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Abstract. Assessing the biomechanical properties of trabec-
ular bone is of major biological and clinical significance for 
the research of bone diseases, fractures and their treatments. 
Micro‑finite element (µFE) models are becoming increasingly 
popular for investigating the biomechanical properties of 
trabecular bone. The shapes of µFE models typically include 
cube and cylinder. Whether there are differences between 
cubic and cylindrical µFE models has not yet been studied. 
In the present study, cubic and cylindrical µFE models of 
human vertebral trabecular bone were constructed. A 1% 
strain was prescribed to the model along the superior‑inferior 
direction. E values were calculated from these models, and 
paired t‑tests were performed to determine whether these 
were any differences between E values obtained from cubic 
and cylindrical models. The results demonstrated that there 
were no statistically significant differences in the E values 
between cubic and cylindrical models, and there were no 
significant differences in Von Mises stress distributions 
between the two models. These findings indicated that, to 
construct µFE models of vertebral trabecular bone, cubic or 

cylindrical models were both feasible. Choosing between 
the cubic or cylindrical µFE model is dependent upon the 
specific study design.

Introduction

Micro‑finite element (µFE) models, created from high 
resolution micro‑computed tomography (µ‑CT) images, 
have become a major computational tool for the assessment 
of the mechanical properties of human trabecular bone. By 
simulating a loading condition, this model then can be used 
to simulate the mechanical behavior of trabecular bone (1,2), 
and has shown excellent prediction power compared with 
experimental measurements (3,4). µFE analysis, based on this 
model, is potentially useful when evaluating the effects of bone 
diseases and their subsequent treatment on the mechanical 
properties of trabecular bone.

To date, µFE models of trabecular bone have predomi-
nantly been based on cored samples extracted from sites 
with high concentrations of the trabecular bone, for 
example, the vertebral body or proximal part of femur (5,6). 
Among the studies using µFE models, the shapes of µFE 
models are typically cubical and cylinder. Gross et al (6) 
constructed cubic µFE models within the vertebral body 
in their study to investigate morphology‑elasticity relation-
ships. Cubic µFE models with a side length of 4 mm within 
the vertebral body were set to obtain the biomechanical 
properties of human trabecular bone  (7). Cylindrical 
trabecular µFE models were also constructed to inves-
tigate the mechanical properties of vertebral trabecular  
bone (3,8).

To the best of our knowledge, whether there are differences 
between cubic and cylindrical µFE models has not yet been 
studied. Therefore, the purpose of our study was to investigate 
the influence of the shape of the µFE model on the mechanical 
properties calculated from µFE analysis, and to determine 
whether there were differences between cubic and cylindrical 
µFE models.
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Materials and methods

Specimens preparation. In total, 5 lumbar vertebral bodies 
(L1‑5) were collected form one embalmed human cadaver 
(61 years old; male) provided by the Department of Human 
Anatomy at the Fourth Military Medical University (Xi'an, 
China). Written informed consent from the donor was obtained 
for the use of these specimens in research. Collection and prep-
aration procedures were approved by the Ethics Committee of 
the Fourth Military Medical University. All specimens were 
physically evaluated and radiographed to exclude bone diseases, 
bone cancers, and previous fractures. Soft tissues were carefully 
removed from the bone with a scalpel. Lateral and posterior 
elements including the pedicle, transverse process, and spinous 
process were excised from the vertebral body using a band saw 
(Isomet 1000, Buehler, Plymouth, MN, USA).

µ‑CT scanning. µ‑CT scans of all samples (5 vertebral bodies) 
were performed with a high‑resolution µ‑CT system (Siemens 
Inveon; Siemens AG, Munich, Germany) with an isotropic reso-
lution of 33.355 µm. Image processing included the application 
of a modest Gauss global filter and segmentation according 
to the method described by Otsu (9), which is a popular and 
established method in the field of threshold segmentation. 
Images were obtained using the following parameters: i) X‑ray 
tube voltage, 100 kV; ii) anode current, 100 µA; and iii) shutter 
speed, 2,500 msec. High resolution images were obtained to 
produce µFE models for subsequent studies.

