Table I). 
However, no pathways were enriched.

Identification of molecular markers by the SVM method. The 
24 clusters that were sorted by P‑value are listed in Table II. 
The SVM method was employed in order to classify the 
samples according to the cluster sequences listed in Table II. 
Notably, when the seventh cluster was added, the feature selec-
tion error rate of 10‑fold cross‑validation was >0.1. Therefore, 
207 genes in the top six clusters were selected as potential 
biomarkers, including CDC42, CSF3R, GCA, HMGB2, 
RHOG, SERPINB1 and TYROBP in cluster 15, as well as 
SERPINA1, FCER1G and S100P. Fig. 5 illustrates the SVM 
calculating process. In order to validate the non‑randomness 
of these 207 genes, 207 genes were randomly selected from 
the mRNA expression profile data 1,000 times and the results 
of the 10‑fold cross‑validation were always >0.1. This proved 
the effectiveness of the selected molecular markers. Further 
enrichment analysis demonstrated that these 207 genes were 
mainly enriched in functions of the intracellular signaling 
cascade, regulation of programmed cell death, regulation 
of cell death, regulation of apoptosis and leukocyte activa-
tion (Table III); whereas no pathways were enriched.

Discussion

Sepsis and its complications are a common cause of infectious 
disease and hospital‑reported mortality worldwide (33). The 
present study aimed to investigate the potential mechanism of 
sepsis, and to identify genes that can be used for diagnosing 

Table I. GO analysis of differentially expressed clusters (top 15).

Category	 Term	 FDR

GOTERM_BP_FAT	 GO:0010604~positive regulation of macromolecule metabolic process	 6.58x10-29

GOTERM_MF_FAT	 GO:0008134~transcription factor binding	 1.09x10-27

GOTERM_BP_FAT	 GO:0010605~negative regulation of macromolecule metabolic process	 2.52x10-23

GOTERM_BP_FAT	 GO:0010941~regulation of cell death	 1.83x10-22

GOTERM_BP_FAT	 GO:0007242~intracellular signaling cascade	 2.59x10-22

GOTERM_BP_FAT	 GO:0043067~regulation of programmed cell death	 8.30x10-22

GOTERM_MF_FAT	 GO:0030528~transcription regulator activity	 7.43x10-21

GOTERM_BP_FAT	 GO:0042981~regulation of apoptosis	 1.21x10-20

GOTERM_MF_FAT	 GO:0004672~protein kinase activity	 1.08x10-19

GOTERM_BP_FAT	 GO:0016310~phosphorylation	 7.73x10-19

GOTERM_BP_FAT	 GO:0006468~protein amino acid phosphorylation	 8.91x10-19

GOTERM_BP_FAT	 GO:0044093~positive regulation of molecular function	 4.92x10-17

GOTERM_BP_FAT	 GO:0010628~positive regulation of gene expression	 5.97x10-17

GOTERM_BP_FAT	 GO:0006796~phosphate metabolic process	 6.14x10-17

GOTERM_BP_FAT	 GO:0006793~phosphorus metabolic process	 6.14x10-17

GO, gene ontology; BP, biological process; FAT, functional annotation tool; MF, molecular function; FDR, false discovery rate.
 

Table II. Sorted differentially expressed clusters of sepsis and 
non-sepsis samples.

Clusters	 F-value	 p.perm	 p.approx	 State

15	 9.12	 <0.01	   2.74x10-6	 s
18	 6.66	 <0.01	   4.87x10-3	 ns
14	 6.03	 <0.01	   1.06x10-4	 s
10	 5.26	 <0.01	   7.52x10-4	 ns
13	 4.83	 <0.01	   1.25x10-5	 ns
  8	 4.61	 <0.01	   1.40x10-3	 s
13	 3.94	 <0.01	   4.86x10-6	 s
  3	 3.77	 <0.01	   2.92x10-6	 ns
  2	 3.58	 <0.01	   6.30x10-4	 s
11	 3.25	 <0.01	   2.37x10-3	 ns
  3	 3.23	 <0.01	   2.26x10-3	 s
11	 3.03	 <0.01	   3.31x10-3	 s
  2	 2.94	 <0.01	   6.03x10-3	 ns
  5	 2.82	 <0.01	   2.06x10-2	 s
  6	 2.82	 <0.01	   6.06x10-3	 s
  4	 2.64	 <0.01	   8.88x10-3	 ns
16	 4.88	  0.01	   1.11x10-3	 ns
  6	 3.76	  0.01	   6.36x10-4	 ns
  4	 3.42	  0.01	   2.21x10-3	 s
  8	 2.94	  0.01	   5.65x10-3	 ns
  9	 2.43	  0.02	   4.01x10-2	 s
12	 2.26	  0.02	   3.19x10-2	 s
  1	 2.65	  0.03	   1.53x10-2	 ns
  5	 2.36	  0.04	   1.87x10-2	 ns 

