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Abstract. Tumor suppressor gene promoter CpG island meth-
ylation is a well‑recognized mechanism in cancer pathogenesis, 
but its role in multiple myeloma (MM) is controversial. The 
present study investigated the methylation status and expres-
sion of P16, suppressor of cytokine signaling 1 (SOCS‑1), P73, 
E‑cadherin and Src homology region 2 domain‑containing 
phosphatase 1 (SHP‑1), as well as global methylation in 
patients with MM during active disease and remission. Bone 
marrow samples were obtained from 43 patients at the Multiple 
Myeloma Clinic, Instituto Nacional de Ciencias Médicas y 
Nutrición Salvador Zubirán (Mexico City, Mexico) during 
active disease and remission. Methylation‑specific polymerase 
chain reaction and ELISA were performed on bisulfite‑treated 
or untreated DNA to determine promoter‑specific or genomic 
methylation, respectively. Gene expression was measured using 
reverse‑transcription polymerase chain reaction. The results 
indicated that SOCS‑1 methylation occurred more frequently 
during active disease than remission [29 vs. 3.2% (P=0.021)] 
and was associated with more advanced forms of the disease 
[international staging system (ISS) 3, 16.67% vs. ISS 1, 8.3% 
(P=0.037)]. SHP‑1 methylation during active disease was 
associated with a lower probability of survival at 39‑month 
follow up (median), 52.5 vs. 87.5% (P=0.025). The percentage 
of methylation was associated with active disease at remission, 

but this was not significant. Global hypomethylation at remis-
sion was a negative predictor factor for overall survival (OS). 
The results indicated that methylated P16, SOCS‑1 and SHP‑1 
were associated with clinical variables of poor prognosis in 
MM, likewise the persistence of global hypomethylation at 
remission. The negative impact on OS of global hypometh-
ylation at remission must be confirmed in a larger sample. 
Future studies are necessary to investigate whether patients 
with global hypermethylation at remission should receive 
more aggressive treatments to improve their OS.

Introduction

Multiple myeloma (MM) is a malignant disease of complex 
etiology, characterized by the abnormal proliferation of plasma 
cells with a concomitant increase of monoclonal immunoglob-
ulin in serum or urine, and immune deficiency. Patients with 
MM present with anemia, hypercalcemia, renal impairment 
and/or bone disease (1,2). Promoter hypermethylation as the 
mechanism of transcriptional silencing of a number of genes 
has been demonstrated in samples from the bone marrow and 
peripheral blood of patients with MM and in MM cell lines, 
although the published results and their interpretation have 
been inconsistent (3,4). The functional suppression of genes 
achieved by hypermethylation of CpG‑enriched sites, known 
as CpG islands, at the promoters and first exons is a mechanism 
associated with the development of cancer in mammals (5‑7). 
CpG islands are found in ~40% of mammalian promoters, 
particularly housekeeping and tumor suppressor genes (8). 
Hypermethylation, which involves the enzymatic addition 
of a methyl group to the fifth position of the deoxycytidine 
residue in each affected CpG dinucleotide (6,7,9), leads to 
chromatin remodeling. This results in gene silencing and has 
been associated with cancer development through the inactiva-
tion of tumor suppressor genes (10‑16). Unlike DNA sequence 
alterations, epigenetic modifications, such as DNA meth-
ylation, are dynamic and reversible with proven therapeutic 
implications (17‑19). Furthermore, this method of deregulating 
functional pathways is more straightforward and therefore 
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more likely to be effective than generating mutations or chro-
mosomal aberrations (17). The genes most frequently reported 
as being hypermethylated in MM include the cell cycle inhibi-
tors P15 and P16 (4,20,21), suppressor of cytokine signaling 1 
(SOCS‑1) (22), E‑cadherin, which promotes cellular adhesion, 
and the tumor suppressor genes P73 and Src homology region 
2 domain‑containing phosphatase 1 (SHP‑1) (23). The expres-
sion of specific genes has been restored in vitro through the 
utilization of demethylating agents, including 5‑aza‑2'‑deox-
ycytidine, 5‑azacitidine and zelaburine (24,25). However, an 
alternate epigenetic mechanism for promoting tumorigenesis 
is possible. Global loss of DNA methylation occurs in genomic 
regions containing repetitive elements and retrotranposons, 
resulting in chromosomal instability, activation of transpos-
able elements and transcriptional activation of oncogenes (15). 
The aims of the current study were to determine the promoter 
methylation status and expression levels of the genes P16, 
SOCS‑1, E‑cadherin, P73 and SHP‑1 in patients with MM 
at two different phases of the disease, active and remission. 
In addition, the present study aimed to determine the status 
of global DNA methylation and its association with clinical 
outcome in these patients.

