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Abstract. Previous studies have demonstrated that meth-
amphetamine (MA) influences host immunity; however, 
the effect of MA on lipopolysaccharide (LPS)‑induced 
immune responses remains unknown. Mast cells (MCs) 
are considered to serve an important role in the innate and 
acquired immune response, but it remains unknown whether 
MA modulates MC activation and LPS‑stimulated cytokine 
production. The present study aimed to investigate the effect 
of MA on LPS‑induced MC activation and the production of 
MC‑derived cytokines in mice. Markers for MC activation, 
including cluster of differentiation 117 and the type I high 
affinity immunoglobulin E receptor, were assessed in mouse 
intestines. Levels of MC‑derived cytokines in the lungs and 

thymus were also examined. The results demonstrated that 
cytokines were produced in the bone marrow‑derived mast 
cells (BMMCs) of mice. The present study demonstrated that 
MA suppressed the LPS‑mediated MC activation in mouse 
intestines. MA also altered the release of MC cytokines in 
the lung and thymus following LPS stimulation. In addition, 
LPS‑stimulated cytokines were decreased in the BMMCs of 
mice following treatment with MA. The present study demon-
strated that MA may regulate LPS‑stimulated MC activation 
and cytokine production.

Introduction

Methamphetamine hydrochloride (MA) is a widely abused 
psychostimulant with an estimated 35 million users worldwide; 
thus, it has become a public health problem (1). A number of 
animal and clinical studies have demonstrated that MA abuse 
induces immunosuppressive effects, thereby increasing suscep-
tibility to infectious diseases (2). Lipopolysaccharide (LPS), 
an immunostimulant, may mediate the immune response 
associated with gram‑negative bacterial infection. Although 
previous studies have demonstrated the detrimental effect 
of MA on host immunity (3,4), the effect of MA following 
stimulation with LPS on the immune response has not yet been 
described.

It has been demonstrated that mast cells (MCs) serve an 
important role in innate and acquired immune responses (5,6), 
such that certain diseases are associated with changes in the 
number of MCs at affected sites (7,8). MCs are abundant at the 
borders of the external environment, including the intestinal 
mucosa where MCs function as sentinel cells during immune 
defense  (9,10). Cluster of differentiation 117 (CD117, also 
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known as c‑kit) is a primary receptor and MCs marker and it 
has been demonstrated that a loss‑of‑function mutation in c‑kit 
causes MCs deficiency in mice (11). The type I high affinity 
immunoglobulin E receptor (FcεRI) is an another receptor 
and marker of MCs that excites FcεRI and activates MCs (12). 
It has been demonstrated that LPS induces rodent MCs to 
secrete a variety of cytokines, including tumor necrosis 
factor‑α (TNF‑α), interleukin (IL)‑1β, IL‑4, IL‑6, IL‑10, 
IL‑13 and chemokine ligand‑5 (CCL‑5) (13,14). MC‑mediated 
cytokine production is often greater than that from other 
immunocytes, including macrophages and T cells (15,16). In 
addition, MCs serve an important role in the lung (17); indeed, 
thymic MCs have been implicated in infection‑induced thymus 
involution (18). However, it is remains unknown whether MA 
modulates MCs activation and the subsequent production of 
cytokines stimulated by LPS.

The present study assessed the effect of MA on MC activa-
tion and release of cytokines stimulated by LPS in C57BL/6J 
mice. The expression of CD117 and FcεRI was measured in 
mouse intestines and it was demonstrated that MCs released 
cytokines in the lung and thymus tissues following treatment 
with MA and LPS stimulation. To further verify the effect of 
MA on the response of MCs mediated by LPS, LPS‑stimulated 
cytokine production following MA treatment in mouse bone 
marrow‑derived mast cells (BMMCs) was examined. The 
results of the present study demonstrate that MA may regulate 
MC activation and LPS‑stimulated cytokine production.

Materials and methods

Animals. A total of 48 C57BL/6J mice aged 6‑week‑old 
(weighing ~20  g; 24 males: 24 females) were purchased 
from the Laboratory Animal Department of Xi'an Jiaotong 
University Medical School (Xi'an, China). C57BL/6J mice 
were housed in a specific pathogen‑free facility (temperature, 
22±3˚C; relative humidity, 60±5%) maintained on a 12‑h 
light/dark cycle. All the mice had free access to food and 
water. Experiments were approved by the Animal Ethics 
Committee of Xi'an Jiaotong University and all treatment 
procedures were performed in accordance with the guidelines 
of the Institutional Animal Care and Use Committee of Xi'an 
Jiaotong University.

