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Abstract. The current study aimed to identify key genes in 
glaucoma based on a benchmarked dataset and gene regula-
tory network (GRN). Local and global noise was added to the 
gene expression dataset to produce a benchmarked dataset. 
Differentially-expressed genes (DEGs) between patients 
with glaucoma and normal controls were identified utilizing 
the Linear Models for Microarray Data (Limma) package 
based on benchmarked dataset. A total of 5 GRN inference 
methods, including Zscore, GeneNet, context likelihood 
of relatedness (CLR) algorithm, Partial Correlation coef-
ficient with Information Theory (PCIT) and GEne Network 
Inference with Ensemble of Trees (Genie3) were evaluated 
using receiver operating characteristic (ROC) and preci-
sion and recall (PR) curves. The interference method with 
the best performance was selected to construct the GRN. 
Subsequently, topological centrality (degree, closeness and 
betweenness) was conducted to identify key genes in the 
GRN of glaucoma. Finally, the key genes were validated by 
performing reverse transcription‑quantitative polymerase 
chain reaction (RT‑qPCR). A total of 176 DEGs were detected 
from the benchmarked dataset. The ROC and PR curves of the 
5 methods were analyzed and it was determined that Genie3 
had a clear advantage over the other methods; thus, Genie3 was 
used to construct the GRN. Following topological centrality 
analysis, 14 key genes for glaucoma were identified, including 
IL6, EPHA2 and GSTT1 and 5 of these 14 key genes were 
validated by RT‑qPCR. Therefore, the current study identified 
14 key genes in glaucoma, which may be potential biomarkers 
to use in the diagnosis of glaucoma and aid in identifying the 
molecular mechanism of this disease.

Introduction

Glaucoma describes a group of eye diseases that damage 
the optic nerve and cause vision loss (1). Glaucoma affects 
>70 million people worldwide and ~10% of patients develop 
bilateral blindness (2); thus, it is the second leading cause of 
blindness in the world (3). Glaucoma is usually asymptomatic 
until it becomes severe, meaning that the number of affected 
individuals may be much higher than the number formally 
diagnosed with glaucoma (4). Population‑level surveys suggest 
that only 10‑50% of people with glaucoma are aware that they 
have the condition (4). Therefore, it is important to develop 
appropriate techniques to diagnose glaucoma early and enable 
prompt treatment of patients with glaucoma.

At present, the majority of studies aim to develop treatments 
for late stage glaucoma, including surgery and pharmaceuti-
cals, and do not investi

gate methods of early detection and prevention  (5,6). 
With the development of large‑scale gene expression studies, 
gene‑level therapies have become more powerful and informa-
tive, facilitating investigations into glaucoma's mechanism of 
action (7). Additionally, gene expression studies can be used 
to detect the target genes of glaucoma, which may provide 
an effective method of detecting glaucoma early (1). A muta-
tion of the cytochrome P450 family 1 subfamily B member 
1 has been identified in the majority of glaucoma cases (8). 
Furthermore, sequence variants in the ankyrin repeat and 
SOCS box containing 10 gene may be a risk factor for 
glaucoma (9). However, few target genes and biomarkers of 
glaucoma have been identified to date.

Therefore, the objective of the current study was to deter-
mine the key genes in glaucoma. Firstly, a dataset of glaucoma 
(E‑GEOD‑9963) was recruited from the ArrayExpress data-
base, and the dataset was benchmarked by adding local and 
global noise. Then, differentially-expressed genes (DEGs) 
were determined from the benchmarked dataset. Subsequently, 
5 different types of gene regulatory network (GRN) inference 
approaches comprising Zscore, GeneNet, context likelihood 
of relatedness (CLR) algorithm, Partial Correlation coef-
ficient with Information Theory (PCIT) and GEne Network 
Inference with Ensemble of trees (Genie3) were evaluated 
by Receiver Operating Characteristic (ROC) and Precision 
and Recall (PR) curves, and the GRN on the basis of DEGs 
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was constructed using the method with the best performance. 
Topological centrality (degree, closeness and betweenness) 
was then conducted to identify key genes in the GRN of glau-
coma. Finally, the key genes were validated by performing 
reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). These key genes may be potential biomarkers and 
provide methods of improving the diagnosis and treatment of 
glaucoma.

