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Abstract. The aim of the present study was to investigate 
the demethylation effect of arsenic trioxide (As2O3) on the 
secreted frizzled‑related protein 1 (SFRP1) gene and its ability 
to inhibit the Wingless‑type MMTV integration site family 
(WNT) pathway in Jurkat cells. Methylation‑specific poly-
merase chain reaction was used to examine the CpG island 
methylation status of the SFRP1 gene in leukemia cell lines. In 
addition, the effects on Jurkat cells of treatment with different 
concentrations of As2O3 for 48 h were investigated. Reverse 
transcription‑quantitative polymerase chain reaction was 
employed to measure the expression of mRNAs, while western 
blot analysis was used to examine protein expression in cells. 
The SFRP1 gene was methylated in Jurkat cells. However, both 
methylated and unmethylated SFRP1 genes were detected in 
HL60 and K562 cells. In normal bone marrow mononuclear 
cells, the SFRP1 gene was unmethylated. Following treatment 
with As2O3 for 48 h, the SFRP1 gene was demethylated, and 
the mRNA and protein expression levels of the SFRP1 gene 
were increased. By contrast, the mRNA and protein expres-
sion levels of β‑catenin and cyclin Dl were downregulated. 
The protein expression of c‑myc was also downregulated, but 
As2O3 exhibited no significant effect on the mRNA expres-
sion of c‑myc. Abnormal methylation of the SFRP1 gene 
was detected in Jurkat cells. These results suggest that As2O3 
activates SFRP1 gene expression at the mRNA and protein 
levels in Jurkat cells by demethylation of the SFRP1 gene. 
Furthermore, they indicate that As2O3 regulates WNT target 
genes and controls the growth of Jurkat cells through the 
WNT/β‑catenin signaling pathway.

Introduction

Aberrant activation of the Wingless‑type MMTV integration 
site family (WNT)/β‑catenin pathway has been implicated in 
the pathogenesis of many malignancies (1‑3). The phenomenon 
has also been observed in hematological malignancies (4,5). In 
addition, abnormal methylation of the promoters of specific 
WNT/β‑catenin inhibitors has been reported in leukemia (6,7). 
The WNT/β‑catenin signaling pathway plays an important 
role in the survival, proliferation and differentiation of hema-
topoietic stem cells. Aberrant activation of WNT/β‑catenin 
signaling is closely associated with the pathogenesis of 
leukemia (8‑10). As a result, WNT/β‑catenin signaling may 
be an important treatment target for leukemia. The secreted 
frizzled‑related protein (SFRP) family and Dickkopf (DKK) 
family are WNT signaling antagonists; the WNT/β‑catenin 
signaling pathway is regulated tightly by the SFRP and DKK 
families (11). The functional loss of WNT antagonists contrib-
utes to activation of the WNT signaling pathway. Activation 
of the canonical WNT pathway causes the hypophosphoryla-
tion and stabilization of β‑catenin. Following translocation 
into the nucleus, non‑phosphorylated β‑catenin associates 
with the T‑cell factor family of transcription factors, thereby 
modulating the expression of target genes such as c‑myc, 
cyclin D, matrix metalloproteinase‑7 and bone morphogenetic 
protein‑4 (12‑15).

Arsenic trioxide (As2O3) is a traditional Chinese medicine. 
It has been found to be effective in the treatment of malignant 
hematopoietic diseases by inducing apoptosis and inhib-
iting cellular proliferation, and has been used to treat acute 
promyelocytic leukemia and multiple myeloma with good 
results (16,17). The anticancer effects of As2O3 are exerted 
through the induction of apoptosis and differentiation of 
leukemia cells and reduction of telomerase activity (18,19). 
However, some studies have found that the metabolism of As2O3 
involves detoxification via methylation, which is similar to the 
methylation processes of oncogenes and tumor suppressor 
genes (20,21). In addition, As2O3 has been reported to utilize 
S‑adenosyl methionine (SAM) (22), an essential co‑factor of 
DNA methyltransferases, which results in DNA hypomethyl-
ation. Therefore, As2O3 may regulate tumor suppressor genes 
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by interfering with DNA methylation patterns. Although As2O3 
has been shown to have antileukemic effects, its demethylating 
and dose‑dependent effects on genes associated with other 
tumors have already been postulated (20,23).