Reagents. MA was purchased from the National Institute 
for the Control of Pharmaceutical and Biological Products 
(Beijing, China). MA was dissolved in sterile 0.9% physi-
ological saline and injected intramuscularly (i.m.) at a dose of 
5 mg MA/kg. LPS (derived from Escherichia coli; serotype 
O55:B5; Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
was dissolved in sterile saline and injected i.m. at a dose of 
150 µg/kg.

Animal treatments. The 6‑week‑old sex‑matched C57BL/6J 
mice were randomly divided into 4 groups (n=12), including a 
normal saline (NS) NS+NS group (control), a MA+NS group, 
an NS+LPS group and a MA+LPS group. Mice received four 
i.m. injections of either 5 mg/kg MA or NS at 2 h intervals. Mice 
then received one i.m. injection of either LPS (150 µg/kg) or 
NS 24 h following the first MA injection. The 5 mg/kg dose of 
MA was selected based on the results of a previous study (19) 

and a preliminary experiment in the present study indicated 
that 150 µg/kg LPS was the most appropriate dose. Mice were 
sacrificed by CO2 asphyxiation and tissues, including lung and 
thymus tissues, were obtained for histological analysis and 
cytokine measurement.

Immunohistochemistry. Intestine tissues were fixed in 10% 
formalin solution at room temperature for 24 h, and then 
samples were embedded in paraffin and 5‑µm thick paraffin 
sections were prepared. The paraffin sections were depa-
raffinized and rehydrated in a descending alcohol series. 
Antigen retrieval was performed using a highly compressed 
heating method in a citrate buffer solution (95˚C, 5‑10 min). 
Endogenous peroxidase activity was blocked using a solu-
tion of methanol‑0.3% H2O2 incubated for 30 min at room 
temperature. Slides were incubated with the rabbit anti‑mouse 
polyclonal antibodies for CD117 and FcεRI (Beijing Bo Orson 
Biological Technology Co., Ltd., Beijing, China; dilutions, 
1:100 and 1:200, respectively; cat. nos. bs‑0672 and bs‑13167R, 
respectively) overnight at 4˚C. Slides were then washed three 
times with PBS (pH 7.4) and incubated with a secondary 
antibody (anti‑rabbit immunoglobulin G; dilution, 1:500; cat. 
no. bs‑0295M; Beijing Bo Orson Biological Technology Co., 
Ltd.) for 2‑3 h at room temperature. Finally, 3,3'‑diaminoben-
zidine (Dr. Wuhan's Biological Engineering Co., Ltd., Wuhan, 
China) was used for coloration at room temperature for 5 min. 
The chromogenic reaction was monitored every 3 min using 
an optical microscope. Following washing, sections were 
air‑dried, dehydrated in ascending concentrations of ethanol, 
cleared with xylene and mounted under a cover slip with 
Permount. A total of 10 random fields per slide were examined 
and analyzed. The images were captured using a microscope 
(Leica microsystem GmbH, Wetzlar, Germany).