Materials and methods

Benchmarked dataset. In the current study, a gene expres-
sion dataset involving noise‑free experiments for patients 
with glaucoma was taken from the ArrayExpress database 
(http://www.ebi.ac.uk/arrayexpress/). This dataset had the 
accessing number E‑GEOD‑9963. E‑GEOD‑9963 was then 
deposited on the Affymetrix GeneChip Human Genome 
U133 Plus 2.0 [HG‑U133_Plus_2] Platform, and consisted of 
6 glaucoma samples and 54 control samples. The dataset on 
the probe level was converted into gene symbols based on the 
annotate package (10) and duplicated ones were removed using 
the feature filter method (11).

To eliminate the bench effects of the real microarray gener-
ation process within the same laboratory or among different 
ones, the dataset was contaminated with a mixture of Gaussian 
noise and lognormal noise (12). Gaussian noise is defined as 
local noise with a zero mean (13). Standard deviation of the 
‘local’ noise, σLocal(g), was around a percentage (θ%) of the gene 
standard deviation (σg) and was calculated as follows:

Here, Γ(a, b) denoted the uniform distribution between a 
and b. Subsequently, an independent lognormal noise termed 
‘global’ noise, was added (14). The standard deviation of this 
noise (σGlobal) was the same for the whole dataset and was a 
percentage (θg%) of the mean variance of all the genes in the 
dataset (  ). It was calculated as follows:

A range of 20% around θ and θg was selected to add vari-
ability to the different generated datasets (15). This allowed 
the various datasets to have some heterogeneity in noise but 
at the same time ensured that they did not differ too much 
from the originally specified values. Ultimately, a bench-
marked dataset of 12,442 genes was obtained for further 
investigation.

DEGs. It has been determined that the propensity of numerous 
diseases can be identified by the differences in their gene expres-
sion (16). Therefore, DEGs between glaucoma and healthy 
controls were detected from the benchmarked dataset using 
on the Linear Models for Microarray Data (Limma) package 
(Bioconductor; http://www.bioconductor.org/) (17). The lmFit 
function implemented in Limma was utilized to perform 
empirical Bayes statistics and false discovery rate calibration 
of the p‑values on the data (18,19). Only genes which met to the 
thresholds of P<0.05 and |log2FoldChange|>2 were regarded as 
DEGs between patients with glaucoma and healthy controls. 

GRN inference methods. A total of 5 common GRN inference 
approaches (CLR, Zscore, Genie3, GeneNet and PCIT) were 
compared to construct a reliable and stable GRN based on the 
DEGs of glaucoma.

CLR. The CLR algorithm, an information‑theoretic approach, 
makes use of a generalization of the pairwise correlation 
coefficient called mutual information (Mij) for each pair of 
genes (20). It derived a score (Sij) between gene i and gene j 
associated with the empirical distribution of the Mij values (21).

Of which: 

µMi and σMi represented the sample mean and standard 
deviation of the empirical distribution of Mij respectively. Sj 

was calculated using the following formula:

Where µMj and σMj represented the sample mean and stan-
dard deviation of the empirical distribution of Mij respectively.

Zscore. Zscore executes knockout experiments more concretely 
and results in changes in other genes (22). The knocked‑out 
gene i in the experiment k may more strongly affect the genes 
that it regulates than any others. The effect of gene i over gene 
j was determined using the Zscore, Zij:

Xj represented the expression of the jth gene in every 
experiment, xjk denoted the particular gene expression 
level of the kth experiment of the jth gene, µXj and σXj  

represented the mean and standard deviation of the empirical 
distribution for the gene j, respectively. If the same gene 
was detected to be knocked‑out in various experiments,  
then the final Zscore was the mean of the individual Zscore 
values.

Genie3. The Genie3 algorithm implements the random forest 
feature selection technique to solve a regression problem for 
each of the genes included in the network (23,24).  describes 
the vector containing the expression values in the kth experi-
ment of n genes apart from gene i.

Therefore,

 represented random noise with zero mean. The function 
fi only exploited the expression in X‑i of the genes that were 
direct regulators of gene i, i.e. genes that were directly 
connected to gene i in the targeted network.

GeneNet. GeneNet is a simple heuristic for the statistical 
learning of a high dimensional causal network  (25). A 
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correlation network was converted into a partial correlation 
that remained between two variables if the effect of the other 
variables had been regressed away. Assuming that Am and B 
are random variables with known variances var(B) and var(Am) 
and with covariance cov (B, Am), the best linear predictor of 
B in terms of the Am could be calculated using the following 
formula:

Ckm was the partial correlation between B and Am in k 
experiments;  and  were the respective partial variances. 
Subsequently, partial ordering of the nodes was established by 
multiple testing of the log‑ratio of standardized partial vari-
ances, which facilitated the identification of a directed acyclic 
causal network as a sub‑graph of the partial correlation network.