Materials and methods

Patients. A total of 43  patients, including 20  males and 
23 females (age range, 36‑87 years) were recruited from the 
Multiple Myeloma Clinic at the Instituto Nacional de Ciencias 
Médicas y Nutrición Salvador Zubirán (Mexico City, Mexico) 
between November 2006 and December 2012. At the time 
of analysis, median follow‑up time was 39 months (range, 
5‑89  months). Bone marrow samples were obtained from 
each patient at two different phases of the disease: Active 
(diagnosis or relapse) and remission; therefore, a total of 
86 samples were collected. Patients were included if they had 
a symptomatic MM diagnosis according to the International 
Myeloma Working Group (IMWG) criteria (26). Patients were 
excluded if they had a history of previous malignant disease, 
a concomitant malignant disease or were currently prescribed 
any demethylating agents. The response criteria used were the 
standard IMWG Uniform Response Criteria (26). The present 
study was approved by the Ethics Committee of the Instituto 
Nacional de Ciencias Médicas y Nutrición Salvador Zubirán 
(Mexico City, Mexico) and was conducted in accordance with 
the guidelines stipulated in the Declaration of Helsinki. All 
enrolled patients signed an informed consent form.

Cluster of differentiation (CD) 138+ purified plasma cells 
(PCs). PCs were separated from bone marrow aspirate. 
Centrifugation on a ficoll gradient (27) was used to isolate 
total lymphocytes from the sample. Samples were centrifuged 
at 322 x g for 30 min at room temperature. The lymphocytes 
were then incubated on ice for 30 min with CD138 magnetic 
beads (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). 
Cells were separated on a LS+ MACs column (Miltenyi Biotec 
GmbH) following incubation and eluted according to the 
manufacturer's protocol.

Methylation‑specific polymerase chain reaction (MS‑PCR). 
Genomic DNA was extracted from PCs using the DNeasy 

Blood & Tissue kit (Qiagen, Benelux B.V., Venlo, The 
Netherlands) according to the supplier's protocol. Extracted 
DNA was subjected to sodium bisulfite modification using 
an EpiTect Bisulfite Modification kit (Qiagen, Benelux, B.V.) 
according to the manufacturer's instructions. For each reac-
tion, 1.5 µg DNA was used. CpG methylated Jurkat genomic 
DNA (New England BioLabs Ltd., Ipswich, MA, USA) was 
used as the positive control and 5‑Aza‑dC‑treated Jurkat 
Genomic DNA (New England BioLabs, Ltd.) was used as the 
negative control. Bisulfite‑modified DNA was amplified using 
primer sets specific for unmethylated (U) and methylated (M) 
sequences in each gene. The MS‑PCR was carried out in a 
final volume of 15 µl using 15 ng of bisulfite‑modified DNA 
and 10 pmol forward and reverse primers. The cycling condi-
tions were: 95˚C for 30 sec, 30 sec at the annealing temperature 
(Table I) and 72˚C for 45 sec for 40 cycles.

Primer sequences (Integrated DNA Technologies, Inc., 
Coralville, IA, USA) are presented in Table I. The resulting 
MS‑PCR products underwent electrophoresis on 3% agarose 
gels and were visualized with ethidium bromide staining. 
Each PCR reaction contained a water blank, a positive control 
and a negative control. A visible PCR product using the 
U set primers indicated the presence of unmethylated gene 
promoters and the presence of product using M set primers 
indicated the presence of promoter methylation. Samples that 
revealed no PCR product in either the unmethylated or methyl-
ated reactions indicated that an insufficient quantity of DNA 
was present in the sample following processing and sodium 
bisulfite modification. Each of the PCR amplifications was 
repeated at least once to confirm the result. The sensitivity 
of MS‑PCR to detect methylated alleles in a background of 
unmethylated alleles was 1:1,000  (28). The percentage of 
methylation status for each gene at disease activity and remis-
sion was calculated.

