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Abstract. As an infectious fungus that affects the respiratory 
tract, Cryptococcus neoformans (C. neoformans) commonly 
causes asymptomatic pulmonary infection. C. neoformans may 
target the brain instead of the lungs and cross the blood‑brain 
barrier  (BBB) in the early phase of infection; however, 
this is dependent on successful evasion of the host innate 
immune system. During the initial stage of fungal infection, 
a complex network of innate immune factors are activated. 
C. neoformans utilizes a number of strategies to overcome 
the anti‑fungal mechanisms of the host innate immune system 
and cross the BBB. In the present review, the defensive mecha-
nisms of C. neoformans against the innate immune system and 
its ability to cross the BBB were discussed, with an emphasis 
on recent insights into the activities of anti‑phagocytotic and 
anti‑oxidative factors in C. neoformans.
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1. Introduction

Cryptococcus  neoformans (C.  neoformans) is the most 
common fungus to cause meningoencephalitis in the central 

nervous system (CNS) worldwide (1). Each year, an estimated 
1 million cases of cryptococcal meningitis are reported, with 
a >60% mortality rate within the first 3 months of infec-
tion (2,3). C. neoformans is typically acquired by inhaling 
spores or desiccated yeast from the environment (3). Following 
an initial asymptomatic pulmonary infection, the organism is 
carried in the bloodstream and subsequently disseminated 
to target organs, including lung, skin and bone, which typi-
cally results in lymphocytic meningitis (2‑9). Results from 
experimental mouse models and human cases of cryptococcal 
meningitis have indicated that C. neoformans infection may 
also spread to the brain (4‑9). While the lungs are considered 
a common site of infection, C. neoformans predominantly 
targets the brain; however, this is dependent on its ability to 
overcome the innate immune system of the host and cross the 
blood-brain barrier (BBB) in the initial phase of infection (10).

To defend against C. neoformans infection in the initial 
phase, the host employs several types of innate immune cells, 
including macrophages, dendritic cells (DCs) and neutrophils, 
which phagocytize invading fungi and generate reactive oxygen 
species (ROS), nitrogen species (RNS) and chlorine species to 
aid in host protection (11,12). In response to the host innate 
immune response, C. neoformans activates virulence factors, 
including polysaccharide capsules and melanin pigment, to 
resist phagocytosis and avoid clearance (13,14). Furthermore, 
C. neoformans induces the activation of antioxidant enzymes, 
including superoxide dismutase  (SOD) and catalases, and 
the synthesis of antioxidants, such as glutathione (GSH), to 
adapt to oxidative attack (14,15). These anti‑oxidative factors 
have been demonstrated to be important for ROS and RNS 
resistance, repair of damage caused by oxidative attack and 
survival in the host (13‑15).

The present review summarized the current understanding 
of the anti‑innate immune response strategies utilized by 
C. neoformans and the mechanism involved in cryptococcal 
BBB traversal.

2. Innate immune system

Innate immune responses restrict the growth and invasion 
of C. neoformans in mammalian hosts (16). Innate immune 
cells are the first cells to encounter fungi and are the primary 
effector cells in the destruction and clearance of cryptococcal 
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infection (17‑26)  (Table I). Furthermore, the generation of 
oxidative products by phagocytic cells may directly destroy 
the invading fungi (12).

Macrophages. Macrophages are critical phagocytic cells 
within the host innate immune system (17). Complement and 
mannose receptors on the surface of macrophages mediate the 
phagocytosis of C. neoformans (17). In addition, macrophages 
release high levels of reactive oxygen intermediates (ROI), reac-
tive nitrogen intermediates (RNI), superoxide and nitric oxide, 
which damage DNA and a number of chemical moieties (11). 
Furthermore, macrophages promote Th1‑like responses to 
induce fungal clearance (18,19). However, C. neoformans is 
able to proliferate within the macrophage phagosome, and 
may pass between macrophages (18‑20).