PCIT. The PCIT algorithm combines the concept of PCIT to 
identify significant gene‑to‑gene associations (26). For every 
trio of genes in x, y and z, the three first‑order partial correla-
tion coefficients (rxyz, rxzy and ryzx) were computed. In order to 
determine the tolerance level (T) used as the local threshold 
for capturing significant associations, the average ratio of 
partial to direct correlation was defined as follows:

An association between genes x and y was disregarded 
if: |rxy|≤|Trxz| and |rxy|≤|Tryz|. Otherwise, the association was 
defined as significant and an association between the pair of 
genes was established during construction of the GRN.

GRN construction. The GRN of glaucoma was constructed 
using the GRN inference approach with the best performance. 
To evaluate the performance of the five inference methods in 
glaucoma, the usual metrics of machine learning, ROC and 
PR curves, were utilized. ROC curves present the relative 
frequencies of true positive fraction (TPF) to false positive 
fraction (FPF) for every predicted link of the edge list (27), 
of which TPF measures the fraction of correctly labeled posi-
tive examples and FPF denotes the partition of misclassified 
negative examples. The PR identifies the relative precision 
(fraction of correct predictions) vs. recall that is equivalent to 
the true positive ratio (TPR) (28). Recall is the same as TPR 
and precision assessments that classifies a specific fraction of 
examples as positive that are truly positive. The calculations 
for TPR, false positive ratio (FPR), recall, and precision were 
performed using the following formula:

TP was defined as a true positive sample, FP stood for false 
positive sample, TN represented a true negative sample and 
FN indicated a false negative sample.

Key genes. To evaluate the biological importance of genes in 
GRN, topological centrality (degree, closeness and between-
ness) analyses were conducted. Specifically, degree quantifies 
the local topology of each gene, by summing up the number 
of its adjacent genes (29). Closeness centrality is a measure of 
the average length of the shortest paths to all other proteins in 
the network (30). Betweenness considers the ratio of a node 
in the shortest path between two other nodes and scales with 
the number of pairs of nodes as implied by the summation 
indices  (31). The different methods may lead to different 
results; therefore, the three types of results were integrated 
using the Rank Product (RP) algorithm (32) and avoided the 
side effects caused by single one approach, including a false 
discovery rate. The genes at the ≥92% merged quantile distri-
bution in the significantly perturbed networks were defined as 
key genes.

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). In the present study, RT‑qPCR was 
performed to assess the expression of key genes in patients 
with glaucoma compared with normal controls. For 
convenience, RT‑qPCR was performed on 5 of the 14 key 
genes, including IL6, EPHA2, GSTT, SPTBN1 and ERBB2. 
Total RNA was extracted from 10 patients with glaucoma 
and 10 healthy controls from optic nerve head astrocytes 
using TRIzol (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). The the mean age was (63.90±7.12), 
and the sex ration was 4 male patients: 6 female patients. 
Patients were recruited from the Ninth Hospital of 
Chongqing (Chongqing, China) between May  2015 and 
February 2016. All patients provided informed consent 
for inclusion in the current study and ethical approval was 
obtained from the Ninth Hospital of Chongqing Ethics 
Committee (Chongqing, China). Subsequently, total RNA 
underwent first‑strand synthesis with an oligo (dT18) 
primer and treated with RNasin, reverse transcriptase 
buffer, dNTPs and AMV reverse transcriptase according to 
the manufacturer's instructions (Invitrogen; Thermo Fisher 
Scientific, Inc.). For qPCR, cDNA was used as a template 
and β‑actin as an internal reference.

For PCR amplification, the reaction mixture contained 
PCR Buffer I, Taq DNA Polymerase High Fidelity (both from 
Invitrogen; Thermo Fisher Scientific, Inc.), dNTPs and forward 
and reverse sequences of IL6, EPHA2, GSTT, SPTBN1 and 
ERBB2 primers (sequences not provided). Conditions for qPCR 
were as follows: 2 min at 94˚C for predenaturation, followed 
by 35 cycles of 20 sec at 94˚C, 15 sec at 60˚C and 1 min at 
68˚C, and a final 7 min extension at 72˚C. Products were 
analyzed by 1.5% agarose gel electrophoresis and Quantity 
One 1‑D Analysis software of gel imaging analyzer (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA). Three replicates of the 
assay were performed to assess reproducibility and the 2‑ΔΔCq 
method was applied (33).

