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Abstract. Cardiac fibrosis is a common phenomenon in 
different types of heart diseases, such as ischemic heart 
disease, inherited cardiomyopathy mutations, diabetes, 
and ageing and is associated with morbidity and mortality. 
Increased accumulation of extracellular matrix (ECM) that 
impacts cardiac function, is the underlying cause of fibrotic 
heart disease. There are four different types of cardiac 
fibrosis, including, reactive interstitial fibrosis, replacement 
fibrosis, infiltrative interstitial fibrosis and endomyocardial 
fibrosis. They are involved in the activation and trans-
formation of cardiac fibroblasts to myofibroblasts, which 
participate in ECM production and fibrotic process and 
several inflammatory pathways. Besides the ECM proteins, 
myofibroblasts also express smooth muscle α‑actin, SM22 
and caldesmon and other markers related to fibrotic process. 
Most commonly employed techniques to assess myocardial 
fibrosis include stress echocardiography, cardiac magnetic 
resonance imaging and positron emission tomography. 
Because of the involvement of renin‑angiotensin‑II‑aldo-
sterone system, transforming growth factor‑β signaling 
and activin-linked kinase 5 in the mechanisms of cardiac 
fibrosis, these pathways and the involved proteins are useful 
as therapeutic targets. However, because of the importance of 
these pathways in many other physiological functions, their 
therapeutic targeting needs to be approached with caution.
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1. Introduction

Cardiac fibrosis is a common histopathological occurrence 
with many types of heart diseases, including ischemic heart 
disease, inherited cardiomyopathy mutations, diabetes, and 
ageing and is associated with morbidity and mortality. While 
there are several mechanisms of myocardial fibrosis with acute 
and chronic etiologies, increased accumulation of extracellular 
matrix (ECM) that impacts cardiac function, is the underlying 
cause of fibrotic heart disease. Besides the disturbances in the 
mechanical functions of heart, fibrosis mediated scarring and 
electrical dysfunction often initiates ventricular arrhythmias, 
which in turn accelerates events towards heart failure and 
then sudden cardiac death (1‑3). Myocardial fibrosis presents 
one of the major challenges clinically not just to improve the 
survival rate and also the quality of life. Cardiac magnetic 
resonance (CMR) has been useful in measuring the extent of 
diffuse myocardial fibrosis, which is considered as a common 
pathological pathway that leads to the loss of myocardial 
function  (4,5). Inasmuch as fibrosis can be reversible  (6), 
its quantification using CMR can be useful in changing 
the way the cardiac fibrosis patients are monitored and 
treated (7). Myocardial fibrosis has been demonstrated in the 
pressure‑loaded left ventricle of infants and children with aortic 
stenosis and coarctation (8). Histological studies revealed right 
ventricular myofiber disorganization and interstitial fibrosis in 
patients with tetralogy of Fallot (9). Right ventricular fibrosis 
is not just found in late adult survivors, but actually is already 
present in infants suffering with this condition (10). Alterations 
in myocardial architecture associated with fibrotic remodeling 
lead to deranged heart function in different ways. Thus, in 
patients after tetralogy of Fallot repair, fibrous endocardial 
thickening of the right ventricular infundibulum is a predictor 
of poor right ventricular function  (5). On the other hand, 
myocardial fibrosis is associated with systolic ventricular 
dysfunction early in life in patients with tricuspid atresia (11).

Healthy myocardium consists of mostly cardiomyocytes 
(~75%), with the remaining partition, the interstitium regions 
comprising of fibroblasts, endothelial cells, and coronary 
arteries  (12). The fibroblasts participate in the continuous 
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formation and degradation of ECM, which is composed of 
types I and III collagen fibers, that act as the scaffold for the 
myocardium. Disturbances in the balance between collagen 
production and degradation in the ECM, that led to expansion 
of collagens, cause myocardial fibrosis. Such derangement 
occurs either due to the death of cardiomyocytes, or because 
of stimuli that trigger elevated collagen synthesis (13).

