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Abstract. The present study determined the changes in the 
expression levels of MYPT1, CPI‑17 and MLC20 in the ileum 
of mice with neonatal induced necrotizing enterocolitis (NEC) 
to provide a basis for a pathogenesis model that includes 
smooth muscle changes during NEC. A group of 7‑day‑old 
BALB/c mice were fed with formula (40 µl/g, 5 times/day) and 
given hypoxia treatments (5% O2 and 95% N2 for 10 min, twice 
daily) for 4 days to induce NEC and establish a mouse model. 
A control group of 7‑day‑old BALB/c mice were left with their 
mother for the duration of the treatment. After establishing 
the model, the two groups of mice were sacrificed, and the 
terminal ileum tissue was collected and subjected to western 
blot analysis and immunohistochemistry. The results showed 
the expression levels of MYPT1 and pMYPT1 in the ileum 
of the mice in the NEC group were lower than those in the 
control group (P<0.01). The levels of CPI17 and pCPI17 were 
higher in the NEC group compared with those in the control 
group. The expression level of MLC20 in NEC group was 
lower than that in the control group (P<0.01), but the level of 
pMLC20 in the NEC group was higher (P<0.05). The results 
of immunohistochemistry showed that the staining intensities 
of MYPT1, CPI‑17 and MLC20 in the NEC group were lighter 
than those in the control group, and the proportion of positive 
cells was also lower in the NEC group (P<0.01). Taken together 
our results suggest that establishment of NEC is accompanied 
by changes in the protein levels of MYPT1 and pCPI‑17, which 
can regulate smooth muscle contraction in the ileum.

Introduction

Necrotizing enterocolitis  (NEC) is the most common 
life‑threatening acute gastrointestinal disease of the neonatal 
period. NEC is caused by intestinal mucosal damage that can 
occur due to different reasons (1). Mucosal damage has been 
associated with formula feeding, ischemia, hypoxia, intestinal 
bacterial translocation and other factors that lead to systemic 
or local necrosis in the small intestine and colon (1). With the 
improvement of neonatal intensive care in recent years and 
the continuous increased survival rates of premature children 
with low birth weight, the incidence of NEC has also been 
maintained at a high level. It has been reported that NEC 
accounts for 1-5% of all the children in neonatal intensive care 
units (NICUs) (2,3). The incidence of NEC in infants with 
extremely low birth weight can be as high as 5-10%, which is 
higher than the incidence for most gastrointestinal malforma-
tions (4). NEC is the leading cause of death in the NICU (5).

Studies on the causes of NEC have mainly focused on 
immune system dysfunction leading to intestinal inflamma-
tion and increased susceptibility to pathogens  (6,7). Many 
studies have focused on bacterial and metabolic‑mediated 
inf lammatory responses affecting intestinal epithelial 
cells  (8,9). For example, the increased expression of Toll 
Like Receptor 4 (TLR4) in those cells can inhibit intestinal 
epithelium cell migration, leading to a disorder of mucosal 
repair, and inducing intestinal epithelial stem cell apoptosis 
and autophagy (10‑12). However, other factors that may clearly 
play a role in the pathogenesis of NEC have not been studied 
as much.

The level of phosphorylation of the myosin light 
chain  20  (MLC20) protein determines the intensity of 
contraction of smooth muscle in the small intestine. The ratio 
of myosin light chain kinase/myosin light chain phosphatase 
(MLCK/MLCP) directly affects the phosphorylation of 
MLC20 and maintains the dynamic balance between MLC20 
and the phosphorylated MLC20 (13).

There are two main regulators for the catalytic activity of 
MLCP, namely the protein kinase C‑potentiated phosphatase 
inhibitor of 17 ku  (CPI‑17) and the myosin phosphatase 
target subunit 1 (MYPT1) (14,15). CPI‑17, which is expressed 
in the trachea, uterus, blood vessels and throughout the 
gastrointestinal tract, is a specific inhibitor of MLCP that 
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depends on phosphorylation for regulating smooth muscle 
contraction (16). Rho‑kinase (17), protein kinase N (PKN) (18) 
and protein kinase C (PKC) (19) can all directly act on CPI‑17 
to phosphorylate threonine on position 38, causing inhibitory 
effects when interacting with MLCP  (20). Phosphorylated 
CPI‑17 competitively inhibits the dephosphorylation of MLC20 
by MLCP. Phosphorylated CPI‑17 can bind to the catalytic 
subunit protein phosphatase 1 catalytic subunit (PP1c) of MLCP 
to improve the phosphorylation of intracellular MLC20, which 
enhances smooth muscle contraction. When the kinase signal 
is terminated, phosphorylated CPI‑17 is dephosphorylated by 
protein phosphatase 2A or protein phosphatase 2C, resulting in a 
change in the ratio of phosphorylated CPI‑17/dephosphorylated 
CPI‑17, thereby regulating MLCP activity (15).

