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Abstract. Numerous studies have indicated that the expres-
sion of matrix metalloproteinase‑9 (MMP‑9) contributes to 
the atherosclerotic plaque hemorrhage and rupture. Aspirin, a 
non‑steroidal anti‑inflammation drug, has been known for its 
anti‑platelet effect in the prevention of the vascular complica-
tions of atherosclerosis. The present study aimed to investigate 
the pharmacological effects of aspirin on tumor necrosis 
factor‑α (TNF‑α)‑induced MMP‑9 expression and the under-
lying molecular mechanisms in murine macrophage RAW264.7 
cells. Western blot analysis indicated that the protein level of 
MMP‑9 was reduced by aspirin in a dose‑dependent manner. In 
addition, downregulation of MMP‑9 mRNA and activity were 
detected in aspirin‑treated cells using quantitative polymerase 
chain reaction and a gelatin zymography assay separately. It 
was also observed that aspirin has a suppressive effect on the 
activation of nuclear factor (NF)‑κB and inhibits the phos-
phorylation of mitogen‑activated protein kinases (MAPKs), 
including extracellular signal‑regulated kinases 1/2, p38 and 
c‑Jun N‑terminal kinase. Furthermore, subsequent to inhibi-
tion of the MAPK pathway by specific inhibitors (PD98059, 
SB203580 and SP600125), the expression of MMP‑9 was 
reduced, indicating that the inhibitory effect of aspirin on 
MMP‑9 in TNF‑α‑treated RAW264.7 cells may be, at least in 
part, through suppression of NF‑κB activation and the MAPK 
pathway. These findings support the notion that aspirin has 

therapeutic potential application in the prevention and treat-
ment of atherosclerosis disease.

Introduction

Matrix metalloproteinases (MMPs) are a large family of 
zinc‑dependent enzymes, which are able to collectively 
degrade collagen and the majority of the extracellular matrix 
(ECM) components (1). ECM provides structural support to 
the heart, and ECM quantity and quality are the major deter-
minants of myocardial passive stiffness (2). Recent evidence 
demonstrated that excessive breakdown of the ECM by MMPs 
serves a pathogenic role in the atherosclerotic plaque, which 
is the major cause of mortality as a result of acute coronary 
syndrome and stroke (3). Therefore, MMPs are critical for 
vascular remodeling by regulating the degradation of the ECM 
in atherosclerotic plaques.

Atherosclerosis is a chronic inflammatory disease that is 
the basis of atherothrombosis and the development of acute 
coronary syndrome (4‑6). Increasing evidence indicates that 
the concentrations of MMPs are elevated not only in certain 
patients with cancer, liver cirrhosis or rheumatoid arthritis (7,8), 
but is also involved in the pathogenesis and progression of 
atherosclerotic plaque formation and rupture (9). Among the 
MMP family, MMP‑9 (also known as gelatinase B) is the 
predominant MMP and can degrade type IV collagen, which 
is the major component of the basement membrane (10). In 
addition, MMP‑9 is indispensable for collagen‑cleaving and 
degrading of the extracellular plaque matrix, leading to plaque 
instability and rupture (11). MMP‑9 can be secreted by smooth 
muscle cells (SMCs) and macrophages (12). Furthermore, the 
macrophage‑rich region of atherosclerotic plaque is the major 
source of MMP‑9 (13). The secretion of specific proinflam-
matory cytokines can activate pro‑MMP‑9, therefore inducing 
the degradation of the ECM, which leads to the migration and 
proliferation of SMCs (14). In addition, activated endothelial 
cells express adhesion molecules that can promote the infil-
tration of monocytes and their adhesion to the endothelial 
cells, which enhances the MMP‑9 production, consequently 
enhancing endothelial cell permeability and acceleration of 
plaque progression. A previous study has demonstrated that 
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MMP‑9 was highly expressed in humans with atherosclerotic 
lesions and animal models (15), and participated in mediating 
plaque instability, which is a major cause of acute coronary 
syndrome and stroke (12). MMP‑9 appears to serve a central 
role in the loss of atherosclerotic plaque stability. Therefore, 
it is crucial to clarify the regulatory mechanism of MMP‑9 
in atherosclerosis and to determine whether inhibiting the 
MMP‑9 activity may be an effective therapeutic strategy for 
the treatment of atherosclerosis.

