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Abstract. The association between long non-coding RNA zinc 
finger antisense 1 (ZFAS1) and acute myeloid leukemia (AML) 
has not yet been investigated. The present study aimed to assess 
the potential role of ZFAS1 in AML cell proliferation and 
apoptosis. The expression of ZFAS1 mRNA in various AML 
cell lines (HL‑60, KG‑1, ML‑1 and SKNO‑1) was measured by 
reverse transcription‑quantitative polymerase chain reaction. 
The results showed that ZFAS1 expression was increased in 
all four human AML cell lines compared with the control cell 
lines (T lymphocytic leukemia or Burkitt's lymphoma). Trans-
fection with small interfering RNA into human AML cells 
established ZFAS1 knockdown. A cell‑counting kit‑8 (CCK‑8) 
assay was used to investigate the effect of ZFAS1 on AML 
cell proliferation and the effect of ZFAS1 on the cell cycle and 
cell apoptosis was assessed using flow cytometry. Notably, the 
CCK‑8 assay demonstrated that ZFAS1 knockdown inhibited 
cell proliferation in HL‑60 and SKNO‑1 cell lines and flow 
cytometry analysis indicated that ZFAS1 knockdown induced 
AML cell cycle G1 phase arrest and triggered cell apoptosis. 
Therefore, the present study indicated that ZFAS1 promoted 
the proliferation and inhibited the apoptosis of AML cells.

Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous 
form of hematopoietic malignancies; aberrantly differenti-
ated myeloid cells grow rapidly in the bone marrow and other 
tissues, thereby inhibiting normal hematopoiesis and immune 
function, and infiltrating other organs (1,2). AML incidence 
increases with age and older patients typically exhibit a lower 

long‑term overall survival rate (3). The formation of AML 
has been associated with multiple factors, including radiation, 
chemical degradation, viral infection and multiple suscep-
tible genes (4). Although the overall prognosis of AML has 
improved markedly in recent years, the pathophysiological 
mechanism of AML development remains unknown. To 
increase the survival rate of patients with AML, it is of para-
mount importance to improve comprehension of its molecular 
pathogenesis and identify prognostic markers of AML.

Long non‑coding RNAs (lncRNAs) are transcripts 
>200 nucleotides long that are not translated into proteins (5). 
Previous studies have indicated that various lncRNAs may be 
associated with specific biological processes, including chro-
matin modification, epigenetic regulation, the cell cycle, cell 
apoptosis and differentiation (6-8). LncRNAs are commonly 
dysregulated in the pathological processes of cancer, and may 
therefore serve as prognostic markers (9,10).

It has been reported that zinc finger antisense 1 (ZFAS1), a 
newly identified lncRNA that maps to chromosome 20q13.13, 
is highly expressed in the mammary gland and downregulated 
in breast tumors (11). Li et al (12) and Thorenoor et al (13) 
reported that ZFAS1 functions as an oncogene in hepatocel-
lular and colorectal carcinoma progression, and is associated 
with cancer cell cycle progression, metastasis and poor prog-
nosis. Previous studies have also demonstrated that a variety 
of lncRNAs are closely associated with hematological malig-
nancies (14-16). However, the role of ZFAS1 in AML remains 
unknown; therefore, the present study investigated its effects 
in various AML cell lines. Cell proliferation and apoptosis, 
which serve important roles in AML cell development and 
progression, were the primary mechanisms assessed to deter-
mine the effects of ZFAS1 on AML in the present study.

Materials and methods

Cell lines. Four human AML cell lines (HL‑60, KG‑1, ML‑1 
and SKNO‑1), a T lymphocytic leukemia cell line (Jurkat) and 
a Burkitt's lymphoma cell line (Raji) were purchased from the 
Cell Bank of Chinese Academy of Sciences (Shanghai, China). 
The Jurkat and Raji cell lines were used as controls. The cells 
were all cultured in RPMI‑1640 medium (Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 
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10% fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.) 
at 37˚C in a humidified incubator in the presence of 5% CO2. 
All cell lines were passaged for fewer than six months.