MYPT1, PP1c and an unidentified subunit  (M20) form 
the MLCP holoenzyme (18). The main role of MYPT1 is to 
inhibit the activity of MLCP (21). It does so by enhancing the 
catalytic activity of PP1c (22), phosphorylating its subunits 
Ser‑694 (22), Thr696 and Thr850 (23‑25), and changing the 
conformation of PP1c to enhance binding to phosphorylated 
CPI‑17. Since intestinal smooth muscle spasm followed by 
ischemia and hypoxia occurs prior to the occurrence of intes-
tinal necrosis during the development of NEC, it is likely that 
disease progression is accompanied by changes in the expres-
sion of the abovementioned proteins. The aim of the present 
study was to detect those changes using a mouse model of 
NEC.

Materials and methods

NEC model. Seven‑day‑old SPF grade BALB/c mice [license 
no.  SCXK (Su) 2013‑003; Joinn Laboratories, Suzhou, 
China] were used to establish the NEC model according to 
published methods (26,27) that can mimic NEC in humans. 
The newborn mice (n=25) were separated from their mother, 
and were subjected to formula feeding (40 µl/g, 5 times/day) 
with Nestlé infant formula and Petag Esbilac milk powder 
for newborn puppy (2:1) through oral intubation with a 24G 
Y-type closed venous indwelling catheter (BD Biosciences, 
San Diego, CA, USA). The feeding lasted about 2 min for each 
mouse. The mice were intermittently placed in the hypoxic 
chamber (Billups-Rothenberg, Del Mar, CA, USA), with an 
oxygen concentration at 5% controlled by an oxygen concen-
tration MT‑01 monitor (Nanjing Mingtong Medical Treatment 
Instruments, Co., Ltd., Nanjing, China), for periods of 10 min, 
twice a day. The treatment was repeated each day for 4 days. 
The mice were sacrificed 6 h after the last treatment. Ileum 
(1 cm) was collected at 0.5 cm from the ileocecus and was 
immersed in formalin for pathological and immunohisto-
chemical tests. In addition, 2 cm of the ileum was taken from 
the proximal end and placed into EP tubes for storage at ‑80˚C 
to perform western blot analysis.

For the control group, 25 newborn mice were allowed to 
feed normally from their mother for 4 days, and were then 
sacrificed by cervical dislocation and ileum samples were 
treated as for the NEC model mice.

H&E staining and pathological scoring. The distal end of the 
ileum was fixed, dehydrated, embedded in paraffin and cut 
into 5 µm slices. After hematoxylin and eosin (H&E) staining, 

the pathological changes of all the sections were observed by 
optical microscope (BX-42; Olympus, Tokyo, Japan). Two 
independent pathologists performed double-blind scoring 
according to published standards (28). The scores of the most 
severe pathological lesions in the samples were used to deter-
mine the degree of intestinal injury. A score of ≥2 points was 
considered indicative of NEC.

Western blot analysis. The protein levels of MYPT1, CPI‑17, 
and MLC20 in the ileum tissues of the control group and in 
the tissues with a pathological score ≥2 in the NEC group 
(n=12) were measured by standard western blot analysis. 
Briefly, the total protein was extracted from each sample in a 
lysis buffer. The protein concentration was measured by the 
BCA method (Beyotime Institute of Biotechnology, Shanghai, 
China). Next, 20 µg protein from each sample were subjected 
to SDS‑PAGE electrophoresis (stacker at 60 mA, 10% separa-
tion gel at 100 mA). The samples were then transferred to a 
PVDF membrane, using the wet method (280 mA for 1.5 h). 
The membrane was blocked with 5% BSA at room tempera-
ture and primary antibodies including rabbit polyclonal 
MYPT1 antibody (dilution, 1:1,000; cat. no. ab59235), rabbit 
polyclonal phospho MYPT1 antibody (dilution, 1:1,000; cat. 
no. ab59202), rabbit monoclonal CPI17α antibody (dilution, 
1:1,000; cat. no. ab32213), rabbit monoclonal phospho-CPI17α 
antibody (dilution, 1:1,000; cat. no. ab52174), rabbit monoclonal 
MYL12B (dilution, 1:1,000; cat. no. ab137063), rabbit mono-
clonal phospho-MYL12B (dilution, 1:1,000; cat. no. ab177354) 
and rabbit polyclonal β-actin antibody (dilution, 1:5,000; cat. 
no. ab8227), purchased from Abcam (Cambridge, MA, USA) 
were added and incubated overnight at 4˚C. After washing, 
secondary goat anti-rabbit (HRP) IgG antibody (dilution, 
1:2,000; cat. no. ab6721) were added and incubated for 1 h. 
ECL luminous agent (Applygen Technologies, Inc., Beijing, 
China) was added and GE gel imager (LAS4010) was used to 
detect the signal and record the results.