The expression of MMP‑9 appears to be regulated by 
a range of different signaling pathways. Several studies 
have demonstrated that mitogen‑activated protein kinases 
(MAPKs) are involved in the regulation of MMPs by various 
cell types (16,17). The MAPK pathway is one of the impor-
tant mediators of signal transduction, which participates 
in multiple fundamental cellular processes, including cell 
growth, proliferation, differentiation and death (18). However, 
tumor necrosis factor‑α (TNF‑α) can activate three MAPK 
cascades, including the extracellular signal‑regulated kinases 
(ERKs), the c‑Jun N‑terminal kinase (JNK)/stress‑activated 
protein kinases and p38 (19,20). The ERK pathway has been 
linked to cell proliferation, cell growth and differentiation, 
whereas JNK and p38 MAPK pathways have been linked to 
apoptosis, cell survival, transformation, development, cell 
migration and immune activation  (21). Holvoet et al also 
proved that increased expression of MMP‑9 induced by TNF‑α 
was reduced by the specific inhibitors of MAPK signaling 
pathway in human keratinocytes  (22). Nuclear factor‑κB 
(NF‑κB) binds to the proximal promoter region of the 
MMP‑9 gene and regulates MMP‑9 transcription in response 
to distinct extracellular stimulation of TNF‑α (23,24), which 
is one of the strongest physiological inducers of MMP‑9 
expression (25).

Aspirin, a conventional nonselective non‑steroidal 
anti‑inflammation drug, is widely used in the primary 
prevention against cardiac‑cerebral vascular diseases, such 
as myocardial infarction and stroke, and 20‑25% of patients 
with various vascular diseases who were treated with aspirin 
presented decreased development of vascular events (26). The 
anti‑platelet function of aspirin is known to contribute to the 
therapy of atherosclerotic cardiovascular disease. However, 
the anti‑inflammatory effect of aspirin in atherosclerosis is not 
widely reported. Previous studies (3‑5) have demonstrated that 
atherosclerosis is a complex vascular inflammation disease. 
A clinical study has shown that patients receiving treatment 
with aspirin exhibited lower macrophage density of the carotid 
atherosclerotic plaque, suggesting that aspirin is involved in 
the suppression of the vascular inflammation process (27). 
Hua et al (28) also reported that aspirin prevented against 
atherosclerotic plaque rupture by inhibiting MMP‑9 expres-
sion by upregulating peroxisome proliferator‑activated 
receptor α/γ (PPARα/γ) expression in oxidized low‑density 
lipoprotein‑stimulated macrophages and by inducing TIMP 
metallopeptidase inhibitor 1 (TIMP1) and TIMP2 expres-
sion. However, whether aspirin inhibits the expression of 
MMP‑9 via the MAPK and NF‑κB signaling pathways 
in TNF‑α‑stimulated RAW264.7 cells remains unknown. 
Therefore, the present study investigated the effects and mech-
anisms of aspirin on MMP‑9 expression in TNF‑α‑stimulated 
RAW264.7 cells.

Materials and methods

Materials. Antibodies against JNK (1:500 dilution, BS6448), 
p38 (1:500 dilution, BS3566), ERK (1:1,000 dilution, AP0485), 
phospho‑JNK (1:500 dilution, BS4763), phospho‑p38 (1:500 
dilution, BS4635) and phospho‑ERK (1:1,000 dilution, BS4759) 
were purchased from Bioworld Technology (Beijing, China). 
SB203580 (p38MAPK inhibitor, 5633S), SP600125 (JNK 
inhibitor, 8177S) and PD98059 (ERK1/2 inhibitor, 9900S) and 
PDTC (NF‑κB inhibitor) were purchased from Cell Signaling 
Technology, Inc. (Danvers, MA, USA). An antibody against the 
p65 subunit of NF‑κB was also purchased from Cell Signaling 
Technology, Inc. (1:500 dilution, 8242). An antibody against 
MMP‑9 was purchased from EMD Millipore (Chemicon; 
Billerica, MA, USA, 1:500 dilution, AB19016). Recombinant 
murine TNF‑α was purchased from Thermo Fisher Scientific, 
Inc. (Biosource; MA, USA), and aspirin was purchased from 
Langtze Biomedical Technology (Nanjing, China).

