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Abstract. Radiotherapy is a vital and effective method to treat 
solid tumors. However, in many tumor types, development of 
resistance of cancer cells and cytotoxicity in normal tissues 
presents a major therapeutic problem. It is therefore crucial to 
identify and develop novel sensitizing agents that may improve 
the response to radiation therapy without causing any adverse 
effects. The present study aimed to investigate whether paeonol, 
a bioactive flavonoid, was able to confer sensitivity to radia-
tion in human ovarian cancer cells. The human ovarian cancer 
cell lines SKOV‑3 and OVCAR‑3 were exposed to varying 
doses of radiation (2, 4 or 6 Gy) in the presence or absence 
of paeonol (25, 50 or 100 µM). Radiosensitivity was assessed 
by measuring cell viability using a CCK‑8 assay and Annexin 
V/PI staining. Expression of vascular endothelial growth 
factor (VEGF), hypoxia inducible factor‑1α (HIF‑1α), proteins 
of the phosphatidylinositol‑3‑kinase (PI3K)/Akt pathway 
and apoptotic pathway proteins [caspase‑3, Bcl‑2‑associated 
death promoter, B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated 
X and Bcl‑extra large (Bcl‑xL)] were also assessed. Paeonol 
treatment enhanced apoptosis of SKOV‑3 and OVCAR‑3 cells 
that were exposed to radiation. The expression of Bcl‑2 and 
Bcl‑xL were markedly upregulated in these cells. Treatment 
with paeonol concentrations of 50 and 100  µM caused a 
significant downregulation of VEGF, HIF‑1α and PI3K/Akt 
pathway proteins. Paeonol effectively enhanced the sensitivity 

of ovarian cancer cells to radiation by significantly altering 
regulation of the proteins of the PI3K/Akt pathway, in addition 
to downregulating VEGF and HIF‑1α.

Introduction

Ovarian cancer is the most prevalent cancer amongst women, 
and is the third most frequent gynecological cancer, representing 
the most common cause of gynecological cancer‑associated 
mortalities (1). Approximately about 70% of ovarian cancers 
are diagnosed at advanced stages and, even following surgery 
and chemotherapy, have high rates of recurrence (42‑48%) 
due to presence of residual disease at microscopic levels (2,3). 
Radiation therapy may be employed to eliminate this residual 
disease that is subsequently responsible for recurrence  (4). 
Several reports indicate an increased survival rate following 
radiation therapy when used in combination with surgery or with 
surgery and chemotherapy (5,6). Radiotherapy has been demon-
strated to induce a cytotoxic response in chemotherapy‑resistant 
ovarian cancers, which increases the possibility of improved 
tumor control (7). However, cytotoxicity is considered to be a 
key limiting factor of radiotherapy use; therefore, agents that 
sensitize ovarian cancer cells to radiation therapy may be of 
significant clinical value in treatment of chemotherapy‑resistant 
cancers, and in reducing the recurrence of cancer.

Tumor hypoxia is a common feature of malignant tumors, 
and contributes to resistance to radiotherapy  (8). Hypoxia 
inducible factor‑1 (HIF‑1) is one of the key regulators of cell 
response to hypoxic conditions. HIF‑1α, the oxygen‑sensitive 
subunit of HIF‑1, regulates the expression of numerous down-
stream target genes, such as vascular endothelial growth factor 
(VEGF), and is implicated in tumor resistance to radiotherapy 
and to chemotherapy (9,10).

Fur thermore, the phosphatidylinositol‑3‑kinase/ 
Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) 
pathway regulates cell growth and proliferation. This pathway 
exerts crucial roles in apoptosis, tumor generation, tumor 
development and metastasis, and has been reported to be 
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involved in resistance to radiotherapy  (11,12). In addition, 
phosphatase and tensin homolog (PTEN), a negative regulator 
of the PI3K/Akt/mTOR pathway, is a highly effective tumor 
suppressor (13). PTEN has also been reported to be frequently 
mutated in multiple human cancers  (14,15). Owing to the 
crucial roles in tumor pathogenesis, the PI3K/Akt/mTOR 
pathway is a critical target in cancer therapy. Therefore, iden-
tification of inhibitors of the pathway could potentially prevent 
tumor development and also may represent sensitizing agents 
to radiotherapy in cancer treatment.