Different molecular mechanisms have been implicated in 
aberrant activation of the WNT/β‑catenin signaling pathway. 
Abnormal methylation of WNT antagonists is a frequent event 
in several human malignancies (7,24,25). Previous studies have 
indicated that methylation of SFRP exists in leukemia (1,2). 
Our previous studies demonstrated that inhibitory factors of 
the WNT pathway, such as WNT inhibitory factor, DKK1 
and SFRP1, are hypermethylated in leukemia cells and 
patients with leukemia  (26‑28). As2O3 has been shown to 
exert a demethylation effect through the inhibition of DNA 
methyltransferase, and has a similar demethylation effect to 
decitabine (29,30). SFRP1 is a member of the SFRP family, 
and the SFRP1 gene is located on chromosome 8p11.2. As an 
important inhibitor of the WNT pathway, the SFRP1 gene is 
involved in the regulation of cell growth and proliferation, and 
is closely associated with the occurrence of leukemia (31,32). 
However, it is unclear whether As2O3 affects the SFRP1 gene, 
WNT pathway or WNT downstream genes in Jurkat cells. In 
the present study, the methylation status of the SFRP1 gene in 
Jurkat cells was examined and the effect of As2O3 on SFRP1 
and the WNT/β‑catenin signaling pathway was investigated.

Materials and methods

Cells. Normal bone‑marrow mononuclear cells (BMMNCs) 
and the leukemia cell lines HL60 (acute myeloid leukemia), 
K562 (chronic myeloid leukemia) and Jurkat (acute T cell 
leukemia) were purchased from Shandong University Medical 
School (Shandong, China) and cultured in RPMI‑1640 medium 
supplemented with 10% fetal bovine serum, 10% non‑essential 
amino acids, 1% penicillin and 0.1% amphotericin B (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA). The cells were 
maintained in an incubator at 37˚C in an atmosphere with 
5% CO2. Sub‑culturing of the cells was performed after 80% 
confluence was reached. Cells in the exponential growth phase 
were treated with As2O3 (Yida Pharmaceutical Co., Ltd., 
Harbin, China) at concentrations of 0, 1.25, 2.5 and 5.0 µmol/l 
for 48 h. Untreated cells were used as the control.

DNA extraction and methylation modification. DNA was 
extracted from the cells using the Wizard Genomic DNA 
Purification kit (Promega Corporation, Madison, WI, USA) 
according to manufacturer's protocol. To ensure the purity 
of the extracted DNA, the ratio of the optical density of the 
DNA at 260 nm to that at 280 nm was confirmed to be ~1.8. 
In addition, the DNA concentration was confirmed to be 
between 0.1 and 0.9 ng/µl using a Smartspec 3000 spectro-
photometer (Bio‑Rad Laboratories, Inc., Hercules, CA, USA). 
Approximately 1 µg extracted DNA was used for bisulfate 
modification using the EZ DNA Methylation Gold kit (Zymo 
Research, Seattle, WA, USA) according to the manufacturer's 
instructions.

Methylation‑specific polymerase chain reaction (MSP). The 
modified DNA was resuspended in 20 µl TE buffer (10 mM 
Tris‑HCl, and 1  mM EDTA; pH=8.0) and immediately 

