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Abstract. Interleukin (IL)‑1β, IL‑6, tumor necrosis factor 
(TNF)‑α and prostaglandins E2 is considered as the standard 
cocktail for maturing dendritic cells (DCs). However, the 
appropriate time span for DC maturation with the standard 
cocktail remains unclear. The present study aimed to compare 
the differences between DCs matured with the standard 
cocktail for 24 and 48 h, respectively, and determine whether 
24‑h stimulation was sufficient for DC maturation. The findings 
demonstrated that, compared with DCs matured for 48 h, the 
levels of cluster of differentiation (CD)80, CD83, CD86 and 
programmed death‑ligand 1 expression in DCs matured for 
24 h were relatively lower. However, with the exception of 
CD80 whose mean fluorescence intensity (MFI) was higher 
in DCs matured for 48 h, the MFI values of other surface 
markers were comparable. Notably, the MFI of CD40 was 
higher in DCs matured for 24 h. In addition, the viability, T cell 
stimulatory capacity in allogeneic mixed lymphocyte reaction 
and cytokine production, including IL‑12p40, IL‑12p70 and 
IL‑10, were all comparable between DCs matured for 24 and 
48 h, respectively. These results indicated that 24‑h stimulation 
may be sufficient for DC maturation when using the standard 
cocktail.

Introduction

Dendritic cells (DCs) are the most potent antigen‑presenting 
cells and they have a critical role in innate and adaptive 
immunity (1,2). Notably, they have a unique ability to initiate 
naive T cells (3). Immature DCs (imDC), which are located 
in peripheral tissues (such as the skin, capture and process 
antigens), migrate to the draining lymphoid organs where they 
are able to prime cluster of differentiation (CD)4+ and CD8+ 
T cells (4). However, whether they induce T cell‑mediated 
immune response or tolerance is determined by the status of 
DCs (5).

Over the past few years, great interest has been focused 
on the development of DC‑based immunotherapy due to the 
unique capacity of DCs to initiate naive T cells. It is now 
straight‑forward to generate monocyte‑derived DCs (moDCs) 
in vitro using granulocyte‑macrophage colony‑stimulating 
factor (GM‑CSF) and IL‑4 (6,7). A number of protocols have 
been tested for their capacity to induce DC maturation (8‑11) 
due to the fact that fully mature DCs are more powerful than 
imDC at inducing immune responses (5). Among these proto-
cols, IL‑1β, IL‑6, TNF‑α and prostaglandins E2 (PGE2), which 
was developed by Jonuleit et al (8), has become the gold stan-
dard cocktail for DC maturation. To date, DCs matured with 
this standard cocktail have been applied in the treatment of 
patients with different malignant tumors and promising results 
have been demonstrated in several clinical studies (12‑16).

Although this standard cocktail has been widely used, 
the appropriate time span for DC maturation has not been 
determined. It has been reported that DCs gradually lose their 
function over a few days after maturation  (17). Therefore, 
shortening the time to mature DCs in vitro may be beneficial 
for the effectiveness of DC‑based therapeutic vaccine in vivo. 
Therefore, the present study comprehensively compared DCs 
matured for 24 and 48 h using the standard cocktail to deter-
mine the appropriate time span for DC maturation.

Materials and methods

Isolation of PBMCs and positive selection of CD14+ monocytes. 
Peripheral blood mononuclear cells (PBMCs) were isolated by 
Ficoll‑Paque Plus (GE Healthcare, Chicago, IL, USA) density 
gradient centrifugation from healthy human heparinized blood 
(Beijing 307 Hospital of Chinese People's Liberation Army, 
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Beijing, China). All subjects were recruited in August 2015 
(n=3; male: Female, 1:2; age 27.33±1.53 years). Inclusion criteria 
for subjects in this study were i) no fever; ii) normal renal and 
hepatic function; iii) no drug use within one month. Exclusion 
criteria were i) infection with hepatitis B virus, hepatitis C virus, 
hepatitis D virus or human immunodeficiency virus; ii) liver 
cirrhosis or hepatocellular carcinoma, fatty liver or alcoholic 
hepatitis. PBMCs were washed by PBS twice before CD14+ 
monocytes isolation using human CD14+ microbeads (Miltenyi 
Biotec GmbH, Bergisch Gladbach, Germany) according to the 
manufacturer's instructions. The purity of the isolated CD14+ 
monocytes was >90%. The Ethics Committee at the Second 
Affiliated Hospital, Zhejiang University School of Medicine 
(Hangzhou, China) approved this study. Informed consent was 
obtained from all participants.