2. Types of cardiac fibrosis

There are multiple types of cardiac fibrosis depending upon 
location and causes. i) Reactive interstitial fibrosis (RIF): 
This is characterized by an increase in collagen synthesis 
without much effect on the viability of myocardium (14). RIF 
is considered as a type of myocardial remodeling and leads 
to an increased interstitial compartment volume without 
any associated changes in myocyte volume. This type of 
fibrosis is associated with diffused deposition of collagen 
and occurs in response to increased pressure and/or volume 
loads as in the cases of hypertension, aortic stenosis, chronic 
regurgitation, and shunt, ischemia, hyperglycemia, or ageing. 
RIF, which generally presents with a progressive chronic 
course, is possibly reversible by curtailing the damage causing 
stimuli or even by targeted therapy. ii) Replacement fibrosis: 
An increased type  I  collagen deposition and expansion of 
ECM, following cardiomyocyte death contributes to this 
type of fibrosis  (14). The elevated levels of collagen fibers 
replace the dead cardiomyocytes, but lack the contractile and 
electric functionality. Acute or chronic conditions that trigger 
cardiomyocyte death such as myocardial ischemia and events 
that damage the cardiomyocyte membrane integrity causing 
cell death, lead to diffused or focal replacement fibrosis. Unlike 
the RIF, in replacement fibrosis, the affected myocardium is 
not viable and thus is unable to recover contractile properties 
following revascularization or by blocking the damaging 
process. iii)  Infiltrative interstitial fibrosis: This fibrosis is 
seen in conditions such as amyloidosis or Anderson‑Fabry 
disease (14). Inflammatory cell infiltration was proposed to 
be an important factor underlying the interstitial fibrosis seen 
in right ventricles of systemic sclerosis‑associated pulmonary 
arterial hypertension (15). iv) Endomyocardial fibrosis (EMF): 
EMF affects children under age of 2 years in tropical and 
subtropical regions, and involves the apical endocardium of 
either or both right and left ventricles. It has been suggested 
that EMF as one of the primary causes of pediatric congestive 
heart failure, which is often overlooked clinically (16). There 
is no clear etiology for EMF, but hypereosinophilia, infections, 
autoimmunity, genetic factors and nutritional deficiencies may 
play a role. EMF has been described to present in three phases: 
Initial phase of acute carditis with febrile illness and with 
heart failure in severe cases; an intermediary subacute phase 
followed by a chronic burnt‑out phase (17). Notably, EMF is 
identified mostly at late stages of the disease and is not observed 
in the early phase of the disease. However, following diagnosis, 
there is rapid onset of associated complications such as atrial 
fibrillation, thromboembolism and progressive atrioventricular 
valve regurgitation. EMF patients display clinical features of 
heart failure, with enlargement of both atria with normally 
functioning ventricles during echocardiography (18). Currently, 
the approach to treat EMF patients is by surgery, involving 

targeted endocardial resection combined with valve repair or 
replacement, as there is no specific medical treatment (16).

3. Fibroblasts, myofibroblasts and fibrosis

Although the biology of cardiomyocyte and its apoptotic or 
necrotic death have been the focus of several investigations 
addressing cardiac diseases, increasing evidence suggests 
cardiac fibroblasts in the pathogenic mechanisms  (19,20). 
Fibroblasts, which are abundant in the normal myocardium, 
have a structural function by providing support (21). However, 
when these normally quiescent fibroblasts are activated, they 
transdifferentiate into myofibroblasts, which appear similar to 
a hybrid of fibroblast and smooth muscle cells. Myofibroblasts 
are able to effectively secrete and myofibroblasts are absent 
in healthy heart, they appear within days following a cardiac 
injury  (22). Myofibroblasts appear as spindle‑shaped and 
possess dendritic‑like processes  (23) that protrude from 
the cell body. Characteristic elongated and serrated nuclei, 
extensive areas of rough endoplasmic reticulum and irregular 
non‑sarcomeric myofibrillar structures are morphological 
features of myofibroblasts as observed in electron micrographs 
of pressure‑overloaded rat heart cross sections (24). Specific 
protein markers of myofibroblasts are mainly the ECM proteins, 
such as periostin, collagens I and III and fibronectin (25). 
Besides these ECM proteins, myofibroblasts also express 
smooth muscle α‑actin, SM22 and caldesmon  (26,27). Of 
note, most of the myofibroblasts present in the border zone and 
approximately half of those in the fibrotic lesions of damaged 
myocardium, express embryonic smooth muscle myosin and 
α‑SMA but not other smooth muscle markers, which is a major 
difference from smooth muscle cells (28).