Immunohistochemistry. The slices were first baked in an 
incubator at 70˚C for 30  min before dewaxing. and rehy-
drating them. Then the slides were soaked twice for 5 min 
in xylene, followed by washing twice with 100%  ethanol 
(2  min each time), and washing twice with 95% ethanol 
(2 min each time). Trypsin was used to retrieve antigens and 
SP staining was performed. The primary antibodies including 
anti‑CPI17 α (1:100; Abcam), anti‑MYPT1 (1:100; Abcam) 
and anti‑MYL12B (1:200; Abcam) antibodies were added and 
the samples were incubated overnight at 4˚C. After washing 
the next day, secondary antibody (p6261; Abcam) was added 
and color development was performed (DAB chromogen for 
1 ml substrate). An Olympus inverted fluorescence microscope 
(IX73) was used to capture images.

Three independent pathologists observed the slices, 
selecting five representative visual fields (10x40 times) from 
each slide. A scoring system gave 1 point to samples that consti-
tuted the number of cytoplasmic‑positive cells accounting for 
<25% of the total number of cells (weak positive ±), 2 points 
when the percentage of positive cells was between 25 and 50% 
(+), 3 points for a 50-75% positivity rate (++), and 4 points for 
positivities >75% (+++). Additionally, the intensity of the color 
was represented by (±), (+) and (++) corresponding to 1, 2 and 
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3 points. The scores from the two methods were multiplied to 
get the final score.

Statistical analysis. The SPSS 20.0 statistical software (IBM 
SPSS, Armonk, NY, USA) was used for analyses. Mean values 
were expressed as mean ± standard deviation. Comparisons 
were performed by t or χ2 tests. P<0.05 was considered to 
indicate a statistically significant difference.

Results

H&E staining. H&E staining was observed under a light 
microscope. The intestinal villi of samples from mice in the 
control group were intact and the submucosal layer had no 
edema. In the NEC group, the structure of the intestinal wall 
was damaged and the villi appeared to be broken (Fig. 1).

Western blot analysis. The expression levels of MYPT1 and 
pMYPT1 in the ileum of mice of the NEC group were lower 
than those of the control group (P<0.01). Levels of CPI17 in 
the NEC group were lower than those in control group. But 
the levels of pCPI17 in the NEC group were found to be higher 
when compared with those in the control group. However, 
the expression levels of M1720 in the NEC group were lower 
than those in the control group (P<0.01). The expression levels 
of pMLC20 in the NEC group were higher than those in the 
control group (P<0.05) (Fig. 2).

Immunohistochemistry. The expression levels of CPI‑17, 
MYPT1 and MLC20 in the ileum of the NEC group mice 
and the control group mice were mainly expressed in the 
cytoplasm, but the staining intensities for CPI‑17, MYPT1 
and MLC20 were lighter in the NEC group mice. In addition, 

Figure 1. H&E staining of mouse terminal ileum. (A and B)  Control group, intestinal villi and epithelium were intact, tissue structure was normal, scored ‘0’ 
points. (C‑F) NEC group, moderate to severe submucosal separation and/or lamina propria separation combined with local villi shedding, scored ‘2-3’ points.
(G and H) NEC group, the intestinal villi disappeared, intestinal necrosis, scored ‘4’ points. NEC, necrotizing enterocolitis.
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the proportion of positive cells in the NEC group was lower 
than that in the control group (Fig. 3). Statistically significant 
differences were found between the scores from mice in the 
two groups (Table I).

Discussion

At present, the pathogenic mechanisms of NEC remain to be 
determined. Known risk factors for the disease include prema-
ture delivery, enteral feeding, bacterial infections, persistent 
intestinal ischemia and the use of certain drugs (29-34). In recent 
years, an altered intestinal structure and immature immune 
function have also been found to be conducive to NEC (35,36). 
A reflex triggered by hypoxic damage can cause the mesenteric 
blood vessels and intestinal smooth muscles to spasm, resulting 
in significant reduction in intestinal blood flow. In addition, 
improper feeding, such as feeding with high‑tension formulas, 
can also reduce the intestinal blood flow, which in turn leads to 
intestinal ischemic damage. Intestinal ischemic damage alters 
the normal mucus production, which can increase suscepti-
bility of the intestinal tract to bacterial invasion (37). On the 
other hand, feeding provides sufficient substrate for intestinal 
bacteria to outgrow. Bacteria can penetrate the intestinal wall, 
resulting in the production and accumulation of hydrogen that 
shows up as gas accumulation on the intestinal wall in X‑ray 

Figure 2. Expression of MYPT1, CPI17 and MLC20 in terminal ileum of mice in the NEC and control groups detected by western blot analysis. (A) Protein 
expression detected by western blot analysis. (B) Relative protein expression levels (**P<0.01; *P<0.05). NEC, necrotizing enterocolitis.