DCs generation. Monocyte‑derived DCs were generated as 
previously described with minor modifications (9). CD14+ 
monocytes were re‑suspended in serum‑free AIM‑V medium 
(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
supplemented with 100 U/ml penicillin and 100 µg/ml strep-
tomycin and placed in 24‑well plates (Corning, Inc., Corning, 
NY, USA) for incubation at 37˚C in a humidified atmosphere 
containing 5% CO2 for 2 h. Following complete aspiration 
of the supernatant, fresh AIM‑V medium supplemented with 
GM‑CSF (1,000 IU/ml) and IL‑4 (500 IU/ml; both PeproTech, 
Inc., Rocky Hill, NJ, USA) was added to the cells. The cells 
were supplied every 2 days with fresh medium. On day 5, 
imDC were harvested and cultured in the presence of IL‑1β, 
IL‑6, TNF‑α (1,000  IU/ml; PeproTech, Inc.) and PGE2 
(1 µg/ml; Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
for a further 24 or 48 h, respectively, to obtain mature DCs 
(mDC). Supernatants were collected and retained for cytokine 
analysis.

Flow cytometric analysis. Flow cytometry was performed 
using FACS Calibur (BD Biosciences). Cells were stained with 
the following monoclonal antibodies: Fluorescein isothio-
cyanate (FITC)‑labeled antibodies against CD40 and CD86, 
phycoerythrin (PE)‑labeled antibodies against CD80, CD83 
and programmed death‑ligand 1 (PD‑L1), peridinin chlorophyll 
protein (PerCP)‑labeled antibodies against human leukocyte 
antigen‑D related (HLA‑DR), allophycocyanin‑labeled anti-
bodies against CD14, CD11c, and isotype matched control 
antibodies (BD Biosciences). FACS data were analyzed using 
FlowJo software (version 5.7.2; Tree Star, Inc.).

Apoptosis assay. Freshly harvested mDC (1x105) were washed 
twice with cold PBS and incubated with Annexin‑V‑PE and 
7‑amino‑actinomycin D (7‑AAD) for 15 min before fluores-
cence‑activated cell sorting (FACS) analysis. FACS data were 
analyzed using FlowJo software (version 5.7.2; Tree Star, Inc., 
Ashland, OR, USA).

Endocytic ability during the maturation of DCs. ImDC and 
mDC (1x105) cells were suspended in 100 µl of AIM‑V and 
incubated with FITC‑dextran (1 mg/ml) for 60 min either at 
37˚C or 4˚C (negative control). Afterwards, cells were washed 
three times in cold PBS prior to FACS analysis. FACS data 
were analyzed using FlowJo software (version 5.7.2).

Allogeneic mixed lymphocyte reaction (MLR). mDC matured 
for 24 or 48 h were treated with 50 µg/ml mitomycin‑C at 37˚C 
in a humidified 5% CO2 atmosphere for 45 min. Afterwards, 
DCs were washed three times and added to allogeneic 
CD14+ monocytes depleted PBMCs (105 cells) at a ratio 1:10 
(DCs:PBMCs) in 96‑well plates (Corning, Inc.) for 4 days, then 
20 µl CellTiter 96 Aqueous non‑radioactive reagent (Promega 
Corp., Madison, WI, USA) was added to each well and cultures 
were continued for another 4 h. Following this, absorbance at 
490 nm was recorded using an ELISA plate reader.

Cytokines secretion analysis. Production of IL‑12p40, 
IL‑12p70 and IL‑10 was assayed by ELISA kit (BioLegend, 
Inc., San Diego, CA, USA) according to the manufacturer's 
instructions.

Statistical analysis. Comparisons between groups of quantita-
tive variables were performed using the Mann‑Whitney U test. 
The test was two‑sided and differences were considered signi
ficant if P<0.05. Data handling and analysis were performed 
with SPSS software for Windows, version 13.0 (SPSS Inc., 
Chicago, IL, USA).

Results

Purity of CD14+ monocytes and mature DCs. In order to 
improve the purity of monocyte‑derived DCs, we first selected 
the CD14+ monocytes from PBMCs by using human CD14+ 
microbeads instead of the conventional cell adherent technique. 
Our data showed that the proportion of CD14+ monocytes in 
PBMCs was approximately 6.79% prior to selection. However, 
this number increased to 91.98% following selection (Fig. 1A). 
The purity of DCs matured for 24 and 48 h was 90.22 and 
92.95%, respectively, of which the majority of mature DCs 
were CD11c+ DCs (Fig. 1B).