subjected to polymerase chain reaction (PCR) or stored at 
‑20˚C. PCR was performed with Zymo Taq PreMix (Zymo 
Research) using the primers listed in Table I. Approximately 
50 ng bisulfite‑modified DNA was amplified by MSP using 
the following reaction conditions: 95˚C for 2 min; 95˚C for 
20 sec, 60˚C (methylated) or 62˚C (unmethylated) for 30 sec 
(40 cycles); and extension at 72˚C for 7 min. DNA from normal 
BMMNCs treated with Sss I transmethylase (Zymo Research) 
was used as a positive control for methylation, and water 
was used as a negative control. PCR was performed using a 
PTC‑200 cycler (Bio‑Rad Laboratories, Inc.). The amplified 
PCR products (5 µl) were analyzed on 2% agarose gel and 
visualized under ultra violet illumination. MSP experiments 
were repeated three times for each sample.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from the cells using TRIzol (Thermo 
Fisher Scientific, Inc.) according to the manufacturer's 
instructions. Then, DNase I (Thermo Fisher Scientific, Inc.) 
treatment was used to remove genomic DNA contamination 
from the total RNA. RT‑qPCR was performed using 0.3 µg 
total RNA following the instructions of the PrimeScript RT 
reagent kit (#DRR037A; Takara Biotechnology Co., Ltd., 
Dalian, China). The reverse transcription system included 
5X PrimeScript Buffer (2 µl), PrimeScript RT Enzyme Mix 
I (0.5 µl), oligo dT primer (0.5 µl), random 6 mers (2 µl), 
total RNA (0.3 µg), and RNase‑free dH2O (4.7 µl). The reac-
tion conditions were as follows: Initial denaturation at 95˚C 
for 30 sec, 40 cycles of denaturation at 95˚C for 5 sec and 
annealing at 60˚C for 30 sec. The PCR amplification system 
contained cDNA (2 µl), 10X buffer (2 µl), Mg2+ (1 µl), dNTP 
(10  mM) (1  µl), probe (1  µl; TaqMan GAPDH detection 
reagents; Takara Biotechnology Co., Ltd.), Primer‑F (1 µl; 
Table I), Primer‑R (1 µl; Table I), ddH2O (10.8 µl) and Taq 
DNA polymerase (0.2 µl; PrimeScript RT‑PCR reagent kit; 
Takara Biotechnology Co., Ltd.). The reaction system was 
amplified using an Applied Biosystems 7500 Fast cycler 
(Thermo Fisher Scientific, Inc.). The reaction conditions 
were as follows: 95˚C for 2 min; 94˚C for 20 sec, and 60˚C for 
20 sec (40 cycles); and 72˚C for 30 sec. The experiment was 
repeated for 3 times. GAPDH was used as internal standard 
to calculate the relative fold differences using the compara-
tive Cq (2‑ΔΔCq) method (33), and fold differences in SFRP1, 
β‑catenin, cyclin Dl and c‑myc expression compared with 
untreated cells were determined.

Western blotting. Cells were trypsinized and precooled 
radioimmunoprecipitation assay lysis buffer (600 µl; 50 mM 
Tris‑base; 1  mM EDTA; 150  mM NaCl; 0.1% sodium 
dodecyl sulfate; 1% Triton X‑100; 1% sodium deoxycholate; 
Beyotime Institute of Biotechnology, Haimen, China) was 
added to the samples Following lysis for 50 min on ice, the 
mixture was centrifuged at 12,000 x g and 4˚C for 5 min. 
The supernatant was used to determine protein concentration 
with a bicinchoninic acid protein concentration determina-
tion kit [RTP7102; Real‑Times (Beijing) Biotechnology Co., 
Ltd., Beijing, China]. Proteins (20 µg) were separated by 12% 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 
under reducing conditions and transferred to nitrocellu-
lose membranes (Whatman; GE Healthcare Bio‑Sciences, 
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Pittsburgh, PA, USA). The membranes were incubated with 
phosphate‑buffered saline containing 0.1% Tween‑20 and 5% 
non‑fat dry milk to block nonspecific binding. The membranes 
were then incubated for 1.5 h with rabbit anti‑human SFRP1 
(1:1,000; #4690), β‑catenin (1:1,000; #8480), cyclin Dl 
(1:1,000; #2978), c‑myc (1:1,000; #5605; all Cell Signaling 
Technology, Inc., Danvers, MA, USA) and β‑actin anti-
bodies (1:1,000; #8227; Abcam, Cambridge, UK), followed 
by 1 h incubation with horseradish peroxidase‑conjugated 
goat anti‑rabbit immunoglobulin  G secondary antibody 
(1:10,000; #111‑005‑045; Jackson ImmunoResearch Labora-
tories, Inc., West Grove, PA, USA). Signals were visualized 
using an enhanced chemiluminescence detection system 
(ChemiDoc‑It System; UVP, Inc., Upland, CA, USA). The 
intensity of protein fragments was quantified using Basic 
Quantity One software (v4.5.0; Bio‑Rad Laboratories, Inc.). 
The relative expression of each protein was normalized to 
β‑actin control.

Statistical analysis. Data are expressed as the mean ± standard 
deviations. Comparisons were made using an independent 
samples t‑test with SPSS software (version 16.0; SPSS, Inc., 
Chicago, IL, USA). P<0.05 was considered to indicate a statis-
tically significant result.