Accumulating experimental data have demonstrated the 
potential of natural products as antitumor drugs (16). Paeonol 
(4‑methoxy‑2‑hydroxyacetophenone), an active compound 
from the root bark of Paeonia suffruticosa, is used in traditional 
Chinese medicines (17,18). Paeonol possesses various pharma-
cological properties, including antioxidant, anti‑inflammatory 
and immunomodulatory effects (19‑21). Lee et al (22) previ-
ously reported that paeonol inhibited cell migration and 
angiogenesis by downregulating PI3K/Akt signaling. Paeonol 
was also reported to sensitize lung adenocarcinoma cells to 
radiotherapy (23). Considering these diverse biological effects, 
the current study investigated whether paeonol inhibits tumor 
development in ovarian cancer cells, and whether it sensitizes 
these cells to radiation.

Materials and methods

Cell lines, equipment and reagents. The human ovarian 
carcinoma cell lines SKOV‑3 and OVCAR‑3 were obtained 
from ATCC and were cultured according to the instructions 
provided by ATCC. Cells were incubated with various doses 
of paeonol (0, 25, 50 or 100 µM) for 12 h and subsequently 
exposed to X‑ray radiation for 24 h, at doses of 0, 2, 4 or 6 Gy. 
Irradiation was performed at a dose rate of 0.40 Gy/min using 
a 180‑KVp X‑ray generator [IXS2050; VJ Technologies China 
(Suzhou) Co., Ltd., Suzhou, China]. Paeonol was procured 
from Sigma‑Aldrich (Merck KGaA, Darmstadt, Germany). 
Antibodies against VEGF (cat. no.  2463), HIF‑1α (cat. 
no. 79233), β‑actin (cat. no. 3700), caspase‑3 (cat. no. 9662; all 
Cell Signaling Technology Inc., Danvers, MA, USA), B‑cell 
lymphoma (Bcl)‑2 (cat. no. sc‑509), Bcl‑2‑associated death 
promoter (Bad; cat. no.  sc‑943), Bcl‑2‑associated X (Bax; 
cat. no.  sc‑4239), Bcl‑extra‑large (xL; cat. no.  sc‑136132), 
Akt (cat. no. sc‑24500), p‑Akt (cat. no. sc‑135650), glycogen 
synthase kinase (GSK)‑3β (cat. no.  sc‑221692), p‑GSK‑3β 
(cat. no.  sc‑81494), mammalian target of rapamycin 
complex 1 (mTORc1; cat. no. sc‑293089) and phosphatase and 
tensin homolog (PTEN; cat. no. sc‑400103; all Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA) were used for western 
blotting. All antibodies were used at 1:1,000.

All other reagents used in the study were of analytical 
grade and were procured from Sigma‑Aldrich unless other-
wise specified.

Cell viability assay. The sensitivity of SKOV3 and OVCAR‑3 
to radiation and/or paeonol was assayed using a Cell Counting 
kit‑8 (CCK‑8; Dojindo Laboratories, Kumamoto, Japan). Cells 
were incubated with paeonol (25, 50 or 100 µM) for 12 h and 
then exposed to radiation. The control cells were exposed to 
equal volume of DMSO instead of paeonol. After radiation 

exposure for 24 h, the cells were seeded in a 96‑well plate at a 
density of 1x104 cells/well, and incubated for 48 h in an atmo-
sphere containing 5% CO2 at 37˚C. CCK‑8 solution (10 µl) was 
added to each well, and the plate was incubated for 2 h at room 
temperature. The absorbance at 450 nm was measured using 
a microplate reader (Synergy HT; Bio‑Tek Instruments, Inc., 
Winooski, VT, USA).