Cell cultures. Murine macrophage RAW264.7 cells, purchased 
from the Type Culture Collection of the Chinese Academy of 
Sciences (Shanghai, China), were cultured in plastic dishes 
containing Dulbecco's modified Eagle's medium (DMEM; 
Sigma‑Aldrich, St. Louis, MO, USA) supplemented with 
10% fetal bovine serum (Sigma‑Aldrich), 100 U/ml penicillin 
and 100 µg/ml streptomycin at 37˚C and 5% CO2. For all 
experiments, cells were grown to 60‑80% confluence in culture 
flasks. Then, the medium was replaced with fresh DMEM and 
cells were transferred into multiple flasks for further expansion. 
The control groups were treated with medium only. In order to 
study the expression of MMP‑9, TNF‑α (10 ng/ml) was added 
in the presence or absence of aspirin (75, 150, 300 and 600 µM) 
for 24 h. For the inhibitory study, PDTC, an inhibitor of NF‑κB, 
can significantly inhibit NF‑κB activity, and further reduce the 
production of inflammatory cytokines, alleviating the systemic 
inflammatory response (29). In order to determine the effect of 
PDTC on TNF‑α‑induced expression of MMP‑9 in RAW264.7 
cells, the cells were divided into six groups and incubated with 
either TNF‑α or TNF‑α plus PDTC, PDTC and aspirin, aspirin 
or PDTC only group, respectively. The cells were treated with 
or without aspirin and PDTC for 1 h, then stimulated with 
TNF‑α for 24 h. And for the MAPK inhibitors, the cells were 
divided into six groups and incubated with TNF‑α or TNF‑α 
plus PD98059, SB203580, SP600125 or aspirin. Cells were 
pre‑incubated with or without 10 µM PD98059 (p‑ERK inhib-
itor)  (30), 10 µM SB203580 (p‑p38 inhibitor)  (30), SP600125 
(p‑JNK inhibitor) (31) and aspirin (600 µM) for 1 h with TNF‑α 
(10 ng/ml). These cultured cells and supernatants were then 
collected for measurement of the following design parameters 
after treatment with TNF‑α for 24 h.

Cell viability. MTT was used to evaluate the cytotoxicity of 
aspirin in RAW264.7 cells. Briefly, the cells were seed at a 
density of 4x104 cells/ml in a 96‑well plate. The cells were 
pretreated with various concentrations of aspirin (75, 150, 300 
and 600 µM) for 1 h, and then stimulated with or without TNF‑α 
(10 ng/ml) for 24 h at 37˚C in an atmosphere with 5% CO2. 
Subsequently, MTT solution (5 mg/ml in a phosphate‑buffered 
saline) was added to each well and the cells were incubated 
for a further 4 h. The medium was then discarded and 100 ml 
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dimethyl sulfoxide was added. The absorbance was recorded 
at 490 nm with a microplate reader in order to determine the 
cell viability.