Phenotypic characteristics of mature DCs. In the present 
study, co‑stimulatory and co‑inhibitory surface markers, 
including CD40, CD80, CD83, CD86, HLA‑DR and PD‑L1, 
were compared between DCs matured via a standard cocktail 
for 24 and 48 h by flow cytometry. Compared to DCs matured 
for 24 h, DCs matured for 48 h expressed higher levels of CD80, 
both in frequency and mean fluorescence intensity (MFI). For 
CD83 and CD86 exhibited higher levels of frequency when 
matured for 48 h instead of 24 h, however no differences were 
found in MFI. Notably, similar expression levels of CD40 
were found in frequency after 48 h, whereas MFI was higher 
in DCs matured for 24 h. No differences of HLA‑DR were 
found in terms of frequency and MFI. However, for the inhibi-
tory molecule, PD‑L1, a higher frequency was also observed 
in DCs matured for 48 h. The frequencies of co‑stimulatory 
molecules for both DCs all exceeded 90%, with the exception 
of CD83 (Table I).

Viability and endocytosis of mature DCs. High viability is 
important for the preparation of effective DC‑based thera-
peutic vaccines. Therefore, we determined and compared 
the viability of DCs matured via the standard cocktail for 
different time spans. Our data showed that the viability of 
DCs matured for 24 and 48 h, respectively, were similarly 
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high and exceeded 90% (Fig. 2A). It is known that the ability 
to take up antigens is one of the most important functions 
of immature DCs and this capacity decreases quickly upon 
maturation (18). Consistent with this, we found that imDCs 
showed high endocytosis while the endocytic capacity of 
DCs matured for 24 and 48 h both decreased rapidly to a 
similar extent (Fig. 2B).

T cell stimulatory capacity and cytokine productions of 
mature DCs. The T cell stimulatory capacity of DCs matured 
for different time spans was assessed via an allogeneic mixed 
lymphocyte reaction. Our data showed that the T cell stimula-
tory capacity of DCs matured for 24 and 48 h, respectively, 
was comparable (Fig. 3). We subsequently detected the cyto-
kine production of mDCs from both time points and found 
that mDCs matured for 24 and 48 h, respectively, secreted 
comparable high levels of IL‑12p40, which is a subunit of 
IL‑12p70. Both groups of cells secreted comparable low levels 
of IL‑10; however, mDCs matured for 24 h secreted relatively 
lower levels of bioactive IL‑12p70 (Fig. 4).

Discussion

IL‑1β, IL‑6, TNF‑α and PGE2 has been widely used 
as a standard cocktail for in  vitro generation of mature 
DCs (8,12‑16,19,20). However, the optimal time for DC matu-
ration using this standard cocktail has not been established. 
In the present study, we found that DCs matured for 24 h 
were, phenotypically speaking, also fully mature compared to 
DCs matured for 48 h. DCs matured for 24 h expressed even 
higher levels of the CD40 co‑stimulatory molecule in terms 
of MFI, whereas lower levels of the co‑inhibitory molecule, 
PD‑L1, were detected in terms of frequency. Notably, the 
viability, endocytosis, T‑cell stimulatory capacity and cytokine 

production were all comparable between DCs matured for 24 
and 48 h, respectively.

Pioneering studies indicating the possibility of culturing 
murine DCs ex vivo from bone marrow precursors initiated 
DC vaccine development in the 1990s (21). Human applica-
tions followed soon thereafter and it was demonstrated that 
peripheral blood‑derived monocytes and CD34+ hematopoi-
etic progenitors are suitable for generating human DCs (22). 
In previous studies, DCs have been induced from adherent 
monocytes by washing out non‑adherent cells, such as T and 
B cells. However, the purity of DCs obtained by this method 
is ~60%. In the present study, we induced DCs from CD14+ 
monocytes selected by using human CD14+ microbeads. 
The purity of DCs obtained from this method exceeds 90%, 
which is crucial for the improved effectiveness of DC‑based 
immunotherapy (23).

The maturation state of DCs has been considered as a 
decisive factor in immune responses. Previous clinical studies 
have demonstrated that improved clinical outcomes were 
more frequently observed in trials using mature DCs in the 
therapeutic vaccination of patients with cancer, including 
prostate cancer, melanoma and glioblastoma (24‑26), although 
moderate clinical benefit was also reported in trials using 
IL‑4 immature DCs (27). Due to their low co‑stimulatory 
and MHC class I and II molecule expression, immature and 
semi‑mature DCs are prone to inducing suboptimal T‑cell 
priming and causing T‑cell tolerance. Fully mature DCs 
(for example, matured with proinflammatory cytokines or TLR 
agonists) are able to prime CD4+ T and CD8+ T cells (5,28). 
It is well‑known that co‑stimulatory molecules, such as CD80 
and CD86, have a key role in the induction of effective T cell 

Table I. Phenotypic characteristics of mature DCs.