Neutrophils. Similar to macrophages, neutrophils capture and 
degrade pathogens and serve a specific role in the initiation 
of inflammation in response to infection (21). Neutrophils 
enhance granuloma formation to destroy C. neoformans by 
oxidative and non‑oxidative mechanisms (21). Furthermore, 
a previous study indicated that myeloperoxidase, which is 
located primarily in neutrophils, produces a strong oxidant 
hypochlorous acid from hydrogen peroxide and chloride 
ions (22). This is another predominant mechanism that neutro-
phils use to defend against fungal infection (22). In addition, 
neutrophils contain defensins  1‑4, which are cytotoxic to 
C. neoformans (23).

DCs and natural killer (NK) cells. DCs phagocytize C. neofor­
mans via complement or anti‑capsular antibody‑mediated 
opsonization, which leads to fungal internalization and 
destruction, ultimately resulting in tumor necrosis factor‑α 
secretion and DC activation (24). Once phagocytized, cryp-
tococci are degraded through oxidative and non‑oxidative 
mechanisms following passage through lysosomes  (24). A 
previous study indicated that NK cells bind and inhibit the 
growth of C. neoformans in vitro and induce fungal clearance 
in mice (25). In addition, previous results suggest that NK 
cells may directly destroy C. neoformans when mediated by 
perforin (26).

3. Innate immune system evasion

C. neoformans has a number of established virulence factors, 
including polysaccharide capsules and melanin, which func-
tion as non‑enzymatic factors that potently influence the 
overall pathogenicity and phagocytic resistance of C. neofor­
mans  (27). A variety of extracellular proteins, including 
phospholipases, proteases and ureases (27), and enzymatic 
components of the redox system, including thioredoxins (Trxs), 
glutaredoxins  (Grxs), peroxiredoxin (Prxs) and catalases, 
serve as enzymatic factors for C. neoformans survival during 
innate immune attack (27‑66) (Table II).

Roles of virulence factors in defense against the innate 
immune response
Polysaccharide capsules. The polysaccharide capsule, which 
is composed of 90‑95% glucuronxylomannan and 5% galac-
toxylomannan, is among the most important virulence factors 

of C. neoformans that aids the fungus to avoid recognition and 
phagocytosis by host phagocytes (28). The capsule prevents 
the phagocytosis of C. neoformans and resists phagosome 
digestion to preserve C. neoformans survival (28,29). Once 
engulfed by macrophages, the C. neoformans capsule may 
release polysaccharides into vesicles surrounding the phago-
some that accumulate in the host cell cytoplasm, which 
promotes macrophage dysfunction and lysis (29). In addition, 
the capsular material suppresses the migration of phago-
cytes (30), interferes with cytokine secretion (31), directly 
inhibits T‑cell proliferation (32), induces macrophage apop-
tosis (33) and delays the maturation and activation of human 
DCs (34). By contrast, acapsular mutants of C. neoformans 
may be effectively recognized and induce pro‑inflammatory 
cytokine secretion in macrophages (29).

Melanin. Melanin is a negatively charged, hydrophobic pigment 
that is located in the cell walls of C. neoformans, and serves a 
key role in virulence and survival (34). A melanin gene disrup-
tion study has indicated that wild‑type melanin‑producing 
C. neoformans are more virulent (34). Melanin is composed 
of aggregates of small particles or granules and exogenous 
substrates (34,35). In the natural environment, melanin protects 
fungi from ultraviolet light, high temperatures, freezing and 
thawing  (36). The potent antioxidant activity of melanin 
provides protection against oxidant concentrations similar to 
those produced by stimulated macrophages (37). The oxidative 
burst that follows phagocytosis is an important mechanism by 
which immune effector cells mediate antimicrobial action, 
which suggests that melanin may enhance virulence by 
protecting fungal cells against immune system‑stimulated 
oxidative attack (37).