Flow cytometry analysis for cell viability. Following irradiation 
for 24 h, the cells were collected, resuspended in fresh medium 
and analyzed for viability using an Annexin V‑fluorescein 
isothiocyanate apoptosis detection kit (BD Biosciences, San Jose, 
CA, USA), according to the manufacturer's instructions. The 
apoptotic cells were detected by flow cytometry (FACSCalibur 
with CellQuest software version 5.1; BD Biosciences).

Colony formation assay. A colony formation assay was 
performed as previously described (24). Following irradiation, 
cells (1x103 cells/plate) were seeded into 60‑mm Petri dishes 
with standard culture medium (RPMI 1640; Sigma‑Aldrich; 
Merck KGaA) and incubated at 37˚C in an atmosphere 
containing 5% CO2. After 14 days of incubation, the cells were 
fixed with 4% formaldehyde and stained with crystal violet. 
Colonies containing >50 cells were counted and the surviving 
fraction was calculated by normalization to their respective 
non‑irradiated control. The surviving fraction (SF) for a given 
dose of paeonol was calculated as follows: SF=number of colo-
nies following irradiation/the number of cells inoculated x cell 
planting rate (i.e., the number of cells in the appropriate 0 Gy 
group). The multitarget click model in GraphPad Prism 5.0 
(GraphPad Software Inc., La Jolla, CA, USA) was used to 
determine the cell survival curves.

Reverse transcription (RT)‑polymerase chain reaction (PCR). 
Following exposure to paeonol and irradiation, cells were 
subjected to RT‑PCR analysis to assess the expression of VEGF. 
The cells (1x106 cells) were lysed and total RNA was extracted 
using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) according to the manufacturer's protocol, 
followed by cDNA synthesis (1 µg RNA was used for cDNA 
synthesis) as described previously (25). VEGF‑A mRNA levels 
were determined by PCR using a One‑Step SYBR PrimeScript 
RT‑PCR kit (Takara, Inc., Otsu, Japan) using a Thermal Cycler 
Dice Real Time System II (Takara Bio, Shiga, Japan) according 
to the manufacturer's protocol. The thermocyclying conditions 
were as follows: Initial denaturation at 95˚C for 8 sec followed 
by 45 cycles of denaturation at 95˚C for 3‑6 sec and annealing 
and extension at 60˚C for 35‑38 sec. The primers used were as 
follows: VEGF‑A: Forward, 5'‑CCA​GCA​GAA​AGA​GGA​AAG​
AGG​TAG‑3'; reverse, 5'‑CCC​CAA​AAG​CAG​GTC​ACT​CAC‑3'; 
GAPDH: Forward, 5'‑GAA​GGT​GAA​GGT​CGG​AGTC‑3'; and 
reverse, 5'‑GAA​GAT​GGT​GAT​GGG​ATT​TC‑3'. VEGF expres-
sion levels were normalized to those of GAPDH expression. The 
intensity of the PCR products was determined using Image Lab 
version 4.1 (Bio‑Rad Laboratories, Inc., Hercules, CA, USA).

Western blotting. Cells were harvested after 24 h following 
irradiation and were lysed as described previously (26). Protein 
concentration was determined by Bradford assay using a protein 
assay kit (Bio‑Rad Laboratories, Inc.). An equal concentration 
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of total protein (60 µg) from cells of each treatment group was 
subjected to electrophoresis by SDS‑PAGE, and the separated 
proteins were blotted and transferred onto nitrocellulose 
membranes. The membranes were blocked with 5% skim milk 
and incubated with primary antibodies overnight at 4˚C. This 
was followed by incubation with horseradish peroxidase‑conju-
gated secondary antibodies at room temperature for 1 h. The 
immunoreactive bands were detected by enhanced chemilumi-
nescence (GE Healthcare Life Sciences, Little Chalfont, UK). 
The densities of the positive bands were further analysed by 
ImageQuant TL software (version 7.0; GE Healthcare Life 
Sciences). The analyzed protein band densities were normal-
ized to those of β‑actin using anti‑β‑actin antibodies.