Table I. Scoring of the immunohistochemical results of both 
NEC and control groups.

	 Scoring of the immunohistochemical
	 results (mean ± SD)	 _____________________________________________
Variables	 CPI-17	 MYPT1	 MLC20

Control group 	 7.47±3.23	 9.13±3.16	 10.21±3.14
NEC group	 1.80±0.77	 4.53±1.77	   1.33±0.49
T-value	 6.614	 4.921	 10.458
P-value	 <0.001	 <0.001	 <0.001

SD, standard deviation; NEC, necrotizing enterocolitis.
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films. Eventually, the gas can enter the portal vein and this 
can be detected by X‑ray or liver B ultrasound (38). Intestinal 
necrosis starts from the inner most mucosal layer, gradually 
spanning the whole thickness of the intestinal wall, leading to 
perforation. If allowed to progress, the disease leads to necrosis 
of the whole layer of intestinal wall, perforation, peritonitis, 
sepsis and death. It is clear then that intestinal necrosis in NEC 
is preceded by changes in the state of intestinal contraction and 
understanding these changes is key to clarifying the pathogenic 
mechanisms. In the present study, altered expression of proteins 
related to the intestinal tube contraction were detected in the 
mouse ileum of NEC model mice, and it is possible that these 
changes may have triggered or exacerbated hypoxia‑ischemia 
in the intestinal tissues.

The changes in the phosphorylation level of MLC20 due 
to detected changes in the MLCK/MLCP ratio and induced 
by CPI‑17, would lead to smooth muscle contraction. The 
non‑phosphorylated CPI‑17 forms a unique ‘V’ shape structure, 
with the position‑38 threonine located in the middle of the 
subunit. The phosphorylation of threonine on position 38 can 
be induced by ROCK and other upstream factors, resulting in 
changes of the spatial conformation of CPI‑17. Phosphorylated 

residues on the surface of the protein can increase the 
inhibitory effects of CPI‑17 on MLCP by 1,000 times (39). In 
the present study, the expression of pCPI‑17 in the ileum of the 
NEC model mice was higher than that in the control group 
(P<0.01), and thereby the dephosphorylation of MLC20 was 
inhibited, giving rise to high levels of phosphorylated MLC20 
(P<0.01). Under such conditions, cross‑linking between 
actin and myosin would have been increased, causing actin 
microfilament contraction, and intestinal spasm, leading to 
mucosal ischemia and hypoxia, and ultimately promoting the 
development of intestinal necrosis.

MYPT1 is a regulatory subunit of MLCP, MLCP has 
different substrates in different tissues, dephosphoryla-
tion by the enzyme's catalytic action results in different 
biological effects (40‑42). MLCP is an important substrate 
in the Rho/ROCK pathway, and the activated ROCK can 
phosphorylate the MYPT1 subunit, which renders the whole 
MLCP inactive and unable to catalyze the dephosphoryla-
tion of phosphorylated myosin light chain (pMLC20). The 
resulting increased levels of pMLC20 lead to the cross‑linking 
of actin and myosin proteins, leaving the smooth muscle 
in a spastic state (43). Notably, results of this study showed 

Figure 3. Immunohistochemistry images of the expression of CPI‑17, MYPT1 and MLC20 in the terminal ileum of mice. The staining of CPI‑17, MYPT1 and 
MLC20 in the ileum of the NEC group was lighter than that of the control group. Statistically significant differences were found in scores between the two 
groups (P<0.01). NEC, necrotizing enterocolitis.
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that the expression of MYPT1 in the NEC group was lower 
than that in the control group (P<0.05), which may have led 
to decreased catalytic effects of MLCP on pMLC20 dephos-
phorylation. With the involvement of phosphorylated CPI‑17, 
the phosphorylation levels of MLC20 would have been kept 
at high levels, leading to sustained intestinal smooth muscle 
contraction, that would eventually lead to intestinal necrosis 
due to ischemia and hypoxia.

Nevertheless, the intestinal ischemia and hypoxia caused 
by persistent intestinal contraction is only one of the condi-
tions that promote intestinal necrosis. Intermittent hypoxia can 
also lead to the contraction of mesenteric blood vessels (44,45), 
and increase the ischemic state of the intestinal wall tissue. In 
addition, the relationship between abnormal intestinal smooth 
muscle contraction and changes in the expression of other 
known risk factors such as TLR4 and TLR9 as well as epithe-
lial cell apoptosis needs to be further studied. Our study has 
provided new ideas for clarifying the pathogenesis of NEC, an 
essential element for improving the prevention and treatment 
of this disease.
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