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Abstract. The aim of the present study was to investigate 
the changes in retinal gene expression at three time points 
and assess the underlying molecular mechanisms of diabetic 
retinopathy (DR) in a streptozotocin (STZ)‑induced diabetes 
rat model using bioinformatics analysis. The gene expression 
profile of GSE28831 was extracted from the Gene Expression 
Omnibus database and differentially expressed genes (DEGs) 
were identified at three different time points (1, 4 and 12 weeks) 
using the limma package in R language. Gene ontology (GO) 
enrichment analysis of DEGs was performed followed by a 
principal component and pathway enrichment analysis of the 
selected DEGs along with protein‑protein interaction network 
construction at the three time points. A total of 402, 105 and 
213 DEGs were screened at 1, 4 and 12 weeks, respectively. In 
addition, the expression of 8 genes was identified to be signifi-
cantly different at different time points, including cytochrome 
P450 2B2 (CYP2B2; downregulated gene; P=0.048; at 1 week), 
mannan binding lectin‑associated serine protease‑2 (MASP2; 
downregulated gene; P=0.044), lecithin retinol acyltransferase 
(LRAT; downregulated gene; P=0.015), retinal pigment epithe-
lium (RPE)‑specific protein 65 kDa (RPE65; downregulated 
gene; P=0.025), 11‑cis‑retinoldehydrogenase (RDH5; down-
regulated gene; P=0.04; at 4 weeks), mitogen‑activated protein 
kinase 13 (MAPK13; upregulated gene; P=0.036), LRAT 
(downregulated gene; P=0.01) and RPE65 (downregulated 
gene; P=0.009; at 12 weeks). Furthermore, pathway enrichment 
and GO enrichment analyses revealed that DEGs at 4 weeks 
were primarily enriched in retinol metabolism and processes 
associated with visual functions, including ‘visual perception’ 

and ‘retinol metabolism’. DEGs, including CYP2B2, MASP2, 
LRAT, RPE65, RDH5 and MAPK13 may be potential targets 
for the diagnosis and treatment of DR. Thus, the current study 
demonstrated that abnormal visual functions occur at 4 weeks 
in STZ‑induced diabetic rats. This may provide a scientific 
basis for the diagnosis and treatment of DR because DEGs 
may be used to facilitate the development of novel therapeutic 
strategies to diagnose and treat DR.

Introduction

Diabetic retinopathy (DR) is a microvascular complication and 
is the most common cause of vision impairment and blindness 
among adults aged 20‑74 years (1). The incidence of DR is 
associated with a number of risk factors such as hyperglycemia, 
hyperlipidemia and hypertension (2) and is characterized by 
signs of retinal ischemia and/or signs of increased retinal 
vascular permeability (3). Furthermore, DR is a progressive 
disease that endangers all retinal layers via insults of meta-
bolic and neurological inflammation, which may contribute to 
vascular disruptions over time (4). Although clinical trials have 
demonstrated that effective treatments for diabetic retinopathy 
may reduce severe vision loss by 90% (5‑7), these studies have 
emphasized the critical requirement for periodic eye exami-
nations for all patients with diabetes. Thus, it is necessary 
to improve the means by which retinopathy is identified and 
prevented in its earliest stages rather than wait for the onset of 
vision‑threatening lesions (8).

Over the past decade, studies have demonstrated that 
numerous factors may be involved in the pathogenesis of 
DR (9,10) and it has been determined that chronic hypergly-
cemia is a factor involved in the development and progression 
of DR (11‑13). Chronic hyperglycemia may induce multiple 
cellular changes that lead to diabetic complications due to its 
toxic effects and/or the effects of its pathophysiological deriva-
tives that directly act on tissues (14,15). Other factors including 
non‑enzymatic glycation and glycoxidation may also induce 
DR. Furthermore, a number of candidate genes associated 
with the visual cycle, including lecithin retinol acyltransferase 
(LRAT)  (16), retinal pigment epithelium (RPE)‑specific 
protein 65 kDa (RPE65) (17) and 11‑cis‑retinoldehydrogenase 
(RDH5)  (18) have been implicated in DR. Although early 
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changes in retinal gene expression have been evaluated 
by analyzing retinal gene expression in streptozotocin 
(STZ)‑induced diabetic rats  (19), the specific underlying 
molecular mechanisms that occur during DR development and 
progression remain to be elucidated.