Roles of extracellular proteins in defense against the innate 
immune response
Phospholipases. Phospholipases are a heterogeneous 
group of enzymes that cleave phospholipids to produce 
various biologically active compounds, which alter the 
infection microenvironment and may favor the survival of 
C. neoformans in the host (38). The action of phospholipases 
may result in the destabilization of membranes, cell lysis and 
release of lipid second messengers (39). The secretion of PLB 
has been reported to promote the survival and replication of 
C. neoformans in macrophages in vitro (38). In addition, a 
previous study demonstrated that disruption of the PLB1 gene 
led to reduced virulence in vivo and growth inhibition in a 
macrophage‑like cell line (40).

Proteinase. Environmental and clinical isolates of C. neofor­
mans possess proteinase activity that has been demonstrated to 
degrade host proteins, including collagen, elastin, fibrinogen, 
immune‑globulins and complement factors (41). Replication 
of C. neoformans inside macrophages is accompanied by the 
production of enzymes, including proteinases and phospholi-
pases, which damage the phagosomal membrane (42). Therefore, 
cryptococcal proteinases may cause tissue damage, providing 
nutrients to the pathogen and protection from the host.

Ureases. As a nitrogen‑scavenging enzyme, urease catalyzes 
the hydrolysis of urea to ammonia and carbonate, and is an 
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important virulence factor of C. neoformans (43). C. neofor­
mans may utilize urease to invade the CNS via the BBB and 
cause life‑threatening meningoencephalitis (43,44). A previous 
study suggested that urease promoted the sequestration of 
cryptococcal cells in the microvasculature of the brain, while 
urease‑negative strains seldom penetrated the CNS or caused 
disease (45). Although the specific role of urease protein in 
BBB invasion is unknown, it has been suggested that the extra-
cellular enzymatic degradation of urea to toxic ammonia may 
damage endothelial cells and lead to an increase in barrier 
permeability (33‑35).

Roles of antioxidant systems in defense against the innate 
immune response. Resistance to RNS and ROS through anti-
oxidant defense systems has been correlated with virulence 
in C. neoformans clinical isolates, and has been associated 
with in vitro and in vivo oxidative stress resistance (46). There 
are several enzymatic anti‑oxidant systems that have been 
identified in C. neoformans, including the Prx, Trx and Grx 
systems (Fig. 1).

Prx systems. The Prx system is important for cellular 
processes associated with disulfide bond formation, the 
anti‑oxidative stress response and pathogenesis of C. neofor­
mans infection (47). Prxs, also known as thiol peroxidases, 

are 20‑30  kDa‑sized molecules that provide antioxidant 
protection by removing peroxides (47). Prxs may be classified 
into 1‑Cys and 2‑Cys subgroups (48). Following peroxidation, 
typical 2‑Cys Prxs form homodimers through an intersubunit 
disulfide bridge, whereas atypical 2‑Cys Prxs form an intramo-
lecular disulfide bridge (48). By contrast, 1‑Cys Prxs assume 
a monomeric form with a single active cysteine site (48). In a 
previous study, two Prxs, TSA1 and TSA3, were discovered 
in C. neoformans, of which TSA1 is highly conserved (48). In 
addition, the findings of Missall et al (48) indicated that Prxs 
were induced under oxidative and nitrosative stress and were 
critical for C. neoformans virulence in mice. Furthermore, 
their study demonstrated that deletion of TSA1, but not TSA3, 
abolished virulence of the pathogen, which indicated that the 
TSA1‑mediated Prx system is a core antioxidant system in 
C. neoformans (48).

Trx systems. The downstream component of Prx is the Trx 
system, which is comprised of NADPH, Trx and thiore-
doxin reductase  (TrxR), and is involved in the regulation 
of DNA synthesis, gene transcription, cell growth and 
apoptosis (49‑51). Trx is a small dithiol oxidoreductase that 
serves as a major carrier of redox potential in cells (52) and 
a cofactor for essential enzymes, and is involved in protein 
repair via methionine sulphoxide reductase  (53) and the 

Table I. Primary functions of host innate immune cells.