RNA preparation and reverse‑transcription PCR (RT‑PCR). 
RNA was isolated from CD 138‑enriched bone marrow cells 
using the RNeasy Mini kit (Qiagen, Benelux, B.V.) according 
to the manufacturer protocol. For cDNA synthesis, 1  µg 
RNA was reverse transcribed in a 20‑µl volume reaction 
mixture, using a High‑Capacity cDNA Reverse Transcription 
kit (Applied Biosystems; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Primer sequences and conditions were 
as described in Table II. Each reaction was performed with 
2 µl cDNA template in a 15 µl reaction mixture containing 
7.5 µl 2X HotStarTaq Plus PCR Master Mix (Qiagen, Benelux, 
B.V.) and 0.2 µM each primer. The cycling conditions were 
95˚C for 30 sec; 30 sec at the annealing temperature (Table II) 
and 72˚C at 45 sec for 40 cycles. The presence or absence of 
the amplified sequence was visualized using 3% agarose gel 
electrophoresis stained with ethidium bromide and examined 
under UV light. β‑actin mRNA expression in each sample 
demonstrated the integrity of the target transcript of interest. 
PCR performed with DNA of the same patient or in the 
absence of cDNA, as controls, yielded negative results.

Global methylation. Global DNA methylation levels were 
measured using an ELISA kit (Methylamp Global DNA 
Methylation Quantification Ultra kit; P‑1014B‑96; Epigentek, 
Inc., Farmingdale, NY, USA). A total of 1  µl DNA at a 
concentration of 100‑ng/ml was added to strip wells that were 
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specifically treated to have a high DNA affinity. Samples 
were incubated at 37˚C for 90 min followed by the introduc-
tion of capture and detection monoclonal antibodies against 

5‑methylcytosine (5‑mC) and 5‑hydroxymethylcytosine, 
which were provided with the kit. The absorbance was read at 
450 nm. Paired samples (active/remission) from each patient 

Table I. Methylation specific primer sequences and conditions.

Gene	 Primer sequences	 Annealing temp, ˚C	 Size, bp

E‑cadh
  M	 For 5'‑TTAGGTTAGAGGGTTATCGCGT‑3'	 56.3	 116
	 Rev 5'‑TAACTAAAAATTCACCTACCGAC‑3'		
  U	 For 5'‑TAATTTTAGGTTAGAGGGTTATTGT‑3'	 56.3	   97
	 Rev 5'‑CACAACCAATCAACAACACA‑3'		
P73
  M	 For 5'‑TTAGGTTAGTCGGGACGGAC‑3'	 56.4	 204
 	 Rev 5'‑CCGAAAAAACCCCTATATCG‑3'		
  U	 For 5'‑AGGTTAGTTGGGATGGATGT‑3'	 56.4	 206
	 Rev 5'‑AACTCCAAAAAAACCCCTATATCAC‑3'		
P16INK4A
  M	 For 5'‑TTGGTAGTTAGGAAGGTTGTATCGC‑3'	 60	 126
	 Rev 5'‑TCCCTACTCCCAACCGCG‑3'		
  U	 For 5'‑GGTAGTTAGGAAGGTTGTATTGT‑3'	 60	 124
	 Rev 5'‑TCCCTACTCCCAACCACA‑3'		
SHP‑1
  M	 For 5'‑TTTTGTTGATGTTTATTTCGACGT‑3'	 56	 159
	 Rev 5'‑GAAAATCCTCACACCTTACGAA‑3'		
  U	 For 5'‑GTTTTGTTGATGTTTATTTTGATGT‑3'	 56	 162
	 Rev 5'‑ACCAAAAATCCTCACACCTTACA‑3'		
SOCS‑1
  M	 For 5'‑GTTCGGTTTCGTTTAGTTTTCGAGG‑3'	 62	 139
	 Rev 5'‑ACCCCGACCGACCGCGATCTC‑3'		
  U	 For 5'‑GTTTGGTTTTGTTTAGTTTTTGAGG‑3'	 62	 139
	 Rev 5'‑ACCCCAACCAACCACAATCTC‑3'		
 
E‑cadh, E‑cadherin; P16INK4A, P16; SHP‑1, Src homology region 2 domain‑containing phosphatase‑1; SOCS‑1, suppressor of cytokine 
signaling; M, Methylated; U, Unmethylated.
 