Statistical analysis. The values obtained are presented as 
mean ± standard deviation, from six independent experiments. 
The data were analyzed for statistical significance by one‑way 
analysis of variance and post‑hoc analysis by Duncan's 

Multiple Range Test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Paeonol reduces the viability of ovarian cancer cells. The 
cytotoxic effects of paeonol on non‑irradiated and irradi-
ated carcinoma cells were determined using a CCK‑8 assay. 
Paeonol significantly inhibited the proliferation of all cell 
lines in a dose‑dependent manner, irrespective of exposure 
to radiation (P<0.05; Fig.  1). Paeonol also improved the 
sensitivity of SKOV‑3 and OVCAR‑3 cells to radiation, in a 
dose‑dependent manner; when compared with the cells irradi-
ated but not treated with paeonol, viability was significantly 
reduced following combined exposure (P<0.05) (Fig. 1). Flow 
cytometric analysis for assessment of apoptotic cell counts 
by Annexin V/FITC staining revealed comparable results 
(Fig. 2). In both assays, the highest dose of paeonol (100 µM) 

Figure 1. Effect of paeonol on cell viability, determined by a cell counting kit‑8. Values are presented as mean ± standard deviation; n=6 experiments. *P<0.05 
vs. control, #P<0.05 vs group 7, @P<0.05 vs. group 16. 1, Control; 2, 25 µM paeonol; 3, 50 µM paeonol; 4, 100 µM paeonol; 5, 2 Gy; 6, 4 Gy; 7, 6 Gy; 8, 25 µM 
paeonol + 2 Gy; 9, 50 µM paeonol + 2 Gy; 10, 100 µM paeonol + 2 Gy; 11, 25 µM paeonol + 4 Gy; 12, 50 µM paeonol + 4 Gy; 13, 100 µM paeonol + 4 Gy; 14, 
25 µM paeonol + 6 Gy; 15, 50 µM paeonol + 6 Gy; 16, 100 µM paeonol + 6 Gy.

Figure 2. Effect of paeonol on apoptosis in ovarian cancer cells, based on flow cytometric analysis. Values are presented as mean ± standard deviation; n=6 
experiments. *P<0.05 vs. control, #P<0.05 vs. group 7, @P<0.05 vs. group 16. 1, Control; 2, 25 µM paeonol; 3, 50 µM paeonol; 4, 100 µM paeonol; 5, 2 Gy; 6, 
4 Gy; 7, 6 Gy; 8, 25 µM paeonol + 2 Gy; 9, 50 µM paeonol + 2 Gy; 10, 100 µM paeonol + 2 Gy; 11, 25 µM paeonol + 4 Gy; 12, 50 µM paeonol + 4 Gy; 13, 
100 µM paeonol + 4 Gy; 14, 25 µM paeonol + 6 Gy; 15, 50 µM paeonol + 6 Gy; 16‑100 µM paeonol + 6 Gy.
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exhibited the maximum cytotoxic effects. These results indi-
cate that paeonol effectively inhibited viability of cancer cells 
and induced apoptosis, in addition to enhancing sensitivity of 
the two cell lines to radiation.

Paeonol sensitizes ovarian cancer cells to radiation. 
Treatment with paeonol (25, 50 or 100  µM) significantly 
enhanced the intrinsic sensitivity of both SKOV‑3 and 
OVCAR‑3 cells to radiation, as assessed by clonogenic 
survival assays as compared with cells exposed to radiation 
alone (P<0.05; Fig. 3). The surviving fraction of the cells 
was significantly reduced with an increase in radiation dose 
from 4 to 6 Gy (P<0.05). The cells exposed to paeonol and 
radiation presented a much lower SF than the cells exposed to 
either radiation or paeonol. The cells exposed to 6 Gy radia-
tion and 100 µM paeonol were observed to have a significantly 
lower SF compared with cells exposed to 4 and 2 Gy radiation, 
irrespective of paeonol concentration. Nevertheless, paeonol at 
all doses was demonstrated to be more effective in sensitizing 
SKOV‑3 cells to radiation than OVCAR‑3 cells.