In the present study, bioinformatics was used to analyze the 
changes in retinal gene expression over a period of 12 weeks. 
Differentially expressed genes were analyzed at three different 
time points (1, 4 and 12 weeks) in the gene expression profile 
of retinal samples. The present study assessed the changes in 
retinal gene expression at the three time points with the aim 
of identifying the underlying molecular mechanisms of DR in 
diabetes.

Materials and methods

Affymetrix microarray data of retina gene. The gene 
expression profile of GSE28831 was downloaded from 
the Gene Expression Omnibus database (https://www 
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28831). The 
dataset of GSE28831 was provided by a previous study by 
Kirwin et al (19), which obtained retinal samples of Long 
Evans rats, sacrificed 7 days, 4 weeks and 3 months after 
the induction of diabetes. A total of 21 retinal samples 
including 12 control samples and 9 diabetic samples were 
eligible for further analysis. Control samples consisted of 9 
normal samples and 3 samples that received an injection of 
streptozotocin (STZ), but did not develop hyperglycemia. 
Diabetes samples included 9 retina samples which were 
obtained from STZ‑induced diabetic rats. Retinal samples 
were collected from the retinas of control (n=3) and 
STZ‑induced diabetic rats (n=3) at the three time points (1, 
4 and 12 weeks after the induction of diabetes). In addition, 
3 other samples were obtained from rats that were normo-
glycemic 1 week following STZ treatment that were used as 
normal controls.

The platform used was the GPL7294 Agilent‑014879 
Whole Rat Genome Microarray 4x 44K G4131F (Agilent 
Technologies, Inc., Santa Clara, CA, USA). The raw file and 
the annotation information file of the platform were also 
downloaded.

Data preprocessing and differential expression analysis. Each 
probe was mapped with one or multiple gene names labeled in 
an annotation platform. To make statistical inferences, each 
gene was normalized between microarrays based on quartile 
normalization (20). When multiple probes were mapped to 
the same gene ID, the mean expression of those probes was 
calculated. When one probe was mapped to multiple gene sets, 
information about the probe was deleted. The linear models 
of microarray data (limma) package (Version 3.30.3; Biocon-
ductor, Seattle, WI, USA) in R language was used to identify 
genes that were differentially expressed between control and 
disease samples at the three time points (21). The P values of 
genes were calculated using student's t test and adjusted by 
multiple testing to circumvent the false‑positive results. Subse-
quently, the log2‑fold‑change (logFC) was calculated. Only 
genes with an adjusted P<0.05 and |log2FC|>1 were selected 
as differentially expressed genes (DEGs) (22), which were the 
signature genes of DR.

Comparison of DEGs between control and disease samples. 
The DEGs between control and disease samples at the three 
time points were classified into upregulated and downregu-
lated gene sets for further analysis. Subsequently, the contrast 
between the DEGs at the three time points was assessed 
according to the number of DEGs. Then gene sets at the 
three time points were compared and illustrated using a Venn 
diagram (Fig. 1) (23).

Principal component analysis (PCA) of DEGs. PCA, a 
multivariate regression analysis (24), was used to distinguish 
samples with multiple measurements (25). A PCA of DEGs 
was conducted in the present study using prcomp algorithm 
in R language  (26,27). A 3D graph was then obtained, in 
which DEGs were considered as variables and the difference 
between control and disease samples at the three time points 
were observed.

Pathway enrichment analysis of DEGs. Pathway enrichment 
analysis is widely used to analyze high‑throughput data and 
help link individual genes or proteins, which are differentially 
expressed under specific conditions, in order to improve 
understanding regarding biological pathways (28). To identify 
the pathways associated with DEGs selected at the three time 
points, the software tool KOBAS [kyoto encyclopedia of genes 
and genomes (KEGG) Orthology Based Annotation System] 
version 2 (http://kobas.cbi.pku.edu.cn), which was used for 
the annotation and identification of enriched pathways and 
diseases (29) based on the cumulative hypergeometric distri-
bution algorithm (a discrete probability distribution), which 
was used for drawing from >2 selections in a population, again 
without replacement (30) with P<0.05 denoting a significant 
difference.