Table II. Reverse transcription polymerase chain reaction primer sequences and conditions.

Gene	 Primer sequences	 Annealing Temp, ˚C	 Size, bp
 
β‑actin	 For 5'‑GCTCGTCGTCGACAACGGCTC‑3'	 60.2	 353
	 Rev 5'‑CAAACATGATCTGGGTCATCTTCTC‑3'		
E‑cadh	 For 5'‑GGTCTGTCATGGAAGGTGCTC‑3'	 61.5	 124
	 Rev 5'‑CAGGATCTTGGCTGAGGATGG‑3'		
P73	 For 5'‑CCACGAGCCTACCATGCTTTAC‑3'	 56.5	 314
	 Rev 5'‑GGCACTGCTGAGCAAATTGA‑3'		
 P16INK4A	 For 5'‑GGGGGCACCAGAGGCAGT‑3'	 63.1	 159
	 Rev 5'‑GGTTGTGGCGGGGGCAGTT‑3'		
SHP‑1	 For 5'‑CGAGGTGTCCACGGTAGCTT‑3'	 61.0	 139
	 Rev 5'‑CCCCTCCATACAGGTCATAGAAAT‑3'		
SOCS‑1	 For 5'‑CAGGTGGCAGCCGACAATGC‑3'	 64.3	   52
	 Rev 5'‑CCGCCGTCGGGGCTCTG‑3'		
 
E‑cadh, E‑cadherin; P16INK4A, P16; SHP‑1, Src homology region 2 domain‑containing phosphatase‑1; SOCS‑1, suppressor of cytokine signaling.
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were analyzed simultaneously on the same plate in neighboring 
positions to decrease the possibility of experimental variance 
and each sample was run in duplicate. A standard curve was 
generated from the plot of optical density (OD) values vs. 
the quantity of positive control [methylated polynucleotide 
containing 50% 5‑mC at each concentration point] using 
Excel 2013 version 15.0 (Microsoft Corporation, Redmond, 
WA, USA) and used to quantify the percentage of methylated 
DNA 5‑mC in each total DNA sample. Results were consid-
ered to be hypomethylated if they were below the median 
for all samples. The percentage of DNA hypomethylation in 
disease activity and remission was calculated. The associa-
tions of global methylation between groups were calculated by 
Spearman's correlation coefficient.

Statistical analysis. Continuous variables were presented as 
medians and ranges; categorical variables were presented as 
frequencies and proportions. Fisher's exact test was used to 
estimate statistical significance between proportions. The mean 
was analyzed by independent‑sample t‑test. Gene methylation 
status and expression were compared for the same subject in 
active and remission states using the McNemar paired χ2 test. 
In addition, continuous variables measured in active vs. 

remission or with vs. without methylation were compared with 
the paired t‑test. Survival analysis was performed using the 
Kaplan‑Meier procedure. Survival‑related prognostic factors 
were analyzed with the Cox proportional hazards regression 
model. Associations of global methylation between groups 
were evaluated by Spearman's correlation coefficient. OS was 
calculated from the time of diagnosis until mortality or the 
last date in which it was ascertained that the patient was alive. 
Progression‑free survival (PFS) was calculated from the time 
of treatment initiation to the date of progression or relapse. 
P<0.05 was considered to indicate a statistically significant 
difference. Data were analyzed using SPSS version 21.0 soft-
ware (IBM SPSS, Inc., Armonk, NY, USA).

Results

Patient demographics and clinical features. Of the 43 patients 
enrolled in the present study, 28 (65%) were diagnosed 
when the first sample was taken. At the time of the analysis, 
median follow‑up time was 39 months (range; 5‑89 months). 
Demographic and clinical characteristics were similar to other 
reported MM series (29,30), with the exception of a slight 
increase in the frequency of the light chain myeloma sub‑type. 
Most patients at diagnosis were at an advanced stage of the 
disease, with 72.5% in categories II and III of the International 
Staging System (ISS; Table III) (31).