Cells	 Primary function	 (Refs.)

Macrophages 	 Phagocytosis, production of ROI, RNI, superoxide and nitric oxide	 (17‑20)
Neutrophils	 Phagocytosis, production of ROI, RNI, myeloperoxidase, defensins 1‑4 and lysozymes	 (21‑23)
Dendritic cells	 Fungal internalization and destruction	 (24)
Natural killer	 Direct destruction	 (25,26)

ROI, reactive oxygen intermediates; RNI, reactive nitrogen intermediates.

Table II. Primary function of C. neoformans antioxidant factors against host innate immune cells.

Antioxidant factor	 Function against host innate immune cells	 (Refs.)

Polysaccharide capsules	 Inhibition of phagocytosis and resistance to phagosome digestion	 (27‑34)
Melanins	 Scavenging ROS and reactive nitrogen intermediates	 (27,34‑37)
Phospholipases	 Promotion of survival and replication in macrophages	 (38‑40)
Proteinase	 Promotion of replication in macrophages and damage to phagosomal	 (41,42)
	 membranes
Ureases	 Scavenging nitrogen	 (33‑35,43‑45)
Peroxiredoxins	 Metabolism of peroxides and/or peroxynitrite	 (46‑48)
Thioredoxins, glutaredoxins	 Metabolism of ROS, reduction of oxidized sulfhydryl groups and	 (46,49‑54)
	 maintenance of cellular redox homeostasis	 (46,49,58‑60)
Superoxide dismutases	 Conversion of superoxide to hydrogen peroxide	 (15,61‑63)
Catalases	 Conversion of hydrogen peroxide to water and molecular oxygen	 (64)
Cytochrome c peroxidases	 Degradation of hydrogen peroxide	 (65)
Alternative oxidase genes	 Interaction with the classic oxidative pathway	 (66)

ROS, reactive oxygen species.
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reduction of protein disulphides (54). This redox control of 
the Trx system is considered to regulate the expression of 
multiple stress defensive enzymes and protect cells against 
oxidative stress (54).

C. neoformans contains two Trx proteins (TRX1 and TRX2) 
and one TrxR protein (TRXR1) (50), which are involved in 
the reduction and recycling of the oxidized, inactive form of 
Prxs (55). TRX1 promotes normal growth and a healthy oxida-
tive state (50,53). TRX2, though dispensable for vegetative 
growth, is important for resistance to nitrosative stress (50,53). 
TRXR1 is stimulated during oxidative stress induced by 
hydrogen peroxide and nitrosative stress induced by nitric 
oxide (56). In C. neoformans, deletion of these genes renders 
them sensitive to oxidative stress and results in decreased 
survival in macrophage culture (50,57).

Grx systems. The GSH/Grxs system in C.  neoformans 
is another major thiol‑dependent antioxidant system that 
participates in the defense against oxidization (49). GSH is an 
important antioxidant for fungi. Strains that lack or possess 
altered GSH are sensitive to particular types of oxidative 
stress components, including peroxides, superoxide anions 
and the toxic products of lipid peroxidation (49). Exposure of 
yeast cells to hydrogen peroxide caused a reduction in GSH 
levels and a shift in the redox balance towards an oxidized 
state  (49). In C.  neoformans, Grxs are small heat‑stable 
proteins encoded by two Grx genes (GRX1 and  GRX2), 
and are reduced in a manner similar to Prx (49). GSH and 
Grxs may regulate protein function by reversible protein 
S‑glutathionylation under oxidative stress (58). C. neoformans 