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted from the lungs and 
thymus of mice and subsequently purified using a TRIzol kit 
(Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, 
USA). Nucleic acid concentration and purity (A260/A280) was 
measured using a microplate instrument. Residual genomic 
DNA was removed by incubation with RNase‑free deoxyribo-
nuclease (Takara Bio, Inc., Otsu, Japan). Reverse transcription 
was performed using a PrimeScript™ RT reagent kit (Takara 
Bio, Inc.) following the manufacturer's protocol. The resulting 
cDNA was subjected to qPCR using a Stratagene Mx 3005p 
real‑time PCR Detection system (Agilent Technologies Inc., 
Santa Clara, CA, USA) using SYBR Green II (Takara Bio, Inc.) 
as a double‑strand DNA‑specific dye to quantify the expres-
sion of TNF‑α, IL‑1β, IL‑6, IL‑10, IL‑4, IL‑13 and CCL‑5 
in the lung and thymus of mice. The primer sequences were 
as follows: IL‑1β forward, (F) 5'‑GTC​ACA​AGA​AAC​CAT​
GGC​ACA​T‑3' and reverse, (R) 5'‑GCC​CAT​CAG​AGG​CAA​
GGA​‑3'; IL‑4 F, 5'‑ACG​GAG​ATG​GAT​GTG​CCA​AAC​‑3' and 
R, 5'‑AGC​ACC​TTG​GAA​GCC​CTA​CAG​A‑3'; IL‑6 F, 5'‑CTG​
CAA​GAG​ACT​TCC​ATC​CAG​TT‑3' and R, 5'‑AGG​GAA​GGC​
CGT​GGT​TGT​‑3'; IL‑10 F, 5'‑GCC​AGA​GCC​ACA​TGC​TCC​
TA‑3' and R, 5'‑GAT​AAG​GCT​TGG​CAA​CCC​AAG​TAA‑3'; 
IL‑13 F, 5'‑CGG​CAG​CAT​GGT​ATG​GAG​TG‑3' and R, 5'‑ATT​
GCA​ATT​GGA​GAT​GTT​GGT​CAG‑3'; TNF‑α F, 5'‑GGC​TGC​
CCC​GAC​TAC​GT‑3' and R, 5'‑ACT​TTC​TCC​TGG​TAT​GAG​
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ATA​GCA​AAT‑3'; CCL‑5 F, 5'‑GGA​GTA​TTT​CTA​CAC​CAG​
CAG​CAA​G‑3' and R, 5'‑GGC​TAG​GAC​TAG​AGC​AAG​CAA​
TGA​C‑3'; and glyceraldehyde 3‑phosphate dehydrogenase 
(GAPDH) F, 5'‑GCA​CCG​TCA​AGG​CTG​AGA​AC‑3' and 
R: 5'‑TGG​TGA​AGA​CGC​CAG​TGG​A‑3'. All primers were 
synthesized by Bao Bioengineering Co., Ltd. (Dalian, China). 
The thermo cycling conditions of qPCR were as follows: Initial 
denaturation at 95˚C for 30 sec; followed by 40 cycles at 95˚C 
for 5 sec and 60˚C for 30 sec; 1 cycle at 95˚C for 60 sec, 55˚C 
for 30 sec, and 95˚C for 30 sec. Following the completion of 
qPCR, specificity was assessed using a melting curve analysis. 
The results were quantified using the 2‑ΔΔCq method  (20). 
GAPDH was utilized as a reference gene.

Cytokine analysis of lung and thymus. The lungs and thymus 
of mice were homogenized at 4˚C using tissue protein extrac-
tion reagent (Xi'an FengZu Biotechnology Co., Ltd., Xi'an, 
China) with a complete mini protease inhibitor cocktail and 
complete mini phosphatase inhibitor cocktail tablets (Roche 
Applied Science, Pleasanton, CA, USA), using 1 inhibitor 
tablet per 10  ml tissue protein extraction reagent. Tissue 
homogenates were centrifuged at 12,000 x g for 15 min at 4˚C. 
The total protein concentration in the supernatants of lung and 
thymus homogenates was determined using a BCA kit (Zhuhai 
Jian Kangyuan Biopharmaceutical Co., Jian Kangyuan Group 
Corporation, Guangdong, China). Supernatants were then 
diluted using a tissue protein extraction reagent to a final 
protein concentration of 500 µg/ml and stored at 80˚C until 
further use. Cytokines TNF‑α, IL‑1β, IL‑6, IL‑10, IL‑4, IL‑13 
and CCL‑5 in the supernatants were measured using ELISA 
(eBioscience; Thermo Fisher Scientific Inc., Waltham, MA, 
USA; cat. nos. BMS607‑3, BMS6002, BMS603‑2, BMS614‑2, 
BMS613, BMS6015 and BMS6009INST, respectively) 
following the manufacturer's protocol.

BMMC preparation and cytokine measurements. BMMCs 
were obtained from the femurs of 6‑week‑old C57BL/6J 
mice, following a previously described protocol (21). Cells 
were cultured at 37˚C in RPMI 1640 medium (Gibco; Thermo 
Fisher Scientific) supplemented with 10% fetal bovine serum 
(FBS) (Gibco; Thermo Fisher Scientific, Inc.), 10 ng/ml IL‑3, 
10 ng/ml stem cell factor (SCF), 2 mM L‑glutamine, 1 mM 
sodium pyruvate, 1 mM HEPES, 50 µM 2‑mercaptoethanol, 
100 U/ml penicillin and 100 µg/ml streptomycin. IL‑3 and 
SCF were purchased from PeproTech Inc. (Rocky Hill, NJ, 
USA). After 4 weeks, flow cytometry was used to identify 
whether BMMCs were composed of >95% MCs. BMMCs 
were then incubated with fluorescence‑labeled antibodies, 
including anti‑CD117‑flourescein isothocyanate (FITC; 
dilution, 1:100; cat. no. 553354; BD Biosciences Franklin 
Lakes, NJ, USA) and anti‑FcεR1‑APC (dilution, 1:200, cat. 
no. 17‑5898‑82; eBioscience, Thermo Fisher Scientific Inc.) 
for 1 h at 4˚C.