Paeonol modulates the expression of apoptotic pathway 
proteins. To assess the molecular events associated with 
reduced cell viability of the SKOV‑3 and OVCAR‑3 cells 
following exposure to paeonol, the expression of caspase‑3 
and pro‑apoptotic (Bad and Bax) and anti‑apoptotic (Bcl‑2 
and Bcl‑xL) proteins were determined. Paeonol treatment 
was revealed to enhance the expression of caspase‑3 in a 
dose‑dependent manner (Fig. 4). Furthermore, corresponding 
with the apoptotic cell counts observed through Annexin 
V/PI staining, the expression of Bad and Bax proteins was 
significantly upregulated in cells exposed to paeonol and/or 
radiation. However, combined exposure revealed strikingly 
increased levels of apoptotic proteins, with markedly down-
regulated Bcl‑2 and Bcl‑xL proteins. This expression analysis 
suggests the possible involvement of apoptotic proteins in 
paeonol‑mediated enhanced sensitivity to radiation in the 
SKOV‑3 and OVCAR3 cells.

Paeonol downregulates HIF‑1α and VEGF expression. HIF‑1, 
the expression of which is induced by hypoxic tumor conditions, 
has been implicated in radiation‑resistant tumor cells (27), 
and HIF‑1 regulates the expression of VEGF (28). PCR and 
Western blot analyses to determine VEGF and HIF‑1α expres-
sion revealed that expression of these mRNA sequences and 
corresponding proteins may be modulated by paeonol (Fig. 5). 
Notably, downregulated expression was observed in irradiated 
cells with no exposure to paeonol. However, paeonol at doses 
of 50 and 100 µM caused significantly greater reductions in 
expression levels of both HIF‑1α and VEGF, and the expres-
sion level of VEGF mRNA corresponded to this, suggesting 
that paeonol affected the expression at the gene level. These 
expression analyses revealed the involvement of HIF‑1 and 
VEGF in the paeonol‑induced response.

Effects of paeonol on the proteins of PI3K/Akt signaling 
cascade. The PI3K/Akt signaling pathway serves an impor-
tant role in the regulation of cell survival, proliferation and 
apoptosis (29). Previous studies have indicated that inhibition 
of the pathway effectively enhances the sensitivity of lung 
cancer cells and cervical cancer cells to radiation (30,31). The 
present study noted markedly higher expression of Akt, p‑Akt 
and mTORc1 in ovarian cancer cells that were not exposed to 
paeonol or radiation (Fig. 6). Irradiated cells in all paeonol 
treatment groups exhibited significantly downregulated 
expression of Akt and p‑Akt, GSK‑3β, p‑GSK‑3β and mTORc1, 
and markedly increased PTEN expression. Furthermore, this 
downregulation was more pronounced with 100 µM paeonol 
concentration at all radiation dose levels. These observations 
suggest that the inhibition of the PI3K/Akt pathway by paeonol 
may enhance the sensitivity of ovarian cancer cells to radiation.

Discussion

Ovarian cancer is one of the prevalent cancers in women (1) 
and radiotherapy is often employed in treatment following 
surgery (4). However, development of resistance to radiation 

