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Abstract. Tuberculosis (TB), which is caused by the myco-
bacterium TB, is the major cause of human death worldwide. 
The aim of this study was to identify the biomarkers involved 
in child TB. Gene expression data were obtained from the 
Array Express Archive of Functional Genomics Data. Gene 
expression data and protein-protein interaction (PPI) data 
were downloaded to construct differential gene co-expression 
networks (DCNs). The Benjamini-Hochberg algorithm was 
used to correct the P-value. In total, 3,820 edges (PPIs) and 
1,359 nodes (genes) were obtained from the human-related 
PPIs data and gene expression data at the criteria of absolute 
value of Pearson's correlation coefficient >0.8. The DCNs 
were formed by these edges and nodes. Thirteen seed genes 
were obtained by ranging z-scores. Eight significant multiple 
different modules were identified from DCNs using the 
statistical significant test. In conclusion, the seed genes and 
significant modules constitute potential biomarkers that reveal 
the underlying mechanisms in child TB. The new identified 
biomarkers may contribute to an understanding of TB and 
provide a new therapeutic method for the treatment of TB.

Introduction

Tuberculosis (TB), which is caused by mycobacterium TB, is a 
major cause of human mortality worldwide, with two million 

deaths and ten million new cases of TB occurring annually (1). 
Children are more susceptible to the infection of mycobacte-
rium TB due to their having a relatively weaker immune system 
compared with adults (2,3). The World Health Organization 
(WHO) reported that almost one million children were infected 
with the mycobacterium TB in 2015 (4). India, Indonesia, China, 
Nigeria, Pakistan and South Africa account for 60% of newly 
identified cases (5). There are more than 30,000 new children 
cases of multidrug-resistant TB in 2015 worldwide (6).

Vaccination with BacilleCalmette-Guerin (BCG) is an 
effective form of prevention of TB. The BCG vaccine has 
60-80% protective effect against severe types of TB in chil-
dren, especially meningitis (7). The Xpert Mycobacterium 
tuberculosis/rifampicin (MTB/RIF) assay can be used to 
diagnose TB and yield reliable results. Zar et al reported that 
Xpert MTB/RIF was a useful assay for the rapid and reliable 
diagnosis of paediatric TB in African children, using induced 
sputum and nasopharyngeal as the specimens (8). Gous et al 
also used the Xpert MTB/RIF assay to diagnose TB in child-
hood (9). Fiebig et al used the nucleic acid amplification tests 
and culture of gastric aspirates to detect bacteriological confir-
mation of TB in German children. Those authors found that 
the combined use of molecular assay and culture method had 
an improved test accuracy rate (10).

Protein-protein interactions (PPI) play an important role 
in all biological processes. The interaction networks can 
be used to explore the intricate protein organizations and 
cellprocesses (11,12). Safaei et al carried out a PPI network 
study on cirrhosis liver disease. Authors of that study found 
that the regulation of cell survival and lipid metabolism 
were pivotal biological processes in cirrhosis disease (13). 
In ovarian cancer, 12-gene network modules have been 
identified using the differential co-expression PPI network. 
The gene expression data and PPI networks can be used to 
develop effective biomarkers for understanding disease 
mechanisms (14). Ramadan et al combined the PPI and gene 
co-expression network (GCN) to analyze breast cancer (15).

In the present study, the PPI network and GCN were 
employed to analyze the latent and active period of TB in 
children. Thirteen seed genes were found in the differential 
gene co-expression networks (DCNs), and eight multiple 
differential modules (M-DMs) were identified based on the 
DCNs (16). The identified M-DMs provided new insights into 
the development of TB in children.
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Materials and methods

Gene expression data. The Array Express Archive of 
Functional Genomics Data is a functional genomics database 
at the European Bioinformatics Institute. The microarray data 
of E-GEOD-39940 were downloaded from the Array Express 
database. The data contained the gene expression profilings of 
patients who were HIV-negative, suffered from latent period of 
TB (n=54) and active period of TB (n=70).