4. Transformation of fibroblasts to myofibroblasts

It has been suggested that there are two stages in the 
transformation of myofibroblast: in the first stage, there is 
development of ‘proto‑myofibroblasts’ from fibroblasts, with 
the characteristic formation of cytoplasmic actin stress fibers 
and small adhesion complexes, which facilitate the migration 
of these cells to the injured myocardium, where these cells 
secrete collagens and fibronectin and assume physical 
orientation in order to align themselves with the primary stress 
axes of the injured tissue (25). In the second stage, which starts 
approximately 20‑30 h following cardiac injury, the cytokines 
and mechanical stress convert these proto‑myofibroblasts to 
mature myofibroblasts, which express α‑SMA, which forms 
the stress fiber network (25). With further maturation of the 
myofibroblast, besides the α‑SMA, cadherin‑11 is also secreted 
and adds to the strength of the stress fiber network (29) (Fig. 1). 
Normally myofibroblasts have a protective function in the 
heart by participating acutely in injury repair response. 
Although uninterrupted fibrosis can be dangerous to heart, the 
function of myofibroblasts is important to maintain functional 
myocardium following any stress insult. Thus, following 
myocardial infarction, when cardiomyocytes die over several 
days due to ischemia, myofibroblasts play a major role in the 
remodeling of a fibrotic scar in the affected myocardium, in 
order to prevent wall rupture (30,31). Myofibroblasts eventually 
disappear, through less understood mechanisms, in many 
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situations of wound healing. One possible mechanism is that 
following the formation of permanent scar and stabilization 
of cardiac injury, which may take up to 2 weeks, a significant 
proportion of the myofibroblasts undergo senescence  (32) 
and/or apoptosis (33). It has also been proposed that some 
of the myofibroblasts may dedifferentiate back to fibroblast 
phenotype, even though strong evidence for this is lacking 
in myocardium. Critical for the pathogenesis of cardiac 
fibrosis is the persistent presence of myofibroblasts in the 
myocardium, long after the resolution of stress insult (Fig. 1). 
This is generally either due to concurrent dysregulation of 
neuroendocrine factors or even mechanical stress, both of 
which lead to and aggravate chronic cardiac fibrosis and/or 
hypertrophic scarring (34,35). A common example for this 
is the intermittent ischemia, chronically affecting the heart, 
creating constant wound healing milieu, which leads to 
persistent activation and formation of the myofibroblasts and 
the eventual fibrosis (30). It has been proposed that the function 
of resident fibroblasts is to maintain normal tissue integrity 
and structure, whereas, acute injury or altered neuroendocrine 
signaling stimulates fibroblasts from other sources, which 

ultimately contribute to pathophysiologic fibrosis (36,37). A 
better understanding of the molecular mechanisms involved 
in cardiac fibrosis and the regulation of the players involved 
such as myofibroblast formation and activation, is essential for 
developing effective therapeutics.

5. Assessment of myocardial fibrosis

The most commonly employed techniques in patients with 
congenital heart disease to assess the fibrotic features of 
myocardium include stress echocardiography and CMR 
and also positron emission tomography (PET), which is the 
reference standard for monitoring myocardial viability. Stress 
echocardiography allows for the assessment of myocardial 
contractile reserve in patients with adequate acoustic windows. 
Because of this, the main limitation of stress echocardiography 
is decreased diagnostic accuracy in patients with poor acoustic 
windows (38). PET scan is a nuclear scintigraphy and employs 
13N‑labeled ammonia, which a marker for coronary perfusion 
and 18F‑fluorodeoxyglucose, a glucose surrogate, for monitoring 
myocardial metabolism. A mismatch between the imaging of 
coronary perfusion and metabolism is indicative of nonviable 
tissue with the possibility of replacement fibrosis. However, PET 
scanner availability is limited and its usage requires an on‑site 
cyclotron, and PET is not sensitive enough to detect interstitial 
fibrosis (39). CMR is the major technique used to collect data 
on cardiac fibrosis. CMR is able to provide much better spatial 
resolution and visualization of all myocardial segments, in the 
absence of any contaminating/interfering metallic particles, and 

Figure 1. Insult and injury to heart lead to cardiac fibrosis. Several insults 
such as pressure and volume loading and even certain genetic abnormali-
ties lead to the activation of different signaling pathways such as RAAS, 
catecholamines and natriuretic peptides. These pathways cause activa-
tion/transformation of cardiac fibroblasts to myofibroblasts, which participate 
in elevated ECM deposition and myocardial fibrosis. Fibrosis disturbance 
causes diastolic and systolic function and causes arrhythmia, all of which 
are clinical features of heart failure. RAAS, renin‑angiotensin‑aldosterone 
system; ECM, extracellular matrix.