Figure 3. Effect of paeonol on survival fraction in ovarian cancer cells, based on a clonogenic assay. Values are presented as mean ± standard deviation; n=6 
experiments. *P<0.05 vs. control, #P<0.05 vs. group 7, @P<0.05 vs. group 16. 1, Control; 2, 25 µM paeonol; 3, 50 µM paeonol; 4, 100 µM paeonol; 5, 2 Gy; 6, 4 
Gy; 7, 6 Gy; 8, 25 µM paeonol + 2 Gy; 9, 50 µM paeonol + 2 Gy; 10, 100 µM paeonol + 2 Gy; 11, 25 µM paeonol + 4 Gy; 12, 50 µM paeonol + 4 Gy; 13, 100 µM 
paeonol + 4 Gy; 14, 25 µM paeonol + 6 Gy; 15, 50 µM paeonol + 6 Gy; 16‑100 µM paeonol + 6 Gy. 
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Figure 4. Effects of paeonol on the expression of apoptosis pathway proteins in (A) SKOV3 and (B) OVCAR‑3 cells. L1, control; L2, 50 µM paeonol only; L3, 
100 µM paeonol only; L4, 2 Gy radiation only; L5, 4 Gy radiation only; L6, 6 Gy radiation only; L7, 50 µM paeonol + 2 Gy radiation; L8, 100 µM paeonol + 
2 Gy radiation; L9, 50 µM paeonol + 4 Gy radiation; L10, 100 µM paeonol + 4 Gy radiation; L11, 50 µM paeonol + 6 Gy radiation; L12, 100 µM paeonol + 6 Gy 
radiation. Bcl‑2, B‑cell lymphoma‑2; Bcl‑xL, Bcl‑extra large; Bad, Bcl‑2‑associated death promoter; Bax, Bcl‑2‑associated X. 

Figure 5. Effects of paeonol on the apoptosis pathway components HIF‑1α and VEGF in the ovarian cancer cell lines SKOV‑3 and OVCAR‑3, as observed 
by (A) reverse transcription‑polymerase chain reaction and (B) western blotting. L1, control; L2, 50 µM paeonol only; L3, 100 µM paeonol only; L4, 2 Gy 
radiation only; L5, 4 Gy radiation only; L6, 6 Gy radiation only; L7, 50 µM paeonol + 2 Gy radiation; L8, 100 µM paeonol + 2 Gy radiation; L9, 50 µM paeonol 
+ 4 Gy radiation; L10, 100 µM paeonol + 4 Gy radiation; L11, 50 µM paeonol + 6 Gy radiation; L12, 100 µM paeonol + 6 Gy radiation. HIF, hypoxia inducible 
factor; VEGF, vascular endothelial growth factor.
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is currently a major obstacle. Understanding the mechanisms 
and the signaling pathways associated with regulation of resis-
tance to radiation is crucial in development of approaches to 
overcome this. Previous research has focused on identifying 
tumor‑specific sensitizing agents to enhance radiotherapy, and 
multiple studies have demonstrated the effect of many natural 
compounds, including curcumin and berberine, in improving 
sensitivity of cancer cells to radiation (31‑33). A previous study 
has also reported the antitumor effects of paeonol on human 
lung adenocarcinoma cells (34).

In the present study, CCK‑8 assays revealed that paeonol 
markedly reduced the viability of SKOV‑3 and OVCAR‑3 
cells that were subjected to radiation. The antitumor effects 
of paeonol have previously been demonstrated to be associ-
ated with induction of apoptosis, cell cycle arrest, activation 
of interleukin‑2 and tumor necrosis factor‑α, and modula-
tion of Bcl‑2 and Bax expression in tumor cells have been 
reported (35‑38).

A decrease in the survival fraction (clonogenic assay) and 
paeonol‑enhanced apoptosis (AnnexinV/PI staining assay) 
were observed in the current study. Furthermore, paeonol 
was also revealed to modulate the expression of apoptotic 
proteins in support of these apoptotic counts. A significant 
increase in caspase‑3, Bad and Bax levels, and downregula-
tion of Bcl‑2 and Bcl‑xL were observed. Paeonol was also 
reported, in the present study, to enhance the expression 
of pro‑apoptotic proteins in irradiated cells, suggesting an 

induction of apoptosis. These observations indicate that 
paeonol markedly increased the sensitivity of ovarian cancer 
cells to radiation.