Protein‑Protein interaction (PPI) network construction. 
Numerous physical activities of the cells were evaluated based 
on protein integration and dissociation. A variety of cellular 
physiological activities and the reaction of cells to the external 
and internal environment are regulated by PPI networks (31). 
Thus, a more thorough investigation of protein interactions is 
required to understand this biological phenomenon (32).

STRING (search tool for retr ieving interacting 
genes/proteins; http://string‑db.org/) (33) provides uniquely 
comprehensive coverage and ease of access to experimental 
and predicted interaction information. A PPI network was 
constructed, in which the interactions of DEGs between 
control and disease samples at the three time points were 
mapped to STRING based on information including the 
sequence characters and structures. Interaction patterns 
with a combined score >0.4 were selected. Subsequently, the 
PPI network at the three time points was visualized using 
Cytoscape software (version 3.4.0; Cytoscape Consortium, 
San Diego, CA, USA) (34). The nodes with higher degree 
served an important role in the PPI network, and may be the 
key nodes. Nodes represent the proteins encoded by DEGs, 
and a degree is considered to be the numbers of proteins that 
interact with that protein.

Functional analysis of the DEGs at the three time points. 
Gene ontology enrichment analysis has been extensively 
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used to provide a detailed view for understanding the 
molecular mechanism and identifying a deeply complicated 
network, which consisted of a set of genes with similar 
functions (35).

DAVID (a database for annotation, visualization, and inte-
grated discovery; version 6.8; https://david.ncifcrf.gov/home.
jsp) (36), a comprehensive set of functional annotation tools, 
was used for systematic and integrative analyses of large 
gene/protein lists. It evaluated the functions of the DEGs at the 
three time points and defined significant function enrichment 
of these genes in multiple gene ontology (GO) categories when 
P<0.05.

Results

Identification of DEGs. A total of 402, 105 and 213 DEGs with 
the cut‑off criteria of an adjusted value of significance (P<0.05) 
and |log2FC|>1 were selected as the thresholds to screen DEGs 
in control and disease samples at 1, 4 and 12 weeks.

Comparison of DEGs at the three time points. As presented 
in Fig. 1A, a total of 720 DEGs including 369 upregulated and 
351 downregulated DEGs were screened. There were a greater 

number of downregulated than upregulated DEGs, with the 
exception of at 12 weeks following STZ‑induced diabetes 
where the converse was true.

As presented in Fig. 1B, there were no common DEGs at 
all three time points. However, there were 3 common DEGs in 
weeks 1 and 4, 17 common DEGs in weeks 1 and 12 and 10 
common DEGs in weeks 4 and 12.

PCA of DEGs. As presented in Fig. 2, disease and control 
samples were completely separated by the selected DEGs at 
the three time points, meaning that the expression patterns 
of screened DEGs were specific at different time points and 
could be used to completely distiguish between disease and 
control samples.

Pathway enrichment analysis of the DEGs. The significantly 
enriched pathways for the up‑ and downregulated DEGs 
are presented in Table I. There were two KEGG pathways 
(Neuroactive ligand‑receptor interaction and Arachidonic 
acid metabolism) associated with DEGs at 1 week and one 
KEGG pathway (Retinol metabolism) associated with DEGs 
at 4 weeks. The retinol metabolism pathway included three 
downregulated genes (LRAT, RPE65 and RDH5) and the 

Figure 1. Comparision of differentially expressed genes at the three timepoints. (A) Historgram graph demonstrating the number of upregulated and down-
regulated genes at three time points. Green represents upregulated genes and red represents downregulated genes. (B) Venn diagram of the number of genes 
at each timepoint. Blue represents 1 week, pink represents 4 weeks and yellow represents 12 weeks.