BMMCs from C57BL/6J mice were treated with 100 µM/l 
MA and 1 µg/ml LPS for 24 h at 37˚C. The concentration of 
TNF‑α, IL‑6, IL‑4, IL‑13 and CCL‑5 cytokines present in the 
supernatants was then quantified using ELISA kits (eBiosci-
ence, Thermo Fisher Scientific Inc.; cat. nos.  BMS607‑3, 
BMS603‑2, BMS613, BMS6015 and BMS6009INST) 
according to the manufacturer's protocol.

Statistical analysis. All the analysis was performed using 
SPSS software version 15.0 (SPSS, Inc., Chicago, IL, USA). 
One‑way analysis of variance was used to determine the differ-
ence among groups. Comparisons of all pairs were completed 
using the Turkey‑Kramer test. Data were expressed as the 
mean ± standard error of the mean and P<0.05 was considered 
to indicate a statistically significant difference.

Results

MA suppresses LPS‑stimulated MC activation in the intes‑
tines of C57BL/6J mice. C57BL/6J mice received four i.m. 
injections of MA (5 mg/kg) or saline and were then injected 
with LPS or saline 24 h following the first MA injection. 
Fig. 1 presents the results of immunohistochemical staining 
for CD117+ and FcεRI+ in C57BL/6J mice. NS+LPS mice 
exhibited a significant increase in intestinal CD117+ and 
FcεRI+ compared with the NS+NS group (P<0.05; Fig. 1B 
and D). No effect on CD117+ or FcεRI+ cells was identified 
in MA+NS treated mice. However, it was demonstrated that 
significantly fewer intestinal CD117+ and FcεRI+ cells were 
present in MA+LPS treated mice, compared with mice that 
received NS+LPS (P<0.05; Fig. 1B and D).

MA suppresses LPS‑stimulated production of inflammatory 
cytokines in the lungs of C57BL/6J mice. Mice treated with 
NS+LPS exhibited a significant increase in the mRNA and 
protein levels of the pro‑inflammatory cytokines TNF‑α, 
IL‑1β and IL‑6 in the lungs, compared with NS+NS mice 
(P<0.05; Fig. 2). MA+NS treatment had no effect on cytokine 
production. However, the mRNA and protein levels of all the 
pro‑inflammatory cytokines were significantly decreased 
in the MA+LPS group, compared with mice in treated with 
NS+LPS (P<0.05; Fig.  2). NS+LPS treatment induced a 
significant increase in IL‑10 mRNA and protein expression 
(P<0.05; Fig. 2). No significant difference in IL‑10 produc-
tion was identified between the MA+NS and the NS+NS 
groups; however, MA treatment significantly suppressed the 
LPS‑mediated increase in IL‑10 mRNA and protein expres-
sion (P<0.05; Fig. 2).

MCs increase in number following the T helper 2 (Th2) 
response. Therefore, the effect of MA on LPS‑stimulated Th2 
cytokine/chemokine production in the lung was assessed. 
NS+LPS treatment significantly increased the mRNA and 
protein expression of the Th2 cytokines/chemokines IL‑4, 
IL‑13 and chemokine ligand‑5 (CCL‑5) in the lungs of mice 
(P<0.05; Fig. 2). MA+NS treatment had no significant effect 
on the production of Th2 cytokines/chemokines at either level 
in the lungs of mice. However, the mRNA and protein levels 
of Th2 cytokines/chemokines were significantly decreased in 
MA+LPS mice, compared with mice that received NS+LPS 
(P<0.05; Fig. 2).