Treatment and clinical response. Various treatments were 
received by the patients included in the current study. Of 
the 43 patients, 20 (46.5%) received a combination based 
on alkylating agents [0.25  mg/kg melphalan (Alkeran; 
GlaxoSmithKline plc, Brentford, UK) and 100 mg pred-
nisone daily for four days every four weeks, or 900 mg/
m2 cyclophosphamide intravenously on day 1 and 40 mg 
dexamethasone orally on days 1‑4, 9‑12 and 17‑20 every 
4 weeks], 12 (27.9%) received a combination that included 
thalidomide [0.25 mg/kg melphalan and 100 mg prednisone 
daily for four days every four weeks plus 100  mg daily 
thalidomide (Talizer; Serral Laboratories; SOMAR, Mexico 
City, Mexico) or 100 mg thalidomide daily plus 40 mg dexa-
methasone on days 1‑4, 9‑12 and 17‑20 every four weeks), 
7 (16.3%) received a combination with bortezomib [1.5 mg/
m2 bortezomib (Velcade; Janssen Pharmaceutica, Beerse, 
Belgium) subcutaneously on days 1, 8, 15 and 22, 300 mg/
m2 cyclophosphamide intravenously on days 1, 8, 15 and 22, 
and 40 mg dexamethasone orally on days 1‑4, 9‑12 and 17‑20 
for two cycles and 40 mg on days 1, 8, 15 and 22 thereafter], 
2 (4.7%) received an infusional polychemotherapy (400 mg/m2 
cyclophosphamide daily, 15 mg/m2 cisplatin daily and 40 mg/
m2 etoposide daily as a 24 h infusion, with all three drugs 
administered on days 1‑4; plus 40 mg dexamethasone intra-
venously daily on days 1‑4) and 2 (4.7%) did not receive any 
treatment. The clinical responses were as follows: 9 patients 
(20.9%) achieved complete response (alkylating agents, n=4; 
thalidomide, n=5), 16 (37.2%) achieved partial response 
(alkylating agents, n=7; thalidomide, n=5; bortezomib, n=3; 
infusional polychemotherapy, n=1), 9 (20.9%) achieved very 
good partial response (alkylating agents, n=4; thalidomide, 
n=2; bortezomib, n=2; infusional polychemotherapy, n=1), 
3 (7%) exhibited stable disease (alkylating agents, n=2; 

Table III. Baseline characteristics of the patients.

Characteristics	 Descriptive statistics

Age, years: Median (range) 	 60 (36‑87)
Male gender: no. (%)	 20 (46.5)
Durie‑Salmon Stage: no. (%)	
  I	 3 (7.1)
  II	 4 (9.5)
  III	 35 (83.3)
ISS: no. (%)	
  I	 11 (27.5)
  II	 13 (32.5)
  III	 16 (40)
Type of myeloma: no. (%)	
  IgG	 16 (47.1)
  IgA	 10 (29.4)
  Light chain	 7 (20.6)
  Biclonal	 1 (2.9)
Hemoglobin	
  Median (range) g/dl	 11.5 (6.2‑15.6)
Creatinine	
  Median (range) mg/dl	 9.4 (4.8‑8.56)
Calcium	
  Median (range) mg/dl	 9.1 (9‑13.6)
Lytic lesions: no. (%)	 32 (74.4)
Plasmacytoma: no. (%)	 18 (41.9)
  Osseous: no. (%)	 9 (21.4)
  Extramedullar: no. (%)	 9 (20.9) 

ISS, international staging system; IgG, immunoglobulin G; IgA, 
immunoglobulin A.
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bortezomib, n=1), and 4 (9.3%) suffered progressive disease 
(alkylating agents, n=3; bortezomib, n=1). Clinical response 
was not evaluated in the two patients (4.7%) who did not 
receive treatment.

Methylation status of the promoters and expression of the 
genes P16, SOCS‑1, E‑cadherin, p73 and SHP‑1. Methylation 
status of the promoters and expression of the genes being 
assessed during active disease and remission were compared. 
The percentage of promoter methylation for each gene at the 
two time points is presented in Fig. 1. The behavior of both 
measures at these two different stages of the disease was 
similar with the exception of the methylation status of SOCS‑1. 
For 9 patients (29%), SOCS‑1 was methylated during active 
disease but not in remission, and in 1 patient (3.2%) SOCS‑1 
was methylated in remission but not during active disease 
(P=0.021). The methylation status of the promoters of the 
genes was not correlated with their expression (P>0.05). The 
number of samples tested and the percentage of methylation 
for each gene are indicated in Table IV.