contains two glutathione peroxidases (GPX1 and  GPX2) 
that respond differently to various stressors (59). A strain of 
C. neoformans that lacked the GRX1 gene was sensitive to 
oxidative stress induced by the superoxide anion, whereas a 
GRX2 mutant was sensitive to oxidative stress generated by 
hydrogen peroxide (59). Furthermore, GPX1 and GPX2 dele-
tion mutants have been reported as only mildly sensitive to 
oxidant‑induced destruction by macrophages and exhibited 
no change in virulence in a murine model (59). GPX1 and 
GPX2 are involved in the defense against organic peroxides, 
including tert‑butyl hydroperoxide (59). Although both Gpx 
proteins are required for survival in macrophages, deletion of 
GPX1 and GPX2 does not affect the virulence of C. neofor­
mans in mice  (57), suggesting that other peroxidases or 
antioxidant systems may compensate for the loss. In addition, 
the GSH Prxs and GSH S‑transferases are involved in the 
breakdown of organic hydroperoxides with GSH as a reduc-
tant or in the conjugation of toxic lipophilic compounds to 
GSH, respectively (60).

Additional antioxidant systems. The primary function of 
SOD is to convert superoxide to hydrogen peroxide  (61). 
There are four classes of SODs: Mn, Fe, Ni and Cu/Zn (15). 
C.  neoformans has two SODs, Cu/Zn‑SOD (SOD1) and 
Mn‑SOD (SOD2) (61). Cytosolic SOD1 has been demonstrated 
to serve a pivotal role in the defense against ROS and contrib-
uted to virulence in a mouse model (61). Furthermore, in a 
previous study, a C. neoformans SOD1 mutant strain exhibited 
slower growth in macrophages and greater susceptibility to 
neutrophil destruction (62). In addition, Narasipura et al (63) 
reported that a C. neoformans SOD1 mutant strain exhibited 

Figure 1. Schematic representation of the antioxidant chain of C. neoformans and the primary antioxidant enzymes involved. Prx, Trx and Grx systems 
are major enzymatic antioxidant systems in C. neoformans that regulate redox balance (49‑51) that are associated with 2 SODs, Cu/Zn‑SOD (SOD1) and 
Mn‑SOD (SOD2), which may convert superoxide to hydrogen peroxide (61). C. neoformans, Cryptococcus neoformans; CAT, catalase; GR, glutathione 
reductase; Grx, glutaredoxin; GSH, glutathione; GSSG, glutathione disulfide; H2O2, hydrogen peroxide; NADPH, nicotinamide adenine dinucleotide phos-
phate; Nnt, nicotinamide nucleotide transhydrogenase; NO, nitric oxide; NOS, nitric oxide synthase; protein‑SNO, protein nitrosylation; protein‑SSG, protein 
glutathionylation; Prx1/2, peroxiredoxin 1/2; SH, thiol; SOD, superoxide dismutase; Trx, thioredoxin; TrxR, thioredoxin reductase.
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defects in phospholipase, urease and laccase expression, 
which severely attenuated virulence and the anti‑phagocytotic 
activity of the pathogen.

Catalases are antioxidant metalloenzymes that promote 
the conversion of hydrogen peroxide to water and molecular 
oxygen (64). C. neoformans contains four catalases (CAT1, 
CAT2, CAT3 and CAT4), among which CAT2 and CAT4 
are the closest orthologs of yeast CAT1 and CAT3 respec-
tively (64). However, previous results have suggested that 
deletion of all four CAT genes did not affect the sensitivity to 
ROS or virulence of the pathogen (64), indicating that other 
peroxide‑detoxifying systems may have a complementary 
role in C. neoformans. In addition, C. neoformans contains 
other enzymatic factors that protect against oxidative stress. 
For instance, cytochrome c peroxidase (CCP1) may degrade 
hydrogen peroxide  (65). Furthermore, alternative oxidase 
gene (AOX1) is an enzyme that forms part of the electron 
transport chain in the mitochondria in C.  neoformans, 
and its AOX1 mutant strain was demonstrated to be more 
sensitive to the oxidative stressor tert‑butyl hydroperoxide; 
however, its target in the classic oxidative pathway remains 
unknown (66).