RNA extraction and reverse transcription‑quantitative poly‑
merase chain reaction (RT‑qPCR). Total RNA was extracted 
from all cell lines using TRIzol® reagent (Invitrogen; Thermo 
Fisher Scientific, Inc.). 1 µg Total RNA was reverse transcribed 
into cDNA using the PrimeScript™ RT Master Mix (Takara 
Biotechnology Co., Ltd., Dalian, China), according to the 
manufacturer's protocols. RT‑qPCR was performed using the 
SYBR® Premix DimerEraser™ (Takara Biotechnology Co., 
Ltd.) and an ABI Prism 7500 instrument (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). The total PCR reaction volume 
was 20 µl, including SYBR Premix DimerEraser (2X) 10 µl, 
PCR forward primer (10 µM) 0.6 µl, PCR reverse primer 
(10 µM) 0.6 µl, ROX Reference Dye II (50X) 0.4 µl, template 
2 µl and sterile water 6.4 µl. The PCR cycling conditions were 
as follows: 95˚C for 30 sec, followed by 40 cycles at 95˚C for 
5 sec and 60˚C for 34 sec, and a final extension step of 95˚C 
for 15 sec, 60˚C for 1 min, 95˚C for 15 sec and 60˚C for 15 sec. 
GAPDH was amplified as an internal control. The specific 
primer pairs were as follows: ZFAS1, forward, 5'‑GCG AAA 
GCC ATC TTT GGT TA‑3' and reverse, 5'‑GGG CAG GAC AAT 
AGC GTA TG‑3'; and GAPDH, forward, 5'‑GGA CCT GAC 
CTG CCG TCT AG‑3' and reverse, 5'‑GTA GCC CAG GAT GCC 
CTT GA‑3'. Relative mRNA expression was determined using 
the 2-ΔΔCq method (17). All experiments were independently 
repeated at least three times.

Transient transfection of small interfering RNA (siRNA). The 
sequences of ZFAS1 siRNA were as follows: Forward, 5'‑UCC 
AAA AUC CAU UCU GUA CCC‑3' and reverse, 5'‑GUA CAG 
AAU GGA UUU UGG AAG‑3'. ZFAS1 siRNA and the negative 
control siRNA were purchased from Shanghai GenePharma 
Co., Ltd. (Shanghai, China). Transfection of siRNA into the 
AML cell lines HL‑60 and SKNO‑1 was performed with 
Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's instructions. Following 
48 h transfection, cells were collected and applied to the 
subsequent assay.

Cell proliferation assay. Following 24 h transfection with 
siRNA, 1x103 cells/well were seeded in 96‑well plates with 
100 µl culture medium in triplicate. Cell proliferation was 
evaluated by water‑soluble tetrazolium salt at the indicated time 
points using a Cell Counting kit‑8 (CCK‑8, Beyotime Institute 
of Biotechnology, Haimen, China). Briefly, 10 µl CCK‑8 solu-
tion was added to each well and the mixture was incubated for 
3 h at 37˚C, 5% CO2. Absorbance (450 nm) was detected at 
24, 48, 72 and 96 h using a microplate reader (Epoch; BioTek 
Instruments, Inc., Winooski, VT, USA).

Flow cytometric analysis. For flow cytometric analysis, 
siRNA transfected HL‑60 and SKNO‑1 cells were collected 
following 48 h transfection. HL‑60 and SKNO‑1 cells were 
cultured in RPMI‑1640 medium (Gibco; Thermo Fisher Scien-
tific, Inc.) supplemented with 10% fetal bovine serum (Gibco; 
Thermo Fisher Scientific, Inc.). For cell cycle analysis, cells 
were fixed overnight in 70% cold ethanol, then resuspended 

in 20 mg/ml propidium iodide (PI; BD Biosciences, Franklin 
Lakes, NJ, USA). For apoptosis analysis, cells were stained 
with Annexin V‑fluorescein isothiocyanate (FITC) and PI. 
Cells were then washed twice with ice‑cold PBS and put into 
binding buffer (5 µl Annexin V‑FITC and 5 µl PI) for a 30 min 
incubation. A FACSCalibur™ flow cytometer (BD Biosci-
ences) was used for analyzing the cell cycle or apoptosis. All 
experiments were independently repeated at least three times.