Determination of MMP‑9 mRNA levels by reverse transcrip‑
tion‑quantitative polymerase chain reaction (RT‑qPCR). Total 
RNA was abstracted from the TNF‑α‑stimulated RAW264.7 
cells with TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's instructions. 
Equal amounts of RNA (1 µg) were reverse transcribed using 
a First‑Strand cDNA synthesis kit (Takara Biotechnology Co., 
Ltd., Dalian, China, 639504). qPCR was then performed using 
SYBR‑Green (Takara Biotechnology Co., Ltd., 639655) on a 
Real‑Time Quantitative Thermal Block (Biometra, Göttingen, 
Germany). The following specific primers were used: MMP‑9 
forward, 5'‑TTC​ACC​CGG​TTG​TGG​AAA​CT‑3', and reverse, 
5'‑AAA​TGT​GGG​TGT​ACA​CAG​GC‑3'; GAPDH forward, 
5'‑TGG​AAT​CCT​GTG​GCA​TCC​ATG​AAA‑3', and reverse, 
5'‑TAA​AAC​GCA​GCT​CAG​TAA​CAG​TCC​G‑3'. The entire 
amplification course was initiated at 95˚C for 5 min, followed 
by 40 cycles of 95˚C for 10 sec and 60˚C for 30 sec, and a 
final step at 60˚C for 30 sec. The specificity of the amplified 
products was analyzed through dissociation curves generated 
by the equipment yielding single peaks. GAPDH was used as 
an internal control to normalize samples. PCR reactions of 
each sample were conducted in triplicate. Data were analyzed 
through the comparative cycle threshold (Cq) method, obtained 
from the iQ5 Optical System software (Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA).

Gelatin zymography assay. To analyze MMP‑9 enzyme 
expression, RAW264.7 cells were seeded in 6‑well culture 
plates (2x106 cells/well). After the medium was changed with 
serum‑free medium, the cells were pretreated with aspirin 
for 1 h and then stimulated with TNF‑α for 24 h. Next, the 
samples were collected and separating by passing throughout 
10% zymography gels. Following electrophoresis, sodium 
dodecyl sulfate (SDS) was removed by washing the gels 
three times with buffer (50 mM Tris/HCl, pH 7.6, 150 mM 
NaCl, 5 mM CaCl2, 2 mM ZnCl2 and 0.1% Triton X‑100) for 
30 min at room temperature with gentle agitation to renature 
enzymes. The gels were subsequently incubated in zymogen 
development buffer [50 mM Tris‑HCl (pH 7.5), 150 mM NaCl, 
10 mM CaCl2, 0.02% NaN3, and 1 µM ZnCl2] at 37˚C for 
24‑48 h. After briefly washing in water, gels were stained with 
Coomassie blue R‑250 (Bio‑Rad Laboratories, Inc.) for 1 h. 
Gels were destained with 40% methanol and 5% acetic acid 
until clear white bands against a blue background were visible.

Western blot analysis. Total cells were washed with ice‑cold 
phosphate buffer saline and then harvested using RIPA buffer 
containing 1 mM phenylmethylsulfonyl fluoride. In order to 
obtain the nuclear extracts of NF‑κB, the nuclear proteins were 
prepared using a nuclear protein extraction kit (Beyotime Institute 
of Institute of Biotechnology, Haimen, China, p0027) according 
to the manufacturer's protocol. Protein concentrations were then 
measured using a bicinchoninic acid protein assay kit (Beyotime 
Institute of Biotechnology, p0012s). Following incubation on ice 
for 30 min, the supernatant was collected by centrifugation at 
12,000 x g for 10 min at 4˚C, and the amount of protein was 

measured using a Bradford assay kit (Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA, 5000202EDU). Subsequently, proteins were 
denatured in sample buffer containing 2‑mercaptoethanol and 
bromophenol blue for 10 min at 100˚C. Equal quantities of total 
cell lysates were size fractionated by 10% SDS‑polyacrylamide 
gel electrophoresis and transferred to polyvinylidene difluo-
ride membranes using the Hoefer electrotransfer system (GE 
Healthcare, Chicago, IL, USA). Subsequent to blocking, the 
membrane was incubated with primary antibodies against 
NF‑κB p65, β‑actin (Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA; 1:1,000 dilution, sc‑7210), phospho‑ERK, ERK, 
phospho‑p38, p38, phospho‑JNK, JNK and MMP‑9 overnight 
at 4˚C. The membrane was then washed with Tris‑buffered 
saline/Tween 20 and incubated with anti‑mouse or anti‑rabbit 
horseradish peroxidase (HRP)‑conjugated immunoglobulin G 
secondary antibodies (Santa Cruz Biotechnology, Inc.; 1:10,000 
dilution, sc‑2030) for 1 h at room temperature. The specific 
proteins were detected using enhanced chemiluminescence, and 
images were captured with a Fluorochem Gel Image Analyzer 
(ProteinSimple, San Jose, CA, USA).