4. Traversal of the BBB

After surviving phagocytosis and oxidative attack initiated by 
the innate immune system, C. neoformans may be carried in 
the bloodstream and disseminated to target organs, including 
the brain (67,68).

The BBB ensures that the brain is protected, and provides 
limited access to circulating macromolecules and microorgan-
isms (67,68). In order to infect the brain, C. neoformans may 
use one of three potential traversal pathways to cross the BBB: 

Transcellular traversal, the paracellular pathway and Trojan 
horse dissemination (69‑71) (Fig. 2).

Transcellular traversal. Transcellular traversal refers to the 
penetration of C. neoformans through barrier cells via the 
exploitation of cellular endocytosis  (72,73). Transcellular 
traversal of the BBB has been widely studied using in vitro 
models, which have demonstrated an ability of C. neoformans 
to adhere to one or more receptors on the endothelial cell 
barrier (67,74).

Previous in vitro and in vivo results have demonstrated 
that the glycoprotein cluster of differentiation (CD)44 receptor 
on the surface of brain endothelial cells has a key role in 
transcellular traversal invasion of C.  neoformans  (75,76). 
CD44 is the endothelial cell receptor for hyaluronic acid, 
and is located in lipid rafts/caveolae on the endothelial cell 
surface (77,78). When hyaluronic acid in the C. neoformans 
capsule binds to CD44, a downstream signaling pathway 
mediated by protein kinase Cα and dual‑specificity tyro-
sine phosphorylation‑regulated kinase 3 is initiated, which 
triggers actin cytoskeleton reorganization and phagocy-
tosis (5,71,79‑81). Notably, Jong et al (79) documented that 
CD44‑/‑ mice exhibited only a 2‑fold reduction in cryptococcal 
meningitis compared with wild‑type mice following intrave-
nous injection of C. neoformans. Furthermore, knockdown 
of CD44 and the hyaluronan‑mediated motility (RHAMM) 
receptor in mice conferred significantly higher protection and 
inhibited the invasion of C. neoformans in the brain when 
compared with knockdown of either receptor alone  (79). 
These results suggest that CD44 and RHAMM serve as 
receptors for C. neoformans on the surface of brain endo-
thelial cells through binding to hyaluronic acid. In addition, 
Maruvada et al (40) reported that C. neoformans PLB1 may 

Figure 2. C. neoformans traversal of the BBB. (A) Transcellular traversal: C. neoformans binds to receptors on the endothelial cell, which triggers cellular 
endocytosis (72‑79). (B) Trojan horse dissemination: C. neoformans is phagocytosed by a macrophage, which is able to cross the BBB, resulting in pathogen 
transportation into the brain (85‑92). (C) Paracellular pathway: C. neoformans damages and weakens the intercellular tight junctions, which facilitates passage 
of the organism between the endothelial cells (80‑82). RHAMM, receptor of hyaluronan‑mediated motility; CD44, cluster of differentiation 44; PKCα, protein 
kinase Cα; DYRK3, dual‑specificity tyrosine phosphorylation‑regulated kinase 3; BBB, blood‑brain barrier; C. neoformans, Cryptococcus neoformans.
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interact with lipid mediators in the endothelial cell membrane 
of the brain to convert GDP‑Ras‑related C3 botulinum toxin 
substrate 1 (Rac1) to GTP‑Rac1, which may then associate 
with signal transducer and activator of transcription 3 (40). A 
recent study also indicated that metalloprotease 1, belonging 
to the M36 class of proteases, promoted the migration of 
C. neoformans across the brain endothelium and into the CNS 
by facilitating cryptococcal attachment to the endothelium 
surface, thus underscoring the critical role of M36 proteases 
in BBB permeation (80).