Statistical analysis. All data are expressed as mean ± standard 
deviation. Differences between groups were analyzed using an 
independent‑samples t‑test. All P‑values were two‑sided and 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Expression of ZFAS1 in AML cell lines. To determine whether 
ZFAS1 expression was dysregulated in AML cell lines, levels 
of ZFAS1 mRNA expression in HL‑60, KG‑1, ML‑1, SKNO‑1, 
Jurkat and Raji cell lines were measured using RT‑qPCR. Rela-
tive levels of ZFAS1 mRNA were significantly increased in all 
human four AML cell lines compared with the T lymphocytic 
leukemia cell line or Burkitt's lymphoma cell line (P<0.001 for 
HL‑60, SKNO‑1 and ML‑1; P<0.01 for KG‑1; Fig. 1A and B).

Efficiency of siRNA in downregulating ZFAS1 expression in 
AML cells. According to the aforementioned result, two AML 
cell lines (HL‑60 and SKNO‑1) were selected for ZFAS1 
knockdown by transfection of siRNA, as expression of ZFAS1 
was markedly increased in these cell lines compared with the 
KG‑1 and ML‑1 cell lines. RT‑qPCR demonstrated that ZFAS1 
was significantly decreased in HL‑60 and SKNO‑1 cells 
transfected with ZFAS1 siRNA compared with the respective 
negative control (P<0.001; Fig. 1C and D).

Downregulating ZFAS1 expression inhibits AML cell prolif‑
eration. The CCK‑8 assay determined that the proliferation 
of HL‑60 and SKNO‑1 cells were both significantly inhibited 
following transfection with ZFAS1 siRNA after 72 h (both 
P<0.05; Fig. 1E) and 96 h (both P<0.01; Fig. 1F). Additionally, 
flow cytometric analysis of cell cycle distribution indicated 
that ZFAS1 knockdown significantly increased the percentage 
of G0/G1 phase HL‑60 (from 47‑64%; P<0.01; Fig. 2A) and 
SKNO‑1 cells (from 48‑63%; P<0.01; Fig. 2B), and decreased 
the percentage of S‑phase HL‑60 (from 27‑43%; P<0.01; 
Fig. 2A) and SKNO‑1 cells (from 27‑40%; P<0.01; Fig. 2B). 
In summary, these results indicate that ZFAS1 promotes AML 
cell growth in vitro.

Downregulating ZFAS1 expression promotes AML cell apop‑
tosis. To elucidate the function of ZFAS1 in the regulation of 
apoptosis in AML cells, flow cytometric analysis of HL‑60 
and SKNO‑1 cell lines was performed. Compared with the 
respective negative control, ZFAS1 knockdown significantly 
increased the percentage of apoptotic AML HL‑60 (5.5±0.6% 
vs. 15.7±0.9%; P<0.01; Fig. 3A) and SKNO‑1 cells (3.2±0.7% 
vs. 10.4±0.8%; P<0.05; Fig. 3B). These results suggest that 
ZFAS1 knockdown promotes AML cell apoptosis, which may 
contribute to the inhibition of AML progression.
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Figure 1. Reverse transcription‑quantitative polymerase chain reaction was used to determine the relative mRNA expression of ZFAS1 in four acute myeloid 
leukemia cell lines (HL‑60, SKNO‑1, KG‑1 and ML‑1) compared with (A) T lymphocytic leukemia (Jurkat) and (B) Burkitt's lymphoma (Raji) cell lines. 
Knockdown effects of siRNA ZFAS1 in (C) HL‑60 and (D) SKNO‑1 cells. A cell counting kit‑8 assay was used to investigate the function of long non‑coding 
RNA ZFAS1. Downregulation of ZFAS1 inhibited (E) HL‑60 and (F) SKNO‑1 cell growth. Statistics were performed using the independent samples t‑test. 
Data are presented as the mean ± standard deviation. All assays were performed in triplicate. *P<0.05, **P<0.01 and ***P<0.001 vs. control. si, small interfering; 
NC, negative control; ZFAS1, zinc finger antisense 1.