Results

As2O3 induces demethylation of the CpG islands of SFRP1 in 
Jurkat cells. To test the effect of different concentrations of 
As2O3 on the methylation status of DNA, MSP analysis was 
performed. DNA from normal BMMNCs treated with SssI 
transmethylase was used as a positive control for methylation, 
DNA from BMMNCs of healthy controls served as negative 
control, and water was used as a blank control. The data 
showed that the SFRP1 gene promoter was completely methyl-
ated in Jurkat cells, partially methylated in HL60 and K562 
cells, and unmethylated in normal bone marrow mononuclear 

Table I. Primer sequences.

Genes	 Primer sequences

SFRP1	 Forward: 5'‑TTGAGCATTTGAAAGGTGTGCTA‑3'
	 Reverse: 5'‑ACAGCTACACTACCAGGGAAATCC‑3'
SFRP1 (methylated)	 Forward: 5'‑GCGTTGGGTATTTAGTAGGATTTATTCG‑3'
	 Reverse: 5'‑CGAACCCAACAGATCCCACGA‑3'
SFRP1 (unmethylated)	 Forward: 5'‑GTGTTTGGTATTCAGTAGGATTTATTTG‑3'
	 Reverse: 5'‑CAAACCCAAACAATCCCACAAC‑3'
β‑catenin	 Forward: 5'‑ ATCCCACTGGCCTCTGATAAAG‑3'
	 Reverse: 5'‑GTACGGCGCTGGGTATCCT‑3'
Cyclin Dl	 Forward: 5'‑CGTGGCCTCTAAGATGAAGGA‑3'
	 Reverse: 5'‑TCGGTGTAGATGCACAGCTTCT‑3'
c‑myc	 Forward: 5'‑TGAATCTGCCGCAGCTAGAA‑3'
	 Reverse: 5'‑ TCCCCTCGTTGCTCTTGTTC‑3'
GAPDH	 Forward: 5'‑AGAAGGCTGGGGCTCATTTG‑3'
	 Reverse: 5'‑AGGGGCCATCCACAGTCTTC‑3'

SFRP1, secreted frizzled‑related protein 1.

Figure 1. Methylation‑specific polymerase chain reaction analysis of (A) SFRP1 gene expression in normal BMMNCs and leukemia cell lines (HL60, K562 
and Jurkat). (B) SFRP1 gene expression in Jurkat cells treated with As2O3 at different concentrations (0, 1.25, 2.5 and 5.0 µM) for 48 h. BMMNC, normal bone 
marrow mononuclear cell; P, positive control; u, unmethylated; m, methylated; SFRP1, secreted frizzled‑related protein 1. 
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cells (Fig. 1A). In addition, the methylation‑specific bands 
of the SFRP1 gene were significantly decreased in Jurkat 
cells treated with 1.25, 2.5 and 5.0 µmol/l As2O3 for 48 h. By 
contrast, the non‑methylation‑specific bands of SFRP1 genes 
were significantly increased in Jurkat cells treated with 1.25, 
2.5 and 5.0 µmol/l As2O3 for 48 h. Notably, the attenuation of 
the hypermethylation of SFRP1 by As2O3 was not dose‑depen-
dent in Jurkat cells (Fig. 1B). These results suggest that As2O3 
induces the demethylation of CpG islands of SFRP1 in Jurkat 
cells.

As2O3 increases the mRNA expression level of SFRP1 in 
Jurkat cells. To study the effect of As2O3 on SFRP1, β‑catenin, 
cyclin Dl and c‑myc mRNA expression in Jurkat cells, RT‑qPCR 
was employed. As2O3 decreased the expression levels of 

β‑catenin (Fig. 2A) and cyclin Dl (Fig. 2B) in a dose‑dependent 
manner (P<0.05), but had no effect on the expression of c‑myc 
mRNA (P>0.05; Fig. 2C). Notably, SFRP1 mRNA expression 
in Jurkat cells was increased in a dose‑dependent manner by 
treatment with increasing concentrations of As2O3 for 48 h; 
the increases resulting from treatment with 2.5 and 5.0 µmol/l 
were significant (P<0.05; Fig. 2D). These results indicate that 
As2O3 increases the mRNA expression level of SFRP1 in 
Jurkat cells.

As2O3 increases SFRP1 protein expression, but decreases 
β‑catenin, cyclin Dl and c‑myc protein expression levels 
in Jurkat cells. To determine the effect of As2O3 on the 
protein expression of SFRP1, β‑catenin, cyclin Dl and c‑myc, 
western blotting was conducted. Western blots showed 

Figure 3. Western blot analysis of SFRP1 protein expression in Jurkat cells treated with 0, 1.25, 2.5 and 5.0 µM As2O3. Data are expressed as the mean ± SD 
(n=3‑6). *P<0.05 vs. 0 µM As2O3. SFRP1, secreted frizzled‑related protein 1.