s, septic samples; ns, non-septic samples; p-perm, p-values from the 
permutation test; p.approx, P-values by means of an approximation 
for a mixture of χ2 distribution.
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and developing candidate molecularly targeted therapy. In 
total, 7,672 genes were obtained after preprocessing of the 
mRNA expression profile data. Following hierarchical clus-
tering analysis and the ANCOVA global test, 24 differentially 
expressed clusters with 12 clusters in each PPI network were 
identified. Moreover, 207 genes in the top six clusters were 

selected using SVM, and the functional enrichment analysis 
revealed that they were mainly enriched in the intracellular 
signaling cascade, regulation of programmed cell death, regu-
lation of apoptosis and leukocyte activation.

The ANCOVA global test identified 24  differentially  
expressed clusters, and cluster 15 had the highest P‑value. Genes 

Table III. GO analysis of molecular markers (top 15).

Category	 Term	 FDR

GOTERM_CC_FAT	 GO:0005829~cytosol	 1.33x10-8

GOTERM_BP_FAT	 GO:0007242~intracellular signaling cascade	 3.76x10-5

GOTERM_CC_FAT	 GO:0031982~vesicle	 9.54x10-3

GOTERM_CC_FAT	 GO:0044459~plasma membrane part	 1.12x10-2

GOTERM_BP_FAT	 GO:0010033~response to organic substance	 1.39x10-2

GOTERM_BP_FAT	 GO:0043067~regulation of programmed cell death	 1.40x10-2

GOTERM_CC_FAT	 GO:0005886~plasma membrane	 1.46x10-2

GOTERM_BP_FAT	 GO:0010941~regulation of cell death	 1.50x10-2

GOTERM_CC_FAT	 GO:0015629~actin cytoskeleton	 1.67x10-2

GOTERM_MF_FAT	 GO:0032403~protein complex binding	 2.73x10-2

GOTERM_BP_FAT	 GO:0042981~regulation of apoptosis	 3.31x10-2

GOTERM_BP_FAT	 GO:0045321~leukocyte activation	 6.04x10-2

GOTERM_BP_FAT	 GO:0031400~negative regulation of protein modification process	 7.36x10-2

GOTERM_CC_FAT	 GO:0009986~cell surface	 7.38x10-2

GOTERM_CC_FAT	 GO:0031988~membrane-bounded vesicle	 7.53x10-2

GOTERM_BP_FAT	 GO:0016192~vesicle-mediated transport	 9.46x10-2

GO, gene ontology; CC, cellular components; FAT, functional annotation tool; BP, biological process; MF, molecular function; FDR, false 
discovery rate.
 

Figure 1. Principal component analysis of gene expression in sepsis and non-sepsis samples. Blue points represent the sepsis and red points represent non-sepsis 
samples. PC1, principal component 1.
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Figure 2. Protein-protein interaction network. (A) Sepsis and (B) non-sepsis samples.

  A

  B
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Figure 5. Trend graph of error rate for feature selection using support vector machine analysis method.

Figure 4. Hierarchical clustering analysis of clusters in two protein-protein networks. (A) Non-sepsis and (B) sepsis samples.