Statistical analysis. Statistical analysis was performed using 
SPSS 13.0 software (SPSS, Inc., Chicago, IL, USA). The results 
are expressed as the mean ± standard deviation, and differ-
ences between the means of two groups were determined by 
unpaired Student's t‑test. The minimum significance level was 
set at P<0.05 for all analyses. All experiments were performed 
at least three times.

Results

Cytotoxicity of aspirin on RAW264.7 cells. The cytotoxic 
effect of aspirin on RAW264.7 cells was evaluated using MTT 
assay (Fig. 1A). Treatment of aspirin for 24 h did not have a 
significant cytotoxic effect on the cells at the concentrations of 
75, 150, 300 and 600 µM, when compared with the untreated 
cells. Next, the cytotoxic effects of aspirin on TNF‑α‑treated 
RAW264.7 cells were determined. Cells were incubated in the 
presence of aspirin (0‑600 µM) in serum‑depleted medium for 
1 h and then stimulated with TNF‑α (10 ng/ml) for 24 h. The 
results indicated that aspirin had no evident cytotoxic effect on 
TNF‑α‑stimulated RAW264.7 cells at a concentration of up to 
600 µM (Fig. 1B). Therefore, an aspirin dose of up to 600 µM 
was used in subsequent experiments.

Inhibitory effects of aspirin on MMP‑9 expression in 
TNF‑α‑treated RAW264.7 cells. The next experiment 
attempted to determine the effect of aspirin on TNF‑α‑induced 
MMP‑9 expression. RAW264.7 cells were pretreated without 
or with aspirin (75‑600 µm/l) for 1 h and stimulated with 
TNF‑α (10 ng/ml) for 24 h. Thereafter, the cultured medium 
was harvested for analysis of MMP‑9 enzymatic activity, 
mRNA levels and protein expression by gelatin zymography, 
RT‑qPCR and western blot analysis, respectively. As shown 
in Fig.  2A, MMP‑9 secretion was significantly induced 
by TNF‑α. However, the induction of MMP‑9 activity by 
TNF‑α was significantly inhibited by aspirin pre‑treatment 
in a dose‑dependent manner. Similarly, aspirin exhibited an 
inhibitory effect on TNF‑α‑induced MMP‑9 expression at 
the mRNA and protein levels in a dose‑dependent manner 
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(Fig. 2B and C). Therefore, these findings suggest that aspirin 
effectively inhibits the TNF‑α‑stimulated MMP‑9 expression 
and activity without any cytotoxicity observed at the dosage 
tested in RAW264.7 cells.

Effect of aspirin on TNF‑α‑induced activation of NF‑κB in 
RAW264.7 cells. NF‑κB, which has a binding site located 
in the MMP‑9 promoter region, has been implicated in the 
TNF‑α‑induced expression of MMP‑9 in several cell lines (32). 
In order to determine whether the inhibitory effect of aspirin 
on the TNF‑α‑induced expression of MMP‑9 is mediated 
by NF‑κB, the effect of the nuclear translocation of p65 was 
investigated, which is a major subunit of NF‑κB that has been 
shown to be induced by TNF‑α. The cells were treated with 
aspirin in the presence of TNF‑α for 1 h and then assessed by 
western blotting. As shown in Fig. 3A, the nuclear translocation 
of p65 as a result of TNF‑α stimulation was strongly inhibited 
in the presence of aspirin at a concentration of 600 µM. This 
inhibitory effect was increased in a dose‑dependent manner.

The association between NF‑κB activation and MMP‑9 
expression was then further examined by exposure of cells 
to a specific inhibitor of NF‑κB, pyrrolidine dithiocarbamate 
(PDTC), prior to TNF‑α stimulation. PDTC can inhibit 
NF‑κB activity and further reduce the production of inflam-
matory cytokines, alleviating the systemic inflammatory 
response (29). The results demonstrated that the combination 
of aspirin and PDTC also reduced TNF‑α‑induced MMP‑9 
expression (P<0.01; Fig. 3B and C). Therefore, these results 
indicated that the inhibitory effect of aspirin on MMP‑9 
expression and activity are associated with the suppression of 
NF‑κB activation in TNF‑α‑stimulated RAW264.7 cells.