µFE model building. µFE models were generated directly from 
the segmented images using a voxel conversion process (10). 
Firstly, all the DICOM image files were imported into the 
ScanIP software package (version 3.2; Build 1, Simpleware 
Ltd., Exeter, UK) to crop the different volumes of interest 
(VOI). As shown in Fig.  1, cubic cores (V1 in Fig.  1) of 
8x8x8 mm3 were cropped to build cubic µFE models. Inscribed 
cylindrical cores (V2 in Fig. 1) of 8‑mm diameter and 8‑mm 
height were cropped to build cylindrical µFE models. Images 
were then segmented with the optimal threshold to match 
the bone volume fraction measured from µ‑CT analysis. The 
Floodfill function in the ScanIP software was used to remove 
all the floating or disconnected structures. Two layers of voxel 
elements were added at the superior and inferior surface to 
mimic stainless steel layers in axial compression tests.

Subsequently, the files were imported into ScanFE (version 
3.1.2, Build 2, Simpleware Ltd., Exeter, UK) to construct the 
µFE model. With this approach, voxels representing bone 
tissue were converted to equally sized eight‑node hexahedral 
voxel elements, whereas voxels representing the bone marrow 
were ignored. All the models were imported to ANSYS 
(release 14.0; ANSYS, Inc., Township, PA, USA) to perform 
further calculations. For all models, the element material prop-
erties of bone were considered to be isotropic, linear elastic, 
and uniform with a tissue Young's modulus of 10 GPa and 
a tissue Poisson's ratio of 0.3 (11). An isotropic homogenous 
tissue modulus of 200 GPa and a tissue Poisson's ratio of 0.3 
was assigned to the element of stainless steel layers (12).

Computational process of µFE analysis. A 1% axial strain 
was prescribed to the top surface of the model, and axial 

displacements at the bottom surface were constrained, simu-
lating an axial compression test along the superior‑inferior 
direction. Contact between the upper and lower surfaces of 
the specimen and the steel plates were modeled using contact 
elements with a zero friction value to ensure that only compres-
sive forces were transmitted (13). All analyses were performed 
on a workstation computer (ThinkStation; Intel Xeon CPU 
E3‑122, 3.10 GHz, Lenovo Group Ltd., Beijing, China). The 
apparent stresses were calculated as the total reaction force per 
apparent area. Based on that, the E values were calculated by 
dividing the apparent strain by 0.01 (14).

Statistical analysis. Statistical analyses were performed using 
the SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, USA). 
Paired‑t tests were performed to determine whether there 
were differences between the E values obtained from cubic 
and cylindrical models. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Von Mises stress distributions. Von Mises stress distributions 
in the trabecular bone structure of cubic and cylindrical µFE 
models are shown in Fig. 2. There were no significant differ-
ences of Von Mises stress distributions between cubic and 
cylindrical µFE models.

E values. E values obtained from µFE analyses are shown 
in Fig. 3. E of the cubic models was 146.34±9.76 MPa, and 
of cylindrical models was 139.35±13.21 MPa. Paired t‑tests 
showed that there were no statistically significant differences 
in E values between the cubic and cylindrical models.

Discussion

In the present study, cubic and cylindrical µFE models were 
built to investigate if there were significant differences 
between these two models. No significant differences in the E 

Figure 1. VOI in the vertebral body. Cubic VOI is shown as V1 in yellow 
color, and inscribed cylindrical VOI is shown as V2 in red color. VOI, volume 
of interest.
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values were detected between the cubic and cylindrical µFE 
models.

µFE analysis is now widely used to investigate bone 
mechanical properties; these mechanical properties have been 
demonstrated to relate to bone microarchitecture (15). Based 
on high resolution 3D images obtained from µCT, µFE models 
were constructed for further simulation calculations. By simu-
lating a loading condition, this model can be used to derive 
the elastic modulus of the bone, as well as the distribution of 
stresses and strains in the bone tissue (1,16).

Obtained from µFE models, trabecular bone modulus 
has a good correlation with experimental modulus and 
strength  (15,17). Elastic modulus obtained in our studies 
were similar to former experimental compression studies 
on trabecular bone samples  (18,19). Compression tests on 
vertebral trabecular bone cores have shown that the apparent 
elastic modulus on axial direction was 189.7 MPa (18), which 
is simular to the value of 139.96‑146.34 MPa obtained in the 
present study. In another study based on vertebral trabecular 
bone, apparent elastic modulus calculated from µFE models 
was 146‑154 MPa (19). These findings indicated that the µFE 
models constructed in our study are reliable.