MA suppresses the LPS‑stimulated production of inflammatory 
cytokines in the thymus of C57BL/6J mice. NS+LPS treatment 
significantly increased the production of the pro‑inflammatory 
cytokines TNF‑α, IL‑1β and IL‑6 at the mRNA and protein level 
in the thymus of mice compared with the NS+NS group (P<0.05; 
Fig. 3A and B). No significant differences were identified in 
the mRNA or protein expression of thymic pro‑inflammatory 
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cytokines between mice treated with MA+NS and those treated 
with NS+NS. However, the mRNA and protein levels of the 
pro‑inflammatory cytokines were significantly reduced in the 
thymus of the mice treated with MA+LPS compared with the 
NS+LPS group (P<0.05; Fig. 3).

NS+LPS treatment significantly increased the mRNA and 
protein levels of the anti‑inflammatory cytokine IL‑10 in the 
thymus of mice (P<0.05; Fig. 3). MA+NS treatment alone had no 
effect on thymic IL‑10 mRNA or protein expression. However, 
MA treatment significantly suppressed the LPS‑stimulated 
increase in IL‑10 mRNA and protein expression in the thymus 
of mice compared with the NS+NS group (P<0.05; Fig. 3).

NS+LPS treated mice exhibited a significant increase in 
the production of the Th2 cytokine/chemokines IL‑4, IL‑13 
and CCL‑5 at the mRNA and protein levels in the thymus of 
mice (P<0.05; Fig. 3). No difference in the expression of Th2 
cytokines/chemokine was observed between MA+NS treated 
mice and the NS+NS group. However, the expression of Th2 
cytokine/chemokine mRNA and protein was significantly 
reduced in the group treated with MA+LPS, compared with 
mice that received NS+LPS treatment (P<0.05; Fig. 3).

MA suppresses the LPS‑stimulated inflammatory cytokine 
production in the BMMCs of C57BL/6J mice. To verify 

the suppressive effects of MA on LPS‑stimulated cytokine 
production, BMMCs were cultured and supernatant cytokine 
levels were measured using ELISA. BMMCs produced signifi-
cantly higher levels of TNF‑α, IL‑6, IL‑4, IL‑13 and CCL‑5 
in LPS‑treated mice compared with NS+NS mice (P<0.05; 
Fig. 4). However, a significant decrease in cytokine/chemo-
kine production was identified in the BMMCs of mice in 
the MA+LPS group compared with the LPS group (P<0.05; 
Fig. 4). IL‑1β and IL‑10 were not measured in BMMCs, as the 
concentrations were too low.

Discussion

MA is a potent stimulant of the central nervous system and 
its abuse causes severe psychological and physical effects. 
Previous studies have revealed that MA negatively impacts 
immune responses, which may contribute to the higher rate 
and rapid progression of certain infections found in drug 
abusers  (22,23). The present study therefore assessed the 
effects of MA on MC activation and cytokine/chemokine 
production in C57BL/6J mice that received LPS stimulation.

The results demonstrated that MA treatment suppressed 
LPS‑mediated MC activation in the intestines of C57BL/6J 
mice. MCs are concentrated at interfaces between the host and 

Figure 1. Effect of MA on LPS‑stimulated MC activation in the intestines of C57BL/6J mice. (A) Anti‑CD117 and (C) FcεRI immunoreactivity of intestines 
from C57BL/6J mice. Brown stained cells were defined as CD117 or FcεRI‑positive cells. Stained sections were examined under a light microscope (magnifica-
tion, x400). Scale bar=50 µm. Quantification of immunohistochemical staining for (B) anti‑CD117 (D) FcεRI. Data are expressed as the mean ± standard error 
of the mean (n=12). *P<0.05 vs. NS+NS group; #P<0.05 vs. NS+LPS group. MA, methamphetamine; LPS, lipopolysaccharide; CD117, cluster of differentiation 
117; FcεRI, type I high affinity immunoglobulin E receptor; NS, normal saline.
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environment, including the intestinal tract, where they limit 
the spread of invading pathogens (24). MCs are considered 
to function as effecter cells during the innate and adaptive 
immune responses (25‑27). CD117 and FcεRI are primary MC 
surface receptors associated with MC activation (7,12,28‑30). 
The present study demonstrated that MA+LPS treatment 
significantly decreased the expression of intestinal CD117 and 
FcεRI. However, the effect of MA and LPS on MCs them-
selves was not assessed in the present study. Therefore, further 
experiments should be conducted to investigate the expression 
profiles of MC cytokines stimulated with varying doses of 
LPS and MA.