Figure 2. Expression of (A) β‑catenin, (B) cyclin Dl, (C) c‑myc and (D) SFRP1 mRNA in Jurkat cells treated with 0, 1.25, 2.5 and 5.0 µM As2O3. Reverse 
transcription‑quantitative polymerase chain reaction was performed to measure mRNA expression. Data are expressed as the mean ± SD (n=3‑6). *P<0.05 
vs. 0 µM As2O3. SFRP1, secreted frizzled‑related protein 1.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  13:  2050-2055,  20172054

that As2O3 increased the protein expression of SFRP1 in a 
dose‑dependent manner (P<0.05; Fig. 3). However, As2O3 
decreased the protein expression of β‑catenin, cyclin Dl and 
c‑myc in a dose‑dependent manner (P<0.05; Fig. 4). These 
results suggest that As2O3 increases SFRP1 protein expres-
sion, but decreases β‑catenin, cyclin Dl and c‑myc protein 
expression in Jurkat cells.

Discussion

The results of the present study indicate that As2O3 induces 
the demethylation of SFRP1 genes in Jurkat cells, and upregu-
lates SFRP1 gene expression at the mRNA and protein levels. 
However, the demethylation effect of As2O3 was not found to 
be completely dose‑dependent, which conflicts with previous 
studies (34,35). This observation may be due to differences in 
the leukemia cell lines used and genes analyzed. This suggests 
that the different types of leukemia may have different patho-
geneses. The mechanism of action of As2O3 also appears to 
also differ among leukemia cell lines.

β‑catenin is an important component of the WNT 
pathway, and reflects the activity of the WNT pathway (36). 
In the present study, following treatment with As2O3 the 
expression of β‑catenin mRNA and protein was significantly 
reduced, suggesting that As2O3 affects the activity of the 
WNT pathway. Cyclin Dl, c‑myc and B‑cell lymphoma‑2 
(Bcl‑2) are downstream genes of the WNT pathway, and 
play important roles in cell proliferation, differentiation and 
apoptosis (37). Cyclin D1 positively regulates cell cycle, and 
facilitates cells to cross G1/S check point to enter S phase. 
Cyclin D1 is overexpressed in multiple tumors (13). As2O3 
arrests some tumor cells at G1 phase and inhibits tumor 
cell proliferation (38). In the present study, RT‑qPCR and 
western blotting demonstrated that As2O3 treatment reduced 

cyclin D1 expression in Jurkat cells. Therefore, As2O3 has an 
anti‑leukemia effect by inhibiting the proliferation of Jurkat 
cells via the down‑regulation of cyclin D1 expression. In 
the present study, the expression of c‑myc mRNA was not 
significantly altered, but the expression of c‑myc protein 
was downregulated. The inconsistency between mRNA and 
protein expression may be due to the fact that mRNA is 
affected by a number of molecular regulatory factors, such 
as by microRNA, or it may be possible that post‑translational 
regulation serves a role. Gene regulation in the cell cycle 
is complex, and multiple genes may be associated with the 
same protein (39). The regulatory effect of As2O3 on B‑cell 
lymphoma‑2 has been extensively studied (40), and so was 
not examined in the present study.

To summarize, the results of the present study indicate 
that As2O3 increases the expression of the WNT suppressor 
gene SFRP1 by demethylation, and reduces the expression 
of β‑catenin, thereby inhibiting the WNT pathway through 
downregulation of the expression of the WNT downstream 
target genes cyclin Dl and c‑myc. The demethylation effect 
of As2O3 in leukemia cell lines suggests the potential of 
As2O3 as a demethylation drug that could be widely used in 
the treatment of leukemia. However, the methylation effects 
of As2O3 on other important genes are worthy of further 
study.
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Figure 4. Western blot analysis of proteins in Jurkat cells treated with 0, 1.25, 2.5 and 5.0 µM As2O3. (A) Representative western blots and expression levels of 
(B) β‑catenin, (C) cyclin Dl and (D) c‑myc proteins. Data are expressed as the mean ± SD (n=3‑6). *P<0.05 vs. 0 µM As2O3.
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