Paracellular pathway. The paracellular pathway involves 
the entry of C. neoformans through damaged or weakened 
tight junctions between the intercellular spaces of endothelial 
cells (81,82). Neuropil edema is a characteristic of endothe-
lium damage  (83,84), and sequestration of C. neoformans 
in the brain microvessels and cryptococcal binding to the 
endothelium has been demonstrated to induce tight junction 
alterations (83,84). In addition, cryptococcal mannoproteins 
bind and activate host plasminogens (82). Activated plasmins 
may subsequently bind and break down the extracellular 
matrix and membrane, which increases the likelihood of 
paracellular invasion (82).

A standard in vivo approach to investigate the mechanisms 
involved in the paracellular pathway is intravenous incubation 
of mice with C. neoformans and imaging of the blood vessels in 
the brain (67). Shi et al (71) imaged the cerebral blood vessels of 
mice infected with a fluorescently labeled C. neoformans urease 
mutant strain, and identified a markedly reduced capacity of the 
mutant to traverse to the brain (71). It is possible that urease 
participates in the enzymatic digestion of tight junctions 
between endothelial cells, and thus facilitates brain invasion via 
the transcellular route (43). Collectively, these findings indicate 
the possibility that C. neoformans uses a paracellular entry 
mechanism by weakening the brain endothelial tight junctions.

Trojan horse dissemination. The Trojan‑horse dissemination 
of C. neoformans traversal involves the transport of pathogens 
into the brain within parasitized phagocytes (67,85). Previous 
results support the existence of a Trojan horse mechanism for 
BBB traversal (85). C. neoformans is a facultative intracellular 
pathogen that may survive and multiply inside phago-
cytes (86,87). Furthermore, C. neoformans may infect other 
phagocytes following their escape from phagocytic cells by 
vomocytosis, leaving the host macrophage unharmed (19,88). 
This direct cell‑to‑cell spread potentially explains how crypto-
cocci may exploit phagocytes to penetrate the BBB in a Trojan 
horse manner (89). In previous studies, C. neoformans was 
identified inside phagocytes on the outer side of a meningeal 
capillary, which suggests that C. neoformans may have been 
transported within circulating phagocytes  (90‑92). These 
findings suggest that C. neoformans may use the Trojan‑horse 
dissemination model to traverse into the brain.

5. Conclusions

The successful traversal of C. neoformans across the BBB 
relies on failure of the defense mechanisms imposed by the 
host innate immune system in the first phase of infection. 
Various innate immune constituents, including macrophages 

and neutrophils, contribute to phagocytosis, oxidative stress 
and clearance of C. neoformans (27). However, C. neoformans 
contains redundant layers of anti‑phagocytic and anti‑oxidative 
factors to resist the innate immune cells of the host, including 
polysaccharide capsules, melanin, phospholipases, proteases, 
ureases, TSA1, TSA3, TRX1, TRX2, TRXR1, GRX1, GRX2, 
GPX1, GPX2, SOD1, SOD2, CAT1, CAT2, CAT3, CAT4, 
CCP1 and AOX1.

Following its subversion of the innate immune response, 
C. neoformans may disseminate to the brain. However, entry 
into the highly protected environment of the brain requires 
C. neoformans to overcome the BBB. C. neoformans may gain 
entry through direct engulfment by endothelial cells (transcel-
lular traversal), inducing damage to tight junctions (paracellular 
pathway) or hiding within phagocytes (Trojan‑horse dissemi-
nation). Following successful evasion of the innate immune 
response, the fungi may proliferate (67). Results have indicated 
that >0.6 million cryptococcal meningitis cases each year result 
in mortality within 3 months of infection, even with treatment. 
In light of the present findings, the primary challenge in the field 
will be to obtain sufficient resources to identify Cryptococcus 
biomarkers for the improved determination of disease risk, 
treatment and prevention using therapies and vaccines, which 
may boost the immunity of the host to C. neoformans.
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