Association of clinical variables with gene methylation or 
expression status. Amyloidosis was present in 4  patients 
(16.67%) without P16 expression during the active disease 
phase, but in none of the patients expressing P16 during the 
active phase (P=0.031). Differences in promoter methylation 
status of P16 and SOCS‑1 were observed with regard to ISS 
grade. The percentage of patients with methylated P16 at remis-
sion increased according to severity grade: ISS I, 0 patients 
(0%); ISS II, 5 patients (20%); and ISS III, 6 patients (24%) 
(P=0.027). In addition, the percentage of patients exhibiting 
methylated SOCS‑1 during advanced stage active disease, 
ISS III, was 6 patients (16.67%), double that of those at an early 
stage: ISS I, 3 patients (8.33%; P=0.037). The probability of 
survival until the time of data analysis was associated with 
the methylation status of P16: Unmethylated P16, 8 patients 
(29.6%); and methylated P16, 2 patients (7.41%; P=0.058). The 
median OS of the group with methylated and unmethylated 
P16 was 23 vs. 34 months, respectively (P=0.04), and the 
median PFS was 21 vs. 36 months, respectively (P=0.003). 
SHP‑1 methylation during active disease was associated with 

a lower probability of survival at 39‑month follow up, with a 
median of 52.5 vs. 87.5% (P=0.025). Methylation status did 
not affect gene expression.

Global methylation. A Global methylation assay was 
conducted in patients with available DNA once the MS‑PCR 
assays were concluded (n=15). The mean percentages of 
global methylation during active disease and remission were 
14.26 and 13.83% respectively, with standard deviations of 
21.48 [95% confidence interval (CI), 2.814‑25.713] and 10.72 
(95% CI, 8.115‑19.549), respectively, which were not signifi-
cantly different. The median of global methylation was 8.78% 
(range; 0.41‑88.34%; Fig. 2). There was a trend towards a 
moderate positive correlation between both variables, with a 
Spearman's relation coefficient of 0.494 (P=0.051).

Patient survival measures. The median OS for all patients was 
53 months (95% CI, 43.55‑62.44; Fig. 3A). Following univar-
iate analysis, the variables that were identified as relevant for 
OS included the presence of hypercalcemia, lytic bone lesions 
and global hypomethylation at remission (Table V). Following 

Table IV. Percentage of patients with methylated genes and 
expressed in activity and remission. 

	 Methylated	 Methylated	 Expressed	 Expressed
Gene	 in activity	 in remission	 in activity	 in remission

	   n (%)	   n (%)	 n (%)	 n (%)
P16	 17 (53)	 12 (44)	 13 (54)	 8 (42)
P73	 13 (33)	   5 (16)	 8 (38)	 1 (6)
E‑cadh	 36 (92)	 29 (91)	 9 (60)	 10 (71)
SOCS‑1	 21 (55)	 10 (32)	 21 (100)	 18 (100)
SHP‑1	 24 (60)	 25 (71)	 12 (80)	 10 (71) 

n, patient number; E‑cadh, E‑cadherin; SOCS‑1, suppressor of cyto-
kine signaling; SHP‑1, Src homology region 2 domain‑containing 
phosphatase‑1.
 

Figure 1. Promoter methylation during active disease and remission. The 
percentage of promoter methylation for each gene at the two time points, 
active disease (black) and remission (grey), is indicated. SOCS‑1, suppressor 
of cytokine signaling; SHP‑1, Src homology region 2 domain‑containing 
phosphatase‑1; E‑cadh, E‑cadherin. *P<0.05.

Figure 2. Global hypomethylation during active disease and remission. The 
percentage of patients with hypomethylation levels at active disease (black) 
and remission (grey) is indicated.
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multivariate analysis for OS, global hypomethylation at remis-
sion remained significant (P=0.013; Fig. 3B). The median PFS 
was 19 months (95% CI, 9.94‑28.06). Following univariate 
analysis, the variables identified to be relevant for PFS were 
hemoglobin, lactate dehydrogenase, presence of lytic bone 
lesions and global hypomethylation at remission. However, 
multivariate analysis for PFS indicated that none of the vari-
ables were significant (Table V).