Statistical analysis. The results were analyzed using 
SPSS 19.0 software (SPSS, Inc., Chicago, IL, USA) (34). Data 
were expressed as the mean ± standard deviation. Differences 
between groups were assessed by an unpaired, two‑tailed 
Student's t‑test (35) and P<0.05 was considered to indicate a 
statistically significant difference.
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Results

Benchmarked dataset. In the current study, to ensure that 
the preprocessed dataset was more representative of the real 
expression data and to reproduce the variability in the real 
gene expression dataset generation process, the dataset was 
benchmarked by addition of 20% local noise (σLocal(g)) and 20% 
global noise (σGlobal). A total of 12,442 genes were obtained in 
the benchmarked dataset for subsequent analysis.

DEGs. Using the benchmarked dataset, DEGs between patients 
with glaucoma and normal controls were identified using 
the Limma package. When setting the thresholds of P<0.05 
and |log2FoldChange|>2, a total of 176 DEGs were detected. 
ATP6V0D1 (P=2.37x10‑16), COPG1 (P=1.24x10‑15), PKN1 
(P=4.55x10‑14), SAFB (P=6.3710x‑10) and BAD (P=4.04x10‑09) 
were the top five ranked DEGs.

GRN construction. To construct a more stable and reliable 
GRN for glaucoma, five GRN inference methods (CLR, 
Zscore, Genie3, GeneNet and PCIT) were compared using 
ROC and PR curves. The method with the best performance 
was then selected. The results for the ROC and PR curves are 
illustrated in Fig. 1. The cross points of any two ROC curves 
indicated that the TPF and FPF of the two methods were the 
same. Furthermore, for each method, the comparison of TPF 
against FPF referred to the slope of the curve; a steeper curve 
indicated a better method. There were differences among the 
curves of the five methods. For PR curves, the meaning of 
cross point was the same as the ROC curve. The curves of the 
five approaches were very similar, however GeneNet was more 
precise than the others at the initial point of Recall. Genie3 
exhibited a slight advantage over the other four methods as it 
had the largest ROC (0.520) and PR (0.0192; Table I).

Therefore, the Genie3 method was utilized to construct a 
GRN for glaucoma on the basis of DEGs (Fig. 2). The primary 
features of Genie3 with respect to existing techniques is that it 
makes very few assumptions about the nature of associations 
between the variables (which may therefore be non‑linear) and 
may potentially identify high‑order conditional dependencies 
between expression patterns (36). All DEGs were mapped to 
the network and the GRN contained 176 nodes and 15,400 
edges.

Key genes. By accessing topological centrality (degree, close-
ness and betweenness) analyses for genes in GRN, the rank 

of each gene could be obtained. Due to inconsistent results 
caused by different methods, the RP algorithm was applied 
to integrate these results. The top 8% of the ranked genes 
were defined as key genes for glaucoma. A total of 14 key 
genes were identified: IL6, EPHA2, GSTT1, SPTBN1, ERBB2, 
TOM1, BAD, ALDH4A1, BSG, MRPL2, NOL3, SLC25A22, 
MAP3K5 and ITGA6. These are presented as the yellow 
nodes in GRN (Fig. 2). To determine interactions among the 
key genes, a sub‑network that was closely correlated to these  
key genes from the GRN was extracted and termed as the ‘key 
sub‑network’ (Fig. 3). There were 14 nodes and 91 interactions 
in this key sub‑network, indicating that these key genes inter-
acted with each other and participated in similar biological 
processes together.

RT‑qPCR was subsequently performed to determine the 
expression of the key genes in patients with glaucoma compared 
with normal controls. IL6, EPHA2, GSTT1, SPTBN1 and ERBB2 
were used as examples (Fig. 4). Compared with normal controls, 
the levels of IL6, EPHA2, GSTT1 and ERBB2 mRNA were 
significantly higher in samples from patients with glaucoma 
compared with healthy controls (P<0.05; Fig. 4). Additionally, 
the expression of SPTBN1 was significantly lower in the glau-
coma samples compared with healthy controls (P<0.05; Fig. 4). 
Thus, the results from RT‑qPCR validate that the results of 
GRN indicating that these are key genes in glaucoma.

Discussion

The current study benchmarked the gene dataset by adding 
local and global noise to eliminate batch or other effects on the 
dataset, and obtained a benchmarked dataset of 12,442 genes. 

Table I. Evaluation of the five‑gene regulatory network infer-
ence methods.