Figure 2. Signaling pathways involved in cardiac fibrosis and possible 
therapeutic targets. Angiotensin‑II induces TGF‑β, CCN2, and ET‑1 directly; 
TGF‑β, in turn can induce ET‑1 and CCN2; ET‑1 can also induce CCN2. 
There is positive feedback between TGF‑β and angiotensin‑II through 
the induction of angiotensin receptor. TGF‑β signaling involves Smads3 
or ‑4. All these signaling components promote fibroblast activation to 
myofibroblast, which plays a key role in fibrosis through the secretion of 
extracellular matrix proteins and α‑SMA. These signaling components make 
potential therapeutic targets (indicated with red X) for preventing cardiac 
fibrosis. TGF‑β, transforming growth factor‑β; ET‑1, endothelin‑1.
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this technique is used extensively for the quantitative assessment 
of ventricular size and systolic function. There are two major 
CMR approaches for assessing myocardial fibrosis: Late 
gadolinium enhancement (LGE) imaging and T1 mapping/ECV 
fraction calculation. LGE identifies areas of discrete replacement 
fibrosis, with high sensitivity and specificity (13).

6. Therapeutic approaches to treat cardiac fibrosis

In the normal healthy heart, collagen network, which 
contributes to ECM and maintains myocardial architecture 
as well as chamber geometry, also provides tensile strength and 
elasticity, the necessary factors for normal systolic and diastolic 
function of ventricles (40). Several local and hormonal systems, 
such as renin‑angiotensin‑aldosterone system (RAAS), 
regulate the dynamic collagen turnover, and disturbances 
in these systems lead to an imbalance between collagen 
synthesis and degradation with the resultant accumulation of 
collagen, the underlying factor of cardiac fibrosis, followed by 
deranged myocardial architecture (41). Thus it has been shown 
that pharmacological intervention of RAAS could prevent 
this process of fibrosis and at times even reverse the damage 
caused (42). Thus, aldosterone antagonism with spironolactone 
has been found to lower collagen levels in hearts, ex vivo (43), 
improve diastolic function (44), decrease left ventricular size 
and ejection fraction (45), and also mortality (Fig. 2) (46).

There is ample evidence indicating increased expression 
of transforming growth factor‑β (TGF‑β) in response to 
injury and TGF‑β is known to play an important role during 
fibroblast activation and myofibroblast differentiation, and 
also fibrosis  (Fig. 2) (47,48). TGF‑β acts via binding to its 
cell surface receptor, activin linked kinase 5 (ALK5), which 
phosphorylates Smad2 and ‑3. Phospho‑Smad2 and ‑3 bind 
to Smad4, which translocates into the nucleus, leading to the 
activation of target gene transcription. It has been shown that 
inhibitors of ALK5 signaling block certain steps of fibrosis 
process and thus there is a potential that ALK5 can be a thera-
peutic target for cardiac fibrosis (49). Even though neutralizing 
antibodies against TGF‑β have been tried in some studies (50), 
because of involvement of TGF‑β in several different cellular 
functions, such approach proved to be not appropriate (51) and 
ALK5 antagonists are much better choice (52). Angiotensin II 
has been shown to function in concert with TGF‑β in the 
signaling pathways that lead to cardiac fibrosis  (53,54). 
Blockade of angiotensin receptor with inhibitors like losartan 
is effective in decreasing cardiac fibrosis in animal models and 
also in humans and this approach of angiotensin‑II inhibitors 
seems to be better than blocking TGF‑β (55).

Similarly, antagonism of endothelin‑1, which induces ECM 
production and myofibroblast transformation (56) was found 
to reduce cardiac fibrosis. Other possible therapeutic targets 
include platelet derived growth factor and connective tissue 
growth factor, CCN2, but further work is needed to ascertain 
this possibility (57).

7. Conclusion

Cardiac fibrosis, which is seen in many types of heart diseases, 
involves increased accumulation of ECM, mediated by the 
activated myofibroblasts, arising from cardiac fibroblasts. 

Myocardial fibrosis include stress echocardiography and 
CMR and also PET. Renin‑angiotensin‑II‑aldosterone system, 
TGF‑β signaling and ALK5 have been found useful as 
therapeutic targets. However, because of the importance of 
these pathways in many other physiological functions, their 
therapeutic targeting needs to be approached with caution.
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