Figure 2. Principal component analysis of DEGs at the three timepoints. Analysis of DEGs at (A) 1, (B) 4 and (C) 12 weeks. Red pellets, STZ‑induced rat retinal 
sample; gray pellets, normal rat retinal sample; DEGs, differentially expressed genes.
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LRAT and RPE65 genes were also downregulated in DEGs at 
12 weeks (Fig. 3).

PPI network construction. A total of 104, 22 and 35 PPI pairs at 
1, 4 and 12 weeks, respectively were obtained. These PPI pairs 
were then used to construct the PPI network by integrating 
these associations in the retina (Fig. 3). In this network, the 
proteins cytochrome P450 2B2 (CYP2B2; 1 week), mannan 
binding lectin‑associated serine protease‑2 (MASP2), LRAT, 

RPE65, RDH5 (4 weeks), mitogen‑activated protein kinase 13 
(MAPK13), LRAT and RPE65 (12 weeks) with high degrees 
form a local network and these proteins served an important 
role in the PPI network, and may be the key proteins in the 
development of DR.

GO enrichment analysis of DEGs involved in PPI network. 
As presented in Table II, the DEGs in the PPI network at 1, 
4 and 12 weeks were enriched in 12, 7 and 10 GO categories, 

Table I. DEGs enriched in the KEGG pathway at the three time points.

A, Week 1

Term	 Count	 Genes	 P‑value

rno04080: Neuroactive ligand‑receptor	 13	 THRB, LEPR, VIPR1, 	 0.005083
interaction		  NPY5R, CHRM5, GPR35, 	
		  CHRM4, PTGDR, ADRA1B, 	
		  MTNR1B, ADRA2B, 	
		  HTR2A, GHR	
rno00590: Arachidonic acid metabolism	 5	 CYP2U1, CYP2B2, PLA2G4A, 	 0.048328
		  CYP4F17, GPX3

B, Week 4			 

Term	 Count	 Genes	 P‑value

rno00830: Retinol metabolism	 3	 LRAT, RPE65, RDH5	 0.041873

DEGs, differentially expressed genes; KEGG, kyoto encyclopedia of genes and genomes.

Figure 3. Protein‑protein interaction network at the three timepoints. Network at (A) 1, (B) 4 and (C) 12 weeks. Green nodes represent proteins expressed by 
downregulated differentially expressed genes; red nodes represent proteins expressed by upregulated differentially expressed genes.
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respectively. Furthermore the DEGs in PPI network at 1 week 
were primarily enriched in processes associated with metabo-
lism and response, including ‘fatty acid metabolic processes’, 
‘responses to drug’ and ‘responses to endogenous stimulus’. 
The DEGs in the PPI network at 4 weeks were enriched in 
processes associated with visual functions, such as ‘visual 
perception’, ‘sensory perception of light stimulus’ and 
‘vitamin A metabolic process’. The DEGs in the PPI network 
at 12 weeks were primarily enriched in regulatory processes 
including ‘positive regulation of transcription, DNA‑depen-
dent’, ‘positive regulation of RNA metabolic process’ and 
‘negative regulation of cell proliferation’.

Discussion

Due to the increasing number of individuals diagnosed 
with diabetes, blindness caused by DR may become more 
common unless improvements are made in the diagnosis and 
treatment of DR (7). To improve understanding regarding 
the mechanisms involved in DR formation, the present study 
investigated the biological processes and signaling pathways 
associated with DR. The analysis of gene expression profiling 
identified the abnormally expressed genes associated with DR 
and enabled the identification of novel targets for therapeutic 
strategies. In the current study, a total of 402, 105 and 213 
DEGs were screened at 1, 4 and 12 weeks, respectively, and 
eight significant genes were identified including CYP2B2 
(at 1 week), MASP2, LRAT, RPE65, RDH5 (at 4 weeks), 
MAPK13, LRAT and RPE65 (at 12 weeks). Pathway enrich-
ment and GO enrichment analyses revealed that DEGs were 
primarily enriched in processes associated with visual func-
tions, including ‘visual perception’ and ‘retinol metabolism’ 
at 4 weeks.