Index	 CLR	 Zscore	 Genie3	 GeneNet	 PCIT

ROC	 0.204	 0.0117	 0.520	 0.0000195	 0.169
PR	 0.0119	 0.00233	 0.0192	 0.000394	 0.00859

ROC, receiver operating characteristic; PR, precision and recall; 
CLR, context likelihood of relatedness; PCIT, Partial Correlation 
coefficient with Information Theory; Genie3, GEne Network 
Inference with Ensemble of Trees.

Figure 1. ROC and PR curves for evaluating the gene regulatory network 
inference approaches. ROC, receiver operating characteristic; PR, precision 
and recall; CLR, context likelihood of relatedness; PCIT, Partial Correlation 
coefficient with Information Theory; Genie3, GEne Network Inference with 
Ensemble of Trees; TPF, true positive fraction; FPF, false positive fraction. 
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Subsequently, the effectiveness of five GRN inference methods 
(CLR, Zscore, Genie3, GeneNet and PCIT) was analyzed 
on the systemic level. For the five GRN inference methods, 
Zscore and GeneNet used co‑expression algorithms, CLR and 
PCIT represented information‑theoretic methods and Genie3 
was one of the feature selection approaches. Co‑expression 
algorithms usually construct a network by computing a simi-
larity score for each pair of genes (37). Information‑theoretic 
approaches made use of a generalization of the pairwise corre-
lation coefficient (20). Genie3 assumes that the expression of 
each gene in a given condition is a function of the expression of 
the other genes in the network (38). The results demonstrated 
that Genie3 exhibited the best performance following evalu-
ation of the ROC and PR curves, suggesting that the feature 
selection approach was more suitable for revealing key genes 
in glaucoma than the other approaches.

Therefore, GRN was constructed using the Genie3 
method and key genes were identified using GRN following 
topological centrality analyses. A total of 14 key genes were 
identified by integrating degree, closeness and betweenness 

centrality. RT‑qPCR was then used to assess the expression 
of 5 key genes (IL6, EPHA2, GSTT1, SPTBN1 and ERBB2) in 
patients with glaucoma compared with healthy controls. It was 
determined that there were significant differences between the 
expression of all 5 genes in patients with glaucoma compared 
with controls.

IL6 is an inflammatory cytokine that serves a role in the 
inflammatory response, which may occur following monocyte 
recruitment and nucleophilic apoptosis and phagocytosis in the 
inflamed area (39,40). It has been suggested that IL6 signaling 
via classical and trans‑signaling pathways may be important 
in determining retinal ganglion cell survival in glaucoma (41) 
and that cleavage of the IL6 receptor α may be a potential 
mechanism for IL6 trans‑signaling (42). It has been demon-
strated that IL6 increases the genetic susceptibility to primary 
open angle glaucoma and these genetic variants may be used 
as molecular markers to predict the risk of the disease (43). In 
addition, Micera et al (44) demonstrated that the expression of 
IL6 differed in the primary open angle trabecular meshwork, 
which was consistent with the results of the current study.

Figure 2. Gene regulatory network for glaucoma constructed using the GEne Network Inference with Ensemble of Trees. Nodes represent the genes and the 
edges stand for the interactions among nodes. The yellow nodes represent the 14 key genes. 
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EPHA2, an Eph receptor tyrosine kinase, has been 
implicated in cell‑cell and cell‑matrix interactions, as well 
as cell growth and survival  (45). It has been confirmed 
that EPHA2 mutations affect the intracellular region of 
the protein, the sterile α motif, tyrosine kinase domain, the 
juxtamembrane regions that interact with signaling genes 
and other important functions (45). Immunohistochemical 
analysis of the tumor microarray demonstrated that the 
expression of EPHA2 is significantly greater in tumors 
compared with healthy adjacent tissues (46). The results of 
the RT‑qPCR performed in the current study determined that 
EPHA2 is more highly expressed in patients with glaucoma 

compared with healthy controls. This indicates that early 
prevention of EPHA2 alteration may be a novel method of 
decreasing the cancer incidence in patients with glaucoma. 
In addition, Reis et al (47) demonstrated that the congenital 
cataract phenotype is accompanied by a mutation in EPHA2, 
however two individuals in the family with the EPHA2 muta-
tion assessed in this study were also affected with juvenile 
glaucoma. Thus, the altered expression of EPHA2 may occur 
in glaucoma.

In conclusion, the current study identified 14 key genes 
including IL6, EPHA2 and GSTT1 in glaucoma using a 
benchmarked dataset, the topological centrality of GRN and 
RT‑qPCR. These genes may be potential biomarkers for the 
early detection, diagnosis and treatment of glaucoma, and may 
facilitate identification of the molecular mechanism under-
lying this disease.
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