Voxels representing bone tissue were converted to equally 
sized eight‑node hexahedral voxel elements to construct µFE 
models in our study. A number of studies have investigated 
the effect of voxel size on the accuracy of biomechanical 
measurements on human trabecular bone (20‑22). Voxel size 

predominantly refers to scanning and reconstruction voxel 
size. Scanning voxel size is based on the µ‑CT scanning reso-
lution. A previous study demonstrated that it is the resolution 
of raw data that primarily determines the accuracy of models 
as the bone volume fraction of bone volume/total volume was 
predominantly affected by the scanning resolution (22). The 
scanning resolution of the µ‑CT system used in our study was 
33.355 µm, which was enough to depict the microarchitecture 
of human trabecular bone (23,24). In another study, the recom-
mended resolution in finite element models of trabecular bone 
was one quarter of trabecular thickness (25). The thickness 
of trabeculae in our study was ~200 µm and the resolution of 
33.355 µm, fulfilling the conditions rule. Reconstruction voxel 
size is the actual voxel size concerted to the 3D µFE model. 
The reconstruction voxel size in our study was identical with 
scanning voxel size, and this could avoid the inaccuracy of 
coarsening reconstruction voxel size.

The size of cubic and cylindrical models in our study has 
contained enough structural information for virtual compres-
sions. Pahr and Zysset (26) suggested that the side length of 
the volume should be >5 mm as it may provide the proposed 
boundary conditions. Another study showed that the VOI 
of trabecular bone should be >6x6x6  mm3 to predict the 
microarchitecture of human trabecular bone (27). The VOI of 
trabecular bone in our study met these conditions. The µFE 
models constructed in our study included a representation 
of steel plate located on the upper and lower surfaces of the 
specimen. The lower steel plate was constrained and compres-
sive displacement was applied to the upper steel plate. All these 
conditions stimulated the experimental compression test better.

Notably, the cubic and cylindrical µFE models were 
constructed from the same position of the vertebral body. It 
has been confirmed that the architecture of the trabecular 
bone within the vertebral body is inhomogeneous (17,28‑31). 
Within the vertebral body, the trabecular architecture in the 
posterior region was superior to the anterior region (28,31). 
Compared with the posterior region, the anterior region had 
lower bone mass density, less trabecular bone volume fraction, 
less trabecular number, and greater trabecular separation (28). 
Although there were no significant differences between cubic 
and cylindrical µFE models, the positions of the trabecular 
bone core should be identical.

Figure 2. Von Mises stress distribution in the trabecular bone structure of cubic and cylindrical µFE models. (A) Cubic µFE models and (B) cylindrical µFE 
models. µFE, micro‑finite element.

Figure 3. E values calculated from cubic and cylindrical models. Paired t‑test 
demonstrated that there were no significant differences between these two 
models. Data are presented as the mean ± standard deviation.
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In experimental compression tests, trabecular bone cores 
extracted from vertebral bodies are often used (23,32). In our 
study, cubic and cylindrical µFE models were constructed to 
investigate if there were differences between the two models. 
This indicated that the shape of trabecular bone core used in 
experimental biomechanical tests may not affect the biome-
chanical properties obtained from these real tests. These 
computational models used in our study may enable us to 
make repeated virtual compression tests on trabecular bone 
core extracted from the same specimen. This may avoid the 
influence of variance among different specimens and ensure 
the results are more reliable.

To construct µFE models of trabecular bone, choosing 
the VOI was critical. Cubic and cylindrical VOI are the most 
commonly used shapes of VOI  (3,33). The results demon-
strated that there was no significant difference between these 
two models. With regard to the Von Mises stress distributions, 
there were also no significant differences between cubic 
and cylindrical µFE models. Choosing between the cubic or 
cylindrical models shall depend on the specific study design. 
A limitation of the present study was that the trabecular bone 
specimens used in our study were collected from vertebral 
bodies. It has is well‑documented that the morphologies of 
trabecular bone harvested from different skeletal sites are 
quite different (34,35). Further research is required to confirm 
that the findings of the present study are applicable to other 
skeletal sites.

In conclusion, to construct µFE models of vertebral trabec-
ular bone, cubic or cylindrical models were both feasible. The 
present findings demonstrated that there were no significant 
difference between these two shapes of models. To choose 
cubic or cylindrical model, it depends on the specific study 
design.
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