Effect of aspirin on the inhibition of ERK1/2, JNK and p38 
phosphorylation. Several studies have indicated that MAPK 
pathways are involved in the expression of MMP‑9 (33,34). To 
explore whether the inhibitory effect of aspirin on the expres-
sion of MMP‑9 was mediated through the MAPK pathway, 
the phosphorylated protein levels of ERK1/2, JNK and p38 
were examined by western blot in RAW264.7 cells pre‑treated 
with aspirin and then with TNF‑α for various times (0, 10, 
20, 30 and 60 min). As shown in Fig. 4A, the protein expres-
sion levels of non‑phosphorylated ERK, JNK and p38 were 
not evidently altered in the TNF‑α alone and the TNF‑α plus 
aspirin stimulation groups. By contrast, the expression of 

Figure 1. (A) Cytotoxic effect of aspirin on RAW264.7 cells determined by MTT assay. RAW264.7 cells were treated with increasing concentration of aspirin 
for 24 h before assay. (B) Cytotoxic effect of aspirin in the presence of TNF‑α, as determined by MTT assay. Cells were pretreated with indicated concentra-
tion of aspirin for 1 h and then stimulated with TNF‑α (10 ng/ml) for 24 h. Data represent the mean ± standard deviation of three independent measurements. 
TNF‑α, tumor necrosis factor‑α.

Figure 2. Inhibitory effect of aspirin on MMP‑9 expression in TNF‑α‑stimulated 
RAW264.7 cells. Cells were pre‑treated with or without the indicated concen-
trations of aspirin for 1 h and then stimulated with TNF‑α (10 ng/ml) for 
24 h. (A) MMP‑9 activity in the conditioned media was analyzed by zymog-
raphy. (B) Reverse transcription‑quantitative polymerase chain reaction and 
(C) western blot analysis were performed to examine the mRNA and protein 
expression levels of MMP‑9, respectively. Densitometric results are presented 
as the mean ± standard deviation of three independent measurements. #P<0.05 
and ##P<0.01 vs. untreated control; *P<0.05 and **P<0.01 vs. TNF‑α treatment 
alone. MMP‑9, matrix metalloproteinase‑9; TNF‑α, tumor necrosis factor‑α.
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phosphorylated (p)‑p38, p‑ERK1/2 and p‑JNK significantly 
increased by TNF‑α stimulation, whereas aspirin inhibited the 
increase of p‑p38, p‑ERK1/2 and p‑JNK induced by TNF‑α at 
each time point.

The present study also examined whether MAPK pathways 
are involved in the MMP‑9 expression in the TNF‑α‑stimulated 
RAW264.7 cells using inhibitors of ERK1/2 inhibitor 
(PD98059), p38 (SB203580) and JNK (SP600125). As shown in 
Fig. 4B and C, the mRNA and protein levels of TNF‑α‑induced 
MMP‑9 expression levels were significantly downregulated in 
the presence of each of the MAPK inhibitors. These results 
suggest that the specific inhibition of the MAPK signaling 

pathway may be involved in the regulation of TNF‑α‑induced 
MMP‑9 expression by aspirin in RAW264.7 cells.

Discussion

Cardiovascular disease, in particular atherosclerosis, is 
regarded as a type of inflammatory disease (35). Macrophages 