In order to eliminate the influence of non-specific 
hybridization, the robust multichip average method was used 
to correct background. The quantile-based algorithm was 
carried out to normalize the data. The probes were discarded 
when they did not match any genes. In total, 13,997 genes were 
obtained after the mapping between gene IDs and probe IDs.

PPI data. Human related PPI data were obtained from the 
The Search Tool for the Retrieval of Interacting database, 

Figure 1. The DCNs contained 3,820 edges (PPIs) and 1,359 nodes (genes). DCNs, differential gene co-expression networks; PPI, protein-protein interaction.
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containing 787,896 pairs and 16,730 genes. The genes that 
were included in gene expressions and PPIs were selected 
to construct DCN. After processing, 501,736 PPI pairs and 
12,310 genes were obtained.

Construction of DCNs. The absolute value of the Pearson's 
correlation coefficient of PPI pairs of the active TB samples 
were calculated. The PPIs were selected if the corresponding 
absolute value was >0.8. Finally, 3,820 edges (PPIs) and 1,359 

nodes (genes) were obtained to construct the DCNs.
The one-tailed t-test was used to calculate the P-value of 

differentially expressed genes in the latent and active TB. The 
weight value of each interaction was calculated based on the 
P-values of genes according to EdgeR (17) as follows:
Where pi and pj are the P-values of the differential expres-
sion of gene i and gene j, respectively. V is the node set of 
the co-expression network. In addition, cor(i,j) indicates the 
absolute value of Pearson's correlation between gene i and j.

Construction of M-DMs. The construction of M-DMs consists 
of three steps: i) Seed genes prioritization, ii) module search 
based on each gene, and iii) the refinement of candidate 
modules. i) The importance of each gene in the networks was 
calculated as: 

where g(i), the importance of vertex i in the network; N(i), 
the adjacent set of gene i; A', the degree normalized weighted 
adjacent set, which is calculated as A' = D-1/2AD1/2, where D is 
the diagonal set of A.

The g (i) = z-score, and the genes were then ranked by the 
z-scores. The genes with the highest 1% z-scores were selected 
as the seed genes. ii) For each seed gene v ϵ V, it was selected 
as one differential module C. Then the gene u, which was 
adjacent to the gene v in the network was incorporated into 
this module, designated as module C'. The entropy change of 
the two modules was assessed as: ΔH(C',C)=H(C')-H(C).

ΔH(C',C)>0 exhibited that the connectivity of module C 
was increased by the joining of gene u. This was then joined 
to the adjacent gene u, which potentially increased the ΔH in 
module C until the ΔH was no longer able to increase. iii) The 
candidate module was removed if it contained <5 nodes. If the 
overlapping degree between two modules was ≥0.5, the two 
modules were merged into one module.

The statistical significant test of candidate M-DMs. In total, 
3,820 edges were selected randomly from 501,736 edges 
and formed the random network. The module searching was 
carried out following the above mentioned steps. The random 
networks were constructed 100 times, and 2,318 modules 

were constructed. The empirical P-value of the candidate 
module was calculated as the probability of the module, 
which has the observed score or smaller score by chance. 
The Benjamini‑Hochberg algorithm was used to correct the 
P-value (16). The modules that had the P-value of ≤0.05 were 
selected as the differential modules.

Results

Construction of DCNs. The human-related PPI and gene 
expression data were downloaded to construct the DCNs. 
Based on the criteria of absolute value of Pearson's correlation 
coefficient >0.8, 3,820 edges (PPIs) and 1,359 nodes (genes) 
were obtained (Fig. 1). The DCNs consisted of these edges and 
nodes.

Identification of candidate M-DMs. The genes which had 
the highest 1% z-scores in DCNs were selected as the seed 
genes. On aggregate, 13 seed genes were obtained (Table I).

Table I. Genes with highest 1% z-scores in DCNs were selected 
as the seed genesa.

Gene name	 z-score

SS18L2	 473.111
NOL11	 457.7947
ADSL	 438.8713
ILF2	 365.7652
DDX18	 345.6201
DDX1	 330.0789
CLNS1A	 306.1616
ENOPH1	 300.3362
MTERF3	 300.3337
MRPL32	 294.2793
NUP37	 287.2869
RPL35	 285.7214
EEF1B2	 284.5787

aIn total, 13 seed genes were obtained.