Discussion

To the best of our knowledge, the present study is the first 
cohort of patients with MM utilized to study regional and 
global methylation during the active and remission disease 
phases. In the present study, genes previously reported to 
exhibit hypermethylation in MM were evaluated  (32,33). 
Overall, the results indicated that the methylation status of the 
promoters for the genes tested had no impact on the expression 

of these genes. However, the MS‑PCR protocol utilized is only 
capable of analyzing two CpG sites at the 3' ends of each of 
the two PCR primers, with the risk of involving noncrucial 
regions of the promoter essential for transcription (34). The 
methylation of different regions in a promoter have distinct 
potentials for suppressing promoter activity; therefore, certain 
sites may be more informative at predicting expression changes 
through direct functional interaction (35). SOCS‑1 methyla-
tion was notably higher during active disease than at remission 
(29 vs. 3.2%). A higher proportion of SOCS‑1 methylation was 
observed in patients diagnosed with advanced stage MM at 
presentation (ISS III). By contrast, Depil et al (36) studied the 
methylation status of SOCS‑1 in 51 untreated MM patients 
and identified hypermethylation of SOCS‑1 in 74.5% of 
patients, with no influence on the clinical staging. SOCS‑1 is 
able to suppress the signaling of different cytokines including 
interleukin 6, an important B‑cell growth factor essential for 
differentiation into plasma cells and the survival rate of MM 

Table V. Univariate and multivariate analyses of variables associated with overall and progression free survival.

	 Univariate	 Multivariate
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable	 HR	 95% CI	 P‑value	 HR	 95% CI	 P‑value

Overall survival
  Hypercalcemia	 1.322	 1.020‑1.715	 0.035a	 0.952	 0.593‑1.528	 0.838
  Lytic bone lesions	 3.285	 1.135‑9.512	 0.028a	 5.992	 0.837‑42.890	 0.075
  Global hypomethylation at remission	 3.866	 1.117‑13.374	 0.033a	 12.873	 1.730‑95.781	 0.013a

Progression free survival
  Hemoglobin	 0.837	 0.722‑0.970	 0.018a	 0.995	 0.563‑1.756	 0.985
  Lactate dehydrogenase	 1.006	 1.001‑1.010	 0.013a	 1.017	 0.961‑1.077	 0.557
  Lytic bone lesions	 4.795	 1.373‑16.753	 0.014a	 0.667	 0.044‑9.999	 0.769
  Global hypomethylation at remission	 9.066	 1.692‑48.572	 0.010a	 7.258	 0.255‑206.821	 0.246

aP<0.05; HR, hazards ratio; CI, confidence interval. 

Figure 3. OS and OS associated with global methylation status at remission. (A) OS of the 43 patients. Median OS time was 53 months (95% confidence 
interval, 43.55‑62.44). (B) OS time according to global methylation status in remission. OS appeared to be worse when the status was hypomethylated (median, 
44 months; 95% confidence interval, 31.70‑56.29) vs. not hypomethylated (median not reached >100 months; P=0.012). OS, overall survival.
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cells (37,38). It has been identified that there is an association 
between hypermethylation of SOCS‑1 and the pathogenesis 
of different tumors, including chronic myeloid leukemia, 
human melanoma and gastric cancer  (39‑41). A previous 
study by Galm  et  al  (22), demonstrated that in patients 
with MM exhibiting active disease, 62% exhibited SOCS‑1 
hypermethylation. By contrast, this frequency was markedly 
lower in patients with lymphoma (3.2%). Additionally, no 
methylation of SOCS‑1 was observed in normal peripheral 
blood mononuclear cells or nonmalignant bone marrow cells. 
Furthermore, the present study identified that P16 hypermeth-
ylation at remission occurred more frequently in patients with 
advanced disease (higher ISS grade) and indicated a trend 
toward patient mortality by the study cut‑off point. Both 
results point to more aggressive behavior of the disease in 
patients with P16 hypermethylation. P16, an inhibitor of cyclin 
dependent kinase 4, negatively regulates cell proliferation, 
which suggests that it exerts tumor suppressor behavior. A 
previous study by Mateos et al (41) assessed the methylation 
status of P16 in a cohort of patients with MM and revealed 
that hypermethylation of P16 was correlated with deleterious 
prognosis features including high β2‑microglobulin and high 
C‑reactive protein values, advanced stage of disease according 
to the Durie‑Salmon staging system and a high proliferation 
rate of plasma cells. The same study showed that none of the 
patients at stage I (Durie‑Salmon) exhibited hypermethylation 
of P16 (41). The present study suggested that P16 hypermethyl-
ation negatively affected OS and PFS. However, when the high 
proliferation rate of PCs was incorporated into the multivariate 
analysis, P16 hypermethylation lost its predictive value of both 
endpoints, implying an association between these variables. 
Guillerm et al (42) reported an association between methylated 
P16 and OS (P=0.035; relative risk, 2.86, 1.076‑7.60) and high 
β2‑microglobulin (P=0.003; relative risk, 1.18, 1.08‑1.3). By 
contrast, Gonzalez‑Paz et al (3) did not identify any clinical or 
biological differences in patients with MM according to P16 
methylation status with the exception of a higher frequency 
of P17 deletion in the P16 hypermethylated group (65% vs. 
35%, P=0.003) and a trend in PFS in favor of the unmethylated 
group (median 30.2 vs. 27.4 months, P=0.71).