Figure 4. Effects of aspirin on TNF‑α‑stimulated activation of MAPK signaling 
pathway in RAW264.7 cells. (A) Aspirin inhibited the TNF‑α‑stimulated 
phosphorylation levels of ERK1/2, p38 MAPK and JNK, as determined using 
western blot analysis. Cells were incubated for 1 h in the absence or present 
of aspirin (600 µM) and then stimulated for 10, 20, 30 and 60 min with 
10 ng/ml of TNF‑α. (B) Reverse transcription‑quantitative polymerase chain 
reaction and (C) western blot analysis were performed to examine the effect 
of MAPK inhibitors on the mRNA and protein expression levels of MMP‑9, 
respectively. Cells were pre‑incubated with or without 10 µM PD98059 
(p‑ERK inhibitor), 10 µM SB203580 (p‑p38 inhibitor), SP600125 (p‑JNK 
inhibitor) and aspirin (600 µM) for 1 h and then with TNF‑α (10 ng/ml) for 
24 h. Densitometric results are represented the mean ± standard deviation of 
three independent measurements. #P<0.05 and ##P<0.01 vs. untreated control; 
*P<0.05 and **P<0.01 vs. TNF‑α treatment alone. TNF‑α, tumor necrosis 
factor‑α; MMP‑9, matrix metalloproteinase‑9; MAPK, mitogen‑activated 
protein kinase; ERK, extracellular signal‑regulated kinase; JNK, c‑Jun 
N‑terminal kinase; p‑, phosphorylated.

Figure 3. Aspirin inhibits TNF‑α‑stimulated NF‑κB activation in RAW264.7 
cells. (A) Nuclear levels of NF‑κB p65 were detected by western blot analysis 
in cells were pre‑treated with or without aspirin for 1 h and then simulated 
with TNF‑α (10  ng/ml) for 1  h. (B)  Reverse transcription‑quantitative 
polymerase chain reaction and (C) western blot analysis were performed to 
examine the mRNA and protein expression levels of MMP‑9, respectively, in 
cells pre‑cultured with or without PDTC (10 µM) and aspirin (600 µM) for 
1 h, and then treated with TNF‑α for 24 h. Densitometric results represent the 
mean ± standard deviation of three independent measurements. #P<0.05 and 
##P<0.01 vs. untreated control; **P<0.01 vs. TNF‑α treatment alone. TNF‑α, 
tumor necrosis factor‑α; NF‑κB, nuclear factor‑κB; MMP‑9, matrix metal-
loproteinase‑9; PDTC, pyrrolidine dithiocarbamate.
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serve a major role during atherosclerotic lesion development 
in atherosclerotic plaque at various stages of development, 
partially through participation in the inflammatory response (4). 
Therefore, understanding the regulatory mechanisms of 
inflammation and finding pharmacological agents that can 
inhibit the inflammatory disease may have a potential effect in 
the prevention and treatment of atherosclerosis.

Aspirin, a platelet‑inhibitory drug, is used to prevent 
complications of atherosclerotic cardiovascular disease, such 
as myocardial infarction and stroke (36). A previous study 
has demonstrated that aspirin, together with its anti‑platelet 
activity, suppressed vascular inflammation and increased the 
stability of atherosclerotic plaques in murine atherosclerosis, 
thus exhibiting an anti‑atherogenic effect (37). Aspirin can 
inhibit the expression and release of MMP‑2/9 by upregulation 
of PPARα/γ gene expression, and also inhibit the activity of 
MMP‑2/9 by induction of TIMP1 expression, which may be 
beneficial for the stabilization of atherosclerotic plaques (38). 
However, to the best of our knowledge, no studies have 
reported the potential effects of aspirin on MMP‑9 expres-
sion in TNF‑α‑treated RAW264.7 cells. In the present study, 
the mechanism underlying the MMP‑9 inhibition by aspirin 
treatment in TNF‑α‑stimulated RAW264.7 cells was investi-
gated. It was demonstrated that aspirin has potent inhibitory 
effects on MMP‑9 expression, possibly together with an 
anti‑inflammatory and anti‑platelet function.