Table II. The P-value of 11 candidate M-DMs was calculated 
using the Benjamini-Hochberg algorithma.

Modules	 P-values	 Entropy

  1	 0	 0.847
  2	 0	 0.687
  3	 0	 0.739
  5	 0	 0.721
  6	 0	 0.775
  7	 0	 0.851
11	 0	 0.798
12	 0	 0.716

aP≤0.05 was considered statistically significant.
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Figure 2. The M-DMs identified from the DCNs. (A-H) The 8 M-DMs, respectively, are presented. M-DMs, multiple differential modules; DCNs, differential 
gene co-expression networks.
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The z-scores ranged from 284.5787 to 473.111. The seed genes 
contained SS18L2, NOL11, ADSL, ILF2, DDX18, DDX1, 
CLNS1A, ENOPH1, MTERF3, MRPL32, NUP37, RPL35 and 
EEF1B2. After the modules were investigated and refined, 11 
modules were obtained.

Identification of candidate M-DMs. The P-value of the 
11 candidate M-DMs were calculated and corrected using the 
Benjamini-Hochberg algorithm. The modules with P≤0.05 
were regarded as the objective modules. Finally, 8 modules 
were selected as significant differential modules (Table II and 
Fig. 2). The module entropy ranged from 0.687 to 0.851.

Discussion

From a systematic biology point of view, diseases are caused by 
the fluctuations to the gene expression network. Such fluctua-
tions change significantly during the disease progressions (18).
Schwarz  et  al combined the PPI works and expression 
genes to examine the biological processes and genes related 
with schizophrenia (19). The PPI and gene-gene functional 
interaction networks were constructed to identify potential 
biomarkers of pediatric adreno cortical carcinoma (20).

In the present study, we introduced a new method based on 
M-DMs to identify new biomarkers to better understand the 
molecular mechanisms and search for potential biomarkers of 
TB. We identified 8 modules associated with TB.

Humans possess two SS18 homologous genes, SS18L1 and 
SS18L2. The SS18L2 gene has three exons and is mapped to 
chromosome 3, with band p21 (21). de Bruijn reported that 
SS18 encoded nuclear proteins and functioned as a transcrip-
tional co-activator. The fusion of either SSX genes or SS18 is a 
hallmark of human synovial sarcoma (22).

Nuclear protein 11 (NOL11) is a metazoan-specific protein 
and is involved in ribosome biogenesis. NOL11 also plays an 
important role in the maturation of 18S RNA and pathogenesis 
of North American Indian childhood cirrhosis (23).

Human adenylosuccinatelyase (ADSL) is a bifunctional 
enzyme acting in two pathways of purine nucleotide metabo-
lism including de novo purine synthesis and purine nucleotide 
recycling (24). The human liver ADSL gene was cloned and 
mapped to chromosome 22 (25,26).

The antisense oligonucleotides (ASOs) combine with RNA 
to form heteroduplexes, which can be specifically recognized 
by the interleukin enhancer-binding factor 2 and 3 complex 
(ILF2/3). The combination of ASO and ILF2/3 modulates gene 
expression by alternative splicing (27). ILF2 mRNA accumu-
lates in the pachytene spermatocytes. ILF2 is also expressed in 
the adult ovary and different embryo tissues (28).

DEAD-Box Helicase 1 (DDX1) was found in a high‑molecular 
complex containing a ser ies of Drosha‑associated 
polypeptides (29). Low DDX1 levels are associated with poor 
clinical outcome in serious ovarian cancer by the cancer 
genome atlas and DDX1 plays an important role in the 
modulation of miRNA maturation (30).

Nevertheless, there are some drawbacks to the present 
study. The study included 124 samples, which is not a suffi-
cient amount of samples to support the conclusions and future 
studies are to be conducted to confirm the findings. In addi-
tion, the results were not verified by clinical experiments.

In conclusion, in the present study, we identified 8 signifi-
cant different modules using the new bioinformatic methods. 
We believe that the present study will benefit the understanding 
of TB in children and provide new therapeutic methods to 
combat the disease.
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