	 Mature DCs
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Markers	 Value	 24 h	 48 h

CD40	 %	 92.24	 96.57
	 MFI	 67.21	 59.22a

CD80	 %	 93.94	 98.82a

	 MFI	 149.24	 247.51a

CD83	 %	 83.55	 94.98a

	 MFI	 81.90	 89.17
CD86	 %	 94.47	 99.52a

	 MFI	 198.56	 216.83
PD‑L1	 %	 95.03	 98.01a

	 MFI	 105.18	 135.52
HLA‑DR	 %	 97.22	 99.57
	 MFI	 629.59	 675.37

Phenotypes of mature DCs were analyzed by flow cytometry. aP<0.05. 
MFI, mean fluorescence intensity; DCs, dendritic cells; CD, cluster 
of differentiation; PL‑L1, programmed death‑ligand 1; HLA‑DR, 
human leukocyte antigen‑D related. Figure 1. Purity of CD14+ monocytes after selection (A) and purity of DCs 

matured using a standard cocktail for 24 and 48 h, respectively. (B) Three 
experiments were performed; one is presented. CD, cluster of differen-
tiation; DCs, dendritic cells; SSC, side scatter; FSC, forward scatter; APC, 
allophycocyanin.
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responses (29). Our data showed that DCs matured for 24 and 
48 h, respectively, expressed high levels of CD80 and CD86, 
which are important for the initiation of a robust immune 
response. Furthermore, CD40, which also has a critical role in 
T cell activation (30,31) expressed even higher levels in DCs 
matured for 24 h. Notably, PD‑L1, which is well‑known for its 
inhibitory role in T cell activation (32‑34), expressed relatively 
lower levels on DCs matured for 24 h and this may be benefi-
cial for T cell priming.

It is increasingly recognized that abundant production 
of IL‑12, particularly IL‑12p70 during DC maturation has a 

crucial role in the differentiation and expansion of Th1 cell 
and Th1‑polarized immunity (13,35,36). In clinical trials of 
melanoma (37) and glioblastoma (38), favorable outcomes 
were observed to be related to DC1‑derived IL‑12p70 
production and Th1‑polarized immunity. Similar to previous 
studies (39,40), the present study found that although DCs 
matured with a different time span secreted higher levels of 
IL‑12p40, and secreted little bioactive IL‑12p70. Therefore, 
studies to further improve the capacity of DCs to produce 
bioactive IL‑12p70 are necessary. IL‑10, known as an 
anti‑inflammatory and immunosuppressive cytokine, was 
first described as a product of Th2 cells that inhibited cyto-
kine synthesis in Th1 cells (41). It is now known that multiple 
immune cells, including macrophages, dendritic cells (DC), 
B cells, and various subsets of CD4+ and CD8+ T cells, are 
able to produce IL‑10  (42). IL‑10 inhibits the capacity of 
antigen‑presenting cells, including DCs and macrophages, 
to present antigens to T cells in various ways to modulate 
immune responses (43). Recently, tumor cell‑secreted IL‑10 
has been demonstrated to counteract the immunity of modi-
fied DCs in an established tumor model, which indicated that 
the high level of IL‑10 within tumor microenvironment may 
impair DC vaccine functions (44). In the present study, DCs 
matured with the standard cocktail for different time spans 
(24 and 48 h) secreted minimal IL‑10, which is a positive 
factor for DCs exerting immune responses.

Figure 4. Comparison of the cytokine secretion of DCs matured for 24 or 
48 h, respectively. Production of (A) IL‑12p40, (B) IL‑12p70 and (C) IL‑10. 
Data are presented as the mean + standard deviation. DCs, dendritic cells; 
IL, interleukin.

Figure 3. Comparison of T cell stimulatory capacity of DCs matured for 24 
or 48 h. Data are presented as the mean + standard deviation. DCs, dendritic 
cells; OD, optical density.

Figure 2. Comparison of (A) viability and (B) endocytosis of DCs matured 
for 24 and 48 h, respectively. Three experiments were performed; one is 
presented. DCs, dendritic cells; mDC, mature dendritic cells; imDCs, imma-
ture dendritic cells.
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High viability is another important factor in DC‑based 
immunotherapy. In fact, DCs will gradually lose their function 
in a few days after maturation owing to apoptosis (17). In our 
present study, DCs matured for 24 and 48 h, respectively, exhib-
ited high viability. The high viability may be due to the addition 
of PGE2 to the cocktail as previous studies have shown that 
PGE2 promotes apoptotic resistance and survival of DCs (45,46).

In conclusion, our preliminary results indicated that 24‑h 
stimulation is sufficient for DC maturation when using IL‑1β, 
IL‑6, TNF‑α and PGE2. Reducing the time to mature DCs 
in vitro from 48 to 28 h may be beneficial for the optimal 
preparation of tumor‑pulsed DC therapeutic vaccine and 
improve its in vivo effectiveness.
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