Ribas et al  (43) failed to detect a correlation between 
P16 methylation and prognostic factors. P16 hypermethyl-
ation has been associated with progression of the disease, 
as the frequency of this phenomena increases as the disease 
progresses through its different stages of evolution, beginning 
at 0% at the preclinical phase or monoclonal gammopathy 
of undetermined significance, at 0% for the asymptomatic 
phase, and to 41.8% for symptomatic MM and 80% for 
plasma cell leukemia (3,4,20,21). In the current study, the 
probability of patients succumbing prior to the time of 
analysis was 56.2% (7 patients) if SHP‑1 was not methyl-
ated during the active disease, whereas 12.5% (5 patients) 
of patients remained alive if SHP‑1 was methylated at this 
point (P=0.025). SHP‑1 encodes a member of the protein 
tyrosine phosphatase (PTP) family (44). PTPs oppose the 
effects of protein tyrosine kinases and maintain the overall 
homeostasis of protein tyrosine phosphorylation. It has been 
identified that PTPs dephosphorylate and thus inactivate 
Janus kinase/Signal transducer and activator of transcrip-
tion 3 (STAT3) signaling. They regulate a variety of cellular 

processes including cell growth, differentiation, oncogenic 
transformation and the mitotic cycle. SHP‑1 is expressed in 
normal lymphoid cells, but is lost in a number of types of 
hematologic malignancies due to epigenetic silencing (45,46). 
It has been demonstrated that loss of SHP‑1 directly contrib-
utes to the constitutive activation of STAT3 in MM, chronic 
myeloid leukemia and anaplastic lymphoma kinase‑positive 
anaplastic large cell lymphoma (47). In the current study, the 
median OS was 53 months (95% CI, 43.5‑62.4). Following 
univariate analysis, hypercalcemia, presence of lytic bone 
lesions and global hypomethylation at remission were deter-
mined to have a negative impact on OS. The presence of lytic 
bone lesions implies a more advanced disease at the time of 
diagnosis. Global hypomethylation at remission remained a 
negative predictor for OS upon multivariate analysis. This 
raises the question of whether patients with global hypo-
methylation at remission should receive more treatment than 
patients without global hypomethylation. The assay was a 
commercially available ELISA, an inexpensive and widely 
used technique; therefore, prospective trials to measure 
methylation levels could readily be performed. In support of 
this possibility, Fernández de Larrea et al (48) reported the 
impact of global methylation in relapsed patients with MM 
treated with bortezomib. The study revealed that patients 
with >3.95% global DNA methylation achieved an improved 
OS compared with lower levels of hypomethylation (median; 
30 vs. 15 months, P=0.004) (48).

Finally, it is important to emphasize that the OS and PFS 
of the patients in the current study were lower than expected 
according to those reported in other studies. These unsatis-
factory outcomes may be due to limited access to expensive 
drugs (49‑53). In this cohort, only 16% of the patients were 
able to receive bortezomib and none received lenalidomide.

To the best of our knowledge, the present study was the 
first to investigate the impact of regional methylation and 
global methylation in patients with MM over time in active 
and remission disease states. The number of patients included 
in the global methylation analysis was the primary limitation 
of the present study.

In conclusion, methylated P16, SOCS‑1 and SHP‑1 are 
associated with clinical variables that negatively impact prog-
nosis, along with the persistence of global hypomethylation 
at remission.
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