MMPs are a major family of endopeptidases that can 
selectively degrade various components of the ECM and 
serve crucial roles in various physiological and pathological 
process, including wound healing, vascular remodeling, rheu-
matoid arthritis, angiogenesis and invasion (39‑41). MMP‑9 
is a member of the MMPs family and a marker for coronary 
atherosclerosis. Plasma MMP‑9 concentration has been iden-
tified as a predictor of cardiovascular mortality in patients 
with coronary artery disease  (42), and the atherosclerotic 
lesion development is initiated by infiltrated macrophages that 
mainly produce MMP‑9. In turn, the expression and activity 
of MMP‑9 were increased in advanced atherosclerotic lesions, 
followed by macrophage infiltration (43). Additionally, accu-
mulating evidence demonstrates that the activity of MMP‑9 
is induced by TNF‑α in a variety of cell types (44,45). The 
results of the present study consistently identified that 
TNF‑α enhanced MMP‑9 expression and activity in cultured 
RAW264.7 cells. Notably, these data indicated that the elevated 
mRNA expression, protein level and activity of MMP‑9 by 
TNF‑α stimulation were inhibited by aspirin pre‑treatment in 
a dose‑dependent manner in RAW264.7 cells. Therefore, the 
present results suggested that the inhibition of MMP‑9 expres-
sion and activity may be responsible for the inhibitory effects 
of aspirin on TNF‑α‑treated RAW264.7 cells.

The binding site for NF‑κB in the promoter region of 
MMP‑9 serves a key function in the upregulation of MMP‑9 
expression by TNF‑α induction.  (46,47). NF‑κB serves an 
important role in regulating the inflammatory and immune 
responses to extracellular stimuli. NF‑κB is normally seques-
tered in the cytoplasm by inhibitory IκB proteins. Once 
activated, the NF‑κB subunit p65 dissociates from its inhibi-
tory protein IκB and translocates from the cytoplasm to the 
nucleus. Western blot analysis in the current study revealed 
that aspirin inhibited the nuclear translocation of NF‑κB p65 

in TNF‑α‑stimulated RAW264.7 cells in a dose‑dependent 
manner. Furthermore, the NF‑κB signaling specific inhibitor 
PDTC was used to determine whether NF‑κB signaling is 
involved in the regulation of MMP‑9 expression. The present 
data demonstrated that PDTC suppressed the MMP‑9 expres-
sion, which agrees with a previous study (48) showing that 
aspirin inhibited MMP‑9 mRNA expression and the nuclear 
translocation of NF‑κB p65 subunit, thus suppressing the 
activity of this inflammatory molecule and maintaining the 
plaque stability. Collectively, the results of the present study 
imply that the inhibitory effects of aspirin on TNF‑α‑induced 
MMP‑9 expression were mediated, at least partially, by 
suppression of the NF‑κB transcription factor.

MMP‑9 has been demonstrated to be stimulated by TNF‑α 
via activating MAPKs (49). Considerable evidence indicated 
that numerous natural products inhibit the expression of 
pro‑inflammatory genes by modulating the activation of MAPK 
pathways (50,51). Therefore, the present study aimed to reveal 
the inhibitory mechanism of aspirin on MMP‑9 transcription 
through MAPK pathways. The data demonstrated that aspirin 
downregulated TNF‑α‑stimulated the phosphorylation of 
ERK1/2, p38 and JNK upon treatment for different time points. 
In addition, exposure to PD98059 (an inhibitor of ERK1/2 
phosphorylation), SB203580 (an inhibitor of p38 phosphoryla-
tion) and SP600125 (an inhibitor JNK phosphorylation) also 
suppressed TNF‑α‑induced MMP‑9 expression. According 
on the aforementioned results, it is strongly suggested that 
aspirin inhibits TNF‑α‑induced MMP‑9 expression possibly 
by blocking the NF‑κB and MAPK signaling pathways in 
RAW264.7 cells. However, the MMP‑9 promoter has several 
transcription factor‑binding motifs, including the AP‑1, Sp‑1 
and NF‑κB binding sites (52). Therefore, other possible tran-
scription factors and signaling pathways may be involved in 
the regulation of MMP‑9 expression, which requires further 
investigation.

In conclusion, the results of the present study suggested 
that aspirin effectively inhibited the expression of MMP‑9 in 
TNF‑α‑stimulated RAW264.7 cells, possibly by inhibiting 
the activation of NF‑κB and MAPK pathways. It was, thus, 
demonstrated that aspirin may contribute to the stabilization 
of atherosclerotic plaque and prevention of atherosclerosis.
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