Previous studies have suggested that hypoxia is one of 
the most influential factors in resistance of solid tumors to 
radiation  (27,39‑41). Hypoxia in tumors results from the 
imbalance between the increased oxygen consumption caused 
by extensive growth of tumor cells and poor oxygen delivery 
by disorganized tumor blood vessels (42). Drugs that target 
the hypoxia associated with resistance to radiation have had 
promising results (43). In the current study, paeonol caused 
marked downregulation of HIF‑1α and VEGF in a dose‑depen-
dent manner with all tested radiation doses. HIF‑1α is the 
oxygen‑sensitive subunit of HIF and is induced by hypoxia, 
but the expression decreases under normoxic conditions (44). 
However, HIF‑1α is upregulated in hypoxic tumour tissues, 
which may contribute to resistance to radiation (45). Previous 
studies have demonstrated a positive correlation between 
the expression levels of HIF‑1 and resistance of many solid 
tumors to radiation (31,46). Hypoxia‑induced HIF‑1α expres-
sion activates VEGF, stimulates angiogenesis and promotes 
the resistance of cancer cells to chemotherapy and radio-
therapy (47,48). Given the critical impact of HIF‑1α induced 
by hypoxia and radiation, effective inhibition of HIF‑1α may 
aid sensitization of tumor cells to chemotherapy and radio-
therapy. Therefore, the marked downregulation of HIF‑1α and 
VEGF observed following paeonol treatment may have been 

Figure 6. Effects of paeonol on proteins of the PI3K/Akt/mTOR pathway in (A) SKOV3 and (B) OVCAR‑3 cells. L1, control; L2, 50 µM paeonol only; L3, 
100 µM paeonol only; L4, 2 Gy radiation only; L5, 4 Gy radiation only; L6, 6 Gy radiation only; L7, 50 µM paeonol + 2 Gy radiation; L8, 100 µM paeonol + 
2 Gy radiation; L9, 50 µM paeonol + 4 Gy radiation; L10, 100 µM paeonol + 4 Gy radiation; L11, 50 µM paeonol + 6 Gy radiation; L12, 100 µM paeonol + 6 Gy 
radiation. GSK, glycogen synthase kinase; PTEN, phosphatase and tensin homolog; mTORc1, mammalian target of rapamycin complex 1.
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responsible for the raised apoptotic cell counts observed in 
the irradiated ovarian cancer cell lines.

To better assess the molecular events associated with 
paeonol‑induced sensitivity to radiation, the influence of 
paeonol on PI3K/Akt pathway proteins was examined, as 
several prior studies have reported associations between 
the PI3K pathway and resistance to radiation  (49,50). 
The PI3K/Akt/mTOR pathway is closely associated with 
pathways such as the androgen receptor pathway  (51), the 
Ras/Raf/mitogen‑activated protein kinase kinase/extracellular 
signal‑regulated kinase pathway (52) eventually contributing 
to cancer cell proliferation, metastasis and resistance (52). Akt, 
a focal regulator of this pathway is considered to be a potential 
target in addressing sensitization to radiation. Upon activation, 
Akt phosphorylates many other downstream proteins such as 
mTOR, GSK3 and insulin receptor substrate‑1 (53). Palomid 
529, a novel and potent Akt inhibitor was also previously 
observed to increase sensitivity to radiation (54). In the current 
study, reduced phosphorylation of Akt and GSK‑3β, and 
suppressed expression of mTORc1 were observed, indicating 
inhibition of the PI3K/Akt/mTOR pathway. mTORC1 regu-
lates cell growth through phosphorylation of S6 kinase (55) 
and induces increased expression of VEGF (56). Therefore, 
downregulation of VEGF may have been associated with 
suppression of mTORc1.

Furthermore, PTEN that acts at the molecular level to 
counteract the functions of PI3K was upregulated by paeonol, 
acting to inhibit the activated PI3K pathways. This suppression 
may be responsible for the enhanced apoptosis and sensitivity 
to radiation.

The observations of the present study suggest that paeonol 
induces apoptosis of irradiated ovarian cancer cells via modula-
tion of the critical pathways involved in resistance to radiation, 
namely the HIF‑1α/VEGF pathway and PI3K/Akt/mTOR 
signalling cascades. Therefore, the present study indicates that 
paeonol may represent a potent sensitizing agent to radiation, 
which may be of further assistance in cancer therapy.
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