CYP2B2 encodes an enzyme that controls arachidonic acid 
metabolism (37). Arachidonic acid is a precursor of inflamma-
tory mediators, and early stage DR is regarded as a low‑grade 
chronic inflammatory condition (38). Pathway enrichment 
analysis in the present study revealed that DEGs at 1 week 
were enriched in arachidonic acid metabolism. However, early 
inflammation of the eyes does not lead to any clinical mani-
festations. Therefore, inflammation in the retina may be an 
important component of early DR without clinical manifesta-
tions and the associated genes, including CYP2B2, may serve 
important roles in the evaluation of these functions. This is in 
accordance with a previous study by Joussen et al (39), which 
suggested that the response of the retina to the diabetic chal-
lenge consists of an inflammatory component.

In the present study, MASP2 was downregulated at 
4 weeks. MASP2 encodes a novel serine protease that acts in 
the mannan‑binding lectin (MBL)‑lectin complement fixation 
pathway (40). The MBL‑lectin complement fixation pathway 
is widely thought to serve a major role in host defense against 
infection and the expression of MBL is upregulated during 
inflammation (41). Østergaard et al (42) suggested that the 
complement system, specifically the MBL pathway, serves an 
important role in the pathogenesis of diabetic vascular compli-
cations such as DR. The decreased expression of MASP2 leads 
to MBL deficiency, which increases the overall susceptibility 
of an individual to infectious diseases (43). Thus, the present 
study suggests that the downregulation of MASP2 may 
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stimulate the progression of DR and promote the appearance 
of other symptoms associated with DR.

LRAT, RPE65 and RDH5 are involved in retinol metabo-
lism, and these genes are all part of the visual cycle that 
recycles all‑trans‑retinal from bleached photoreceptors to the 
11‑cis‑retina required for phototransduction (20). The visual 
cycle is critical for visual function. Previous studies have 
reported that mutations in three different genes involved in 
the visual cycle, RPE65, LRAT and RDH12 cause early onset 
retinal dystrophy (44). Furthermore, RPE65 is essential for 
the maintenance of normal vision (45,46). Thus, the down-
regulation of LRAT, RPE65 and RDH5 may lead to abnormal 
visual function. In addition, LRAT and RPE65 were included 
in the downregulated DEGs at 12 weeks and GO enrichment 
analysis revealed that he majority of DEGs at 4 weeks were 
associated with visual functions, including ‘visual perception’, 
‘sensory perception of light stimulus’ and ‘vitamin A meta-
bolic process’. It has therefore been suggested that abnormal 
visual functions occur at 4 weeks in STZ‑induced diabetic 
rats, which may be caused by the downregulation of genes 
associated with visual functions, including LRAT, RPE65 and 
RDH5. However, considering the present study is a bioinfor-
matic study, further long‑term studies are required to verify 
the association between gene expression and visual function.

MAPK13 encodes an enzyme that is included in the 
MAPK family. In the PPI network at 12 weeks, MAPK13 
with a high degree formed a local network, suggesting that 
MAPK13 may serve a major role in DR. MAPKs have been 
implicated in a number of diseases including cancer, inflam-
matory disease, obesity and diabetes (47,48). Previous studies 
have reported that MAPKs are involved in regulating insulin 
secretion and β cell survival (47,49,50) and MAPK inhibitors 
contribute to the prevention of cardiovascular diseases such as 
retinopathy (51). Therefore, MAPK13 may be involved in the 
pathogenesis of DR, although further studies are required to 
confirm this observation.

In conclusion, the data in the present study provide 
comprehensive bioinformatic analysis of DEGs, which may 
be involved in DR. It was also demonstrated that abnormali-
ties in visual functions occur in STZ‑induced diabetic rats 
at 4  weeks. DEGs, including CYP2B2, MASP2, LRAT, 
RPE65, RDH5 and MAPK13 may be potential targets for 
DR diagnosis and treatment. The results of the current study 
may provide a scientific basis for the diagnosis and targeted 
therapy of DR.
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