Previous studies have demonstrated that LPS induces MCs 
to secrete cytokines, thus promoting the innate and adaptive 
immune responses (31,32). The most studied MC derived cyto-
kine in the innate immune response is TNF‑α, which induces the 
early influx of neutrophils and clearance of pathogens (33‑35). 
It has been demonstrated that IL‑6 produced by MCs increases 
the survival rates of patients with Klebsiella pneumoniae 
and sepsis by stimulating neutrophil activity (36). IL‑10 is an 
anti‑inflammatory cytokine which suppresses the synthesis of 

inflammatory cytokines, including TNF‑α and IL‑6 (37). It 
has been demonstrated that MCs can mediate negative immu-
nomodulatory functions by producing IL‑10 in response to 
chronic irradiation with UVB light (38). In addition, certain 
MC derived Th2‑type cytokines, including IL‑4 and IL‑13, 
influence B‑cell development and function (11). MCs are also 
an important source of chemokines, including CCL5, which is 
involved in Th2‑type responses (10). The results of the present 
study demonstrate that MA treatment suppresses MC derived, 
LPS‑stimulated, inflammatory cytokine production in the lungs 
and thymus of C57BL/6J mice. It was also revealed that MA has 
a suppressive effect on the production of LPS‑stimulated inflam-
matory cytokines in the BMMCs of mice. The results indicated 
that MA abuse leads to immunosuppressive effects, which may 
increase the risk of infection. However, the present study did not 
assess the effect of MA on other immune cells. Further studies 
are required to improve understanding regarding the effects of 
MA on immune function.

In conclusion, the present study demonstrated that MA 
may be involved in the regulation of LPS‑stimulated MCs 
activation and cytokine production. This may be responsible 

Figure 2. Effect of MA on LPS‑stimulated cytokine expression in the lungs of C57BL/6J mice. C57BL/6J mice were treated with four doses of NS or 5 mg/kg 
MA at 2 h intervals, followed by 150 µg/kg saline or LPS for 24 h. Lungs were then harvested and analyzed for cytokine (A) protein expression using ELISA 
or (B) mRNA expression using reverse transcription quantitative polymerase chain reaction. Data are expressed as the mean ± standard error of the mean 
(n=12). *P<0.05 vs. NS+NS group; #P<0.05 vs. NS+LPS group. MA, methamphetamine; LPS, Lipopolysaccharide; NS, normal saline; TNF‑α, tumor necrosis 
factor‑α; IL, interleukin; CCL‑5, chemokine ligand‑5.
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Figure 4. Effect of MA on LPS‑stimulated cytokine production in the BMMCs of C57BL/6J mice. BMMCs were treated with NP, MA and/or LPS at the 
indicated concentrations (MA, 100 µM; LPS, 1 µg/ml; MA+LPS, 100 µM MA+1 µg/ml LPS) for 4 h or 24 h at 37˚C. Following treatment, cytokine concentra-
tions in cell supernatants were evaluated using ELISA. Data are expressed as the mean ± standard error of the mean of four samples. *P<0.05 vs. NS+NS 
group at the same time‑point; #P<0.05 vs. LPS group at the same time‑point; ##P<0.01 vs. NS+LPS group at the same time‑point. MA, methamphetamine; LPS, 
Lipopolysaccharide; BMMCs, bone marrow‑derived mast cells; TNF‑α, tumor necrosis factor α; IL, interleukin; CCL‑5, chemokine ligand‑5.

Figure 3. Effect of MA on LPS‑stimulated cytokine expression in the thymus of C57BL/6J mice. C57BL/6J mice were treated with four doses of NS or 5 mg/kg 
MA at 2 h intervals, followed by 150 µg/kg saline or LPS for 24 h. The Thymus was harvested and analyzed for cytokine (A) protein expression using ELISA 
or (B) mRNA expression by reverse transcription quantitative polymerase chain reaction. Data are expressed as the mean ± standard error of the mean (n=12). 
*P<0.05 vs. NS+NS group; #P<0.05 vs. NS+LPS group. MA, methamphetamine; LPS, lipopolysaccharide; NS, normal saline; TNF‑α, tumor necrosis factor α; 
IL, interleukin; CCL‑5, chemokine ligand‑5.
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for the immune dysfunction and increased susceptibility 
to infectious diseases associated with MA abuse. Further 
studies are required to explore the mechanism underlying the 
immunomodulatory effects of MA.
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