Figure 2. Flow cytometric analysis was used to determine the role of ZFAS1 on the cell cycle in HL‑60 and SKNO‑1 cells. Downregulation of ZFAS1 promoted 
(A) HL‑60 and (B) SKNO‑1 cell cycle arrest at the G0/G1 phase. Statistical analysis was performed using the independent samples t‑test. Data are presented 
as the mean ± standard deviation. All assays were performed in triplicate. **P<0.01 vs. NC. si, small interfering; NC, negative control; ZFAS1, zinc finger 
antisense 1.
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Discussion

LncRNAs are a newly identified type of non‑coding RNA that 
have been reported to be dysregulated in a number of different 
diseases, including carcinoma (18,19). The importance of 
lncRNAs in the development of cancer may be associated with 
their ability to influence cellular function through different 
mechanisms, such as proliferation, apoptosis and differen-
tiation (20-22). In present study, CCK-8 assay and cell cycle 
distribution analysis demonstrated that ZFAS1 was able to 
induce AML cell proliferation. Furthermore, the apoptosis 
assay indicated that ZFAS1 inhibited apoptosis in AML cells. 
These results suggest that ZFAS1 knockdown suppresses 
AML HL‑60 and SKNO‑1 cell proliferation and survival, and 
that ZFAS1 may act as an oncogenic lncRNA.

It has previously been determined that ZFAS1 is down-
regulated in breast cancer and that it acts as a putative tumor 
suppressor (11). Previous studies have reported that ZFAS1 is 
overexpressed in hepatocellular and colorectal cancer tissues 
and cell lines (12,13). In the current study, it was demonstrated 
that ZFAS1 has an oncogenic role in AML cell lines. However, 
the underlying mechanism of ZFAS1 in the progression of 
AML remains unclear.

In recent years, a number of articles have reported that 
lncRNAs have the ability to target and regulate microRNAs 
(miRs) (23,24). It is widely acknowledged that miRNAs regu-
late the expression of multiple target genes that encode proteins, 
which may lead to biological alterations in function (25,26). 
Li et al (12) identified that ZFAS1 functions as an oncogene 
in hepatocellular carcinoma progression by binding miR‑150 
and abrogating its tumor‑suppressive function. Furthermore, 

Li et al (12) indicated that miR‑150 was able to repress hepa-
tocellular carcinoma cell invasion by inhibiting ZEB1 and the 
matrix metalloproteinases (MMPs), MMP14 and MMP16. It was 
also demonstrated that other lncRNAs are associated with cell 
growth and apoptosis regulation by regulating multiple target 
genes, including phosphoinositide‑3‑kinase, Akt and extracel-
lular signal‑regulated kinases (27,28). Although it has been 
demonstrated that lncRNAs influence epigenetic gene regula-
tion (6,7), proliferation (7), apoptosis (6,7) and prognosis (8) in 
solid tumors, few studies have identified their effects on AML. 
Garzon et al (29) assessed whether a lncRNA expression profile 
was associated with clinical features, molecular abnormalities 
and outcome in older patients with cytogenetically normal 
AML and revealed that patients with an unfavorable lncRNA 
score had a shorter overall survival and disease‑free survival 
rate than those with a favorable lncRNA score. These results are 
consistent with those from the present study.

In conclusion, the present study demonstrated that lncRNA 
ZFAS1 promoted the proliferation and suppressed the apop-
totic rate of AML cells. Additionally, the results of the present 
study indicated that ZFAS1 may act as an oncogenic lncRNA.
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Figure 3. Flow cytometric analysis was used to determine the role of ZFAS1 in HL‑60 and SKNO‑1 cell apoptosis. Downregulation of ZFAS1 stimulated 
(A) HL‑60 and (B) SKNO‑1 cell apoptosis. Statistical analysis was performed using the independent samples t‑test. Data are presented as the mean ± standard 
deviation. All assays were performed in triplicate. *P<0.05, **P<0.01 vs. NC. si, small interfering; NC, negative control; ZFAS1, zinc finger antisense 1; FITC, 
fluorescein isothiocyanate; PI, propidium iodide.
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