  A

  B

  A   B

Figure 3. Overlapping conditions of two protein-protein networks. (A) Sepsis and (B) non-sepsis samples.
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in this cluster, including CDC42 (34), CSF3R (35), GCA (36), 
HMGB2 (37), RHOG (38), SERPINB1 (39) and TYROBP (40) 
had already been linked with sepsis. SERPINA1, FCER1G 
and S100P were also genes in this cluster. Gene SERPINA1 
encodes alpha‑1‑antitrypsin, which is a serine protease 
inhibitor. Moreover, the targets of SERPINA1 include elastase, 
plasmin, thrombin, trypsin, chymotrypsin and plasminogen 
activator, which participates in inflammatory processes (41). 
Buttenschoen  et  al  (42) demonstrated that the diagnostic 
value of SERPINA1 levels could be applied in order to distin-
guish sepsis from SIRS and to assess prognosis. Recently, 
Su et al (43) revealed that SERPINA1 was downregulated in 
patients with sepsis compared with SIRS patients, and further 
analysis demonstrated that SERPINA1 was involved in sepsis 
differentiation. The FCER1G gene encodes the γ‑subunit 
of Fc epsilon  RI  (FcRγ), which is an immunoreceptor 
tyrosine‑based activation motif‑bearing signal transduction 
subunit of the Fc receptor family (44). The FCER1G gene was 
upregulated in sepsis according to Hu et al (45). Furthermore, 
it has a deleterious effect on sepsis, and FcRγ‑/‑ mice demon-
strated an increased survival during sepsis due to increased 
Escherichia coli phagocytosis (46). The S100P gene encoding 
the S100 calcium binding protein, which is a member of the 
S100 family proteins, contains 2 EF‑hand calcium‑binding 
motifs. Sepsis‑associated encephalopathy (SAE) is the organ 
dysfunction accompanied with sepsis (47). S100P is produced 
mainly by the central nervous system, and the elevated serum 
level of S100P is a biomarker of neuronal damage occurring 
in SAE (48). Therefore, elevated serum levels of S100P may 
be associated with critical illness and may be treated as the 
biomarkers of brain damage during sepsis.

GO functional enrichment analysis revealed that 207 genes 
identified by SVM, including TLR2 and RAB27A, were 
mainly enriched in the intracellular signaling cascade, regula-
tion of programmed cell death and cell death, regulation of 
apoptosis and leukocyte activation. Furthermore, programmed 
cell death is an important mechanism during the immuno-
pathogenesis of sepsis. Notably, apoptosis is one form of 
programmed cell death. In addition, early programmed cell 
death of lymphocytes destroys innate and adaptive immunity, 
which would reduce the ability of protecting against patho-
gens (49). Also, programmed cell death of parenchymal cells 
in the lung, liver and gut would facilitate organ failure and 
death (50). The TLR2 gene encodes Toll‑Like Receptor 2, 
which is a member of the Toll‑like receptor family expressed 
on the macrophage recognizing pathogen‑associated molec-
ular patterns (51). Several reports have suggested the role of 
TLR2 in the induction of pathogen‑induced programmed 
cell death (52‑54). The present study identified that TLR2 
demonstrated differential expression in sepsis samples, which 
was consistent with the observations of Armstrong et al (55). 
Therefore, we inferred that TLR2 may be involved in sepsis 
by interrupting programmed cell death. The RAB27A gene 
encoding guanosine triphosphate (GTP)‑binding protein 
Ram belongs to the GTPase superfamily, Rab family (56). 
Ménasché et al  (57) have reported that genetic defects in 
Rab27a may lead to immunodeficiency in humans caused 
by programmed cell death. Furthermore, Johnson et al (58) 
illustrated that Rab27a deficiency is associated with increased 
survival and reduced neutrophil infiltration of the liver in a 

model of lipopolysaccharide‑induced systemic inflammation. 
Therefore, Rab27a may participate in organ failure which 
accompanies sepsis.

Overall, in order to illustrate the pathological mecha-
nisms underlying sepsis, gene expression profiles containing 
70  samples were downloaded and analyzed. SERPINA1, 
FCER1G and S100P in the selected differential clusters may 
be potential biomarkers. Moreover, TLR2 and Rab27a may 
exert certain roles in sepsis by interrupting programmed cell 
death. However, more experiments are required in order to 
confirm these results.
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