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Abstract. Previous studies have identified a close associa-
tion between diet and the prevalence of Kashin‑Beck disease 
(KBD); however, the mechanisms via which the diet protects 
against KBD‑associated cartilage injury has remained elusive. 
Recent international research studies have revealed a thera-
peutic role of dietary exosome micro (mi)RNAs in repairing 
chondrocyte lesions by regulating genes and proteins associ-
ated with cellular apoptosis and extracellular matrix. Vital 
molecules affecting bio‑functions of chondrocytes, including 
miR‑23b and protein kinase cyclic AMP‑activated catalytic 
subunit β, were preliminarily identified to be dysregulated in 
cells and cartilage tissue of KBD patients. The function of 
dietary exosome in the repair of chondrocyte lesions in KBD 
is a novel topic in this field. It is worth exploring the protec-
tive role of dietary exosome‑miR‑23b against chondrocyte 
damage through the regulation of the protein kinase A (PKA) 
signaling pathway. The following aims are significant in 
future studies: i) To verify the association between exosome 
and cartilage damage in KBD patients; ii) to identify whether 
the protective mechanism of miR‑23b in cartilage damage 
proceeds through regulating the PKA pathway; and iii) to 
explore the therapeutic role of dietary exosome‑miR‑23b in 
repairing chondrocyte lesions induced by environmental risk 
factors. These ideas may help establish the therapeutic role 
and mechanisms of dietary exosome‑miR‑23b in repairing 
chondrocyte lesions at the molecular, cellular and organismal 
level. These studies may simultaneously elucidate the disease 

pathogenesis and provide evidence for novel biomarkers and 
therapeutic methods for KBD.
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1. Introduction

Kashin‑Beck disease (KBD) is a type of endemic osteoar-
thropathy. It is characterized by onset during childhood, 
deformed phalangeal joints or even limbs and degenerative 
cartilage damage (1). China has the broadest endemic areas, 
the highest number of patients affected and the highest 
prevalence of KBD worldwide. According the 2016 China 
Health Statistical Yearbook, a total of 567,600 patients, 
including 12,730 juvenile patients (age, ≤13 years) in 378 
counties, and >104 million residents in China are currently 
at risk (http://www.nhfpc.gov.cn). Furthermore, new cases 
were recently diagnosed in Tibet. The X‑ray‑positive rate of 
phalangeal damage in children, which indicates new KBD 
cases, was 6.67% in Re‑yu Village of Bian‑ba county in 
Tibet (2).

Identified environmental risk factors for KBD are preva-
lent in China. Selenium supplementation has no longer been 
applied nationwide since 2012, so that environmental selenium 
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is still low in KBD endemic areas. Mycotoxin contamination 
in food is detected in Qinghai Province, a severely endemic 
region (3). Therefore, the threat of KBD in Chinese popula-
tions persists. ‘Focus on prevention and control of endemic 
diseases’ is one of the most important tasks stated in the 
13th Five‑Year Plan for health and wellness of the public in 
China (http://www.moh.gov.cn/). Hence, there is an urgent 
demand to identify the underlying molecular mechanisms of 
articular damage in patients induced by environmental risk 
factors, and to develop effective prevention and treatment 
measures against these risk factors to ‘eliminate the hazard 
of KBD’, as proposed in the plan.

2. Dietary changes in endemic areas are closely associated 
with the reduction of the prevalence of KBD

Despite the elusive etiology and pathology of KBD after 
>160 years of investigation, various hypotheses have been 
proposed by experts worldwide. The hypotheses commonly 
involve environmental factors and may be summarized into 
two major models. One view is that the occurrence of KBD 
is associated with a specific geographical and ecological 
environment. The model suggests that the overabundance, 
deficiency or disproportion of certain elements in the 
endemic environment may cause an abnormal nutritional 
status of certain elements (e.g., selenium deficiency) in the 
body through the food chain, which then gradually induces 
metabolic irregularities followed by disorders in physi-
ological function, and ultimately disease (4-7). The other 
view suggests that food contamination is the primary cause 
of KBD. It holds that mycotoxin contamination (e.g., T‑2 
toxin) of locally produced cereals and organic poisoning 
(e.g., humus) in drinking water may increase the levels of 
reactive oxygen species and free radicals in the body, which 
may damage chondrocytes, disturb the extracellular matrix 
and induce excessive apoptosis and necrosis of chondrocytes 
in KBD patients (8,9).

The above hypotheses suggest that diet is significantly 
associated with KBD. A number of epidemiological investi-
gations, pedigree studies and sib‑pair studies have indicated 
that KBD exhibits a familial aggregation but no familial 
heredity (10,11). The incidence of KBD and the severity of 
the disease were determined to be positively correlated with 
the long‑term intake of locally produced cereals (e.g., corn 
and wheat), and drinking water (e.g., ditch and cellar water) 
polluted by organic complexes (e.g., humic acid) (12). Low 
selenium in the environment tends to cause low nutritional 
selenium in the body through the food chain, which may 
increase the risk of KBD; by contrast, selenium supple-
mentation, e.g., through selenium‑enriched salt, effectively 
decreased the incidence of KBD in children, and may 
delay or prevent articular cartilage lesions in patients (13). 
Long‑term consumption of cereals contaminated with myco-
toxin (e.g., T‑2 toxin) was reported to significantly elevate the 
risk of KBD (14); furthermore, low selenium combined with 
T‑2 toxin induced human‑KBD‑like cartilage damage in rats 
as determined via pathological, biochemical and molecular 
biology analyses (15). Finally, a cross‑sectional study on 
nutrient intake of children aged 4‑14 years from Lin‑you 
and Yong‑shou counties, which are severely endemic areas, 

reported that the intake proportion of cereal products was 
high, while the intake of meat, eggs and bean products was 
low; furthermore, inadequate intake of proteins, minerals and 
vitamins compared with the Estimated Average Requirement 
in China was identified (16,17). This evidence suggested that 
an undiversified diet structure and insufficient nutrient intake 
may promote the occurrence of KBD.

Based on the above results, multivariate regression 
analyses indicated that the major risk factors for KBD are 
low nutritional selenium, insufficient consumption of bean 
products (shortage of proteins), poor storage conditions for 
cereals, and food contamination by mycotoxin (18). In recent 
decades, comprehensive measures have been established to 
prevent KBD, including change of cereal source, improve-
ment of food storage conditions, diversified diet structure, 
grain for green and relocation (19,20). The incidence and 
severity of KBD have exhibited yearly decreases. However, 
the mechanisms by which the diet affects the pathogenesis 
of KBD remains elusive, and it is worth further investigating 
them in order to develop novel, effective and accessible 
methods for preventing KBD.

3. The exosome, an important carrier of intercellular 
information, has a vital part in the etiology and pathology 
of osteoarthropathy and may be studied as a therapeutic 
strategy

Exosomes are a type of extracellular vesicle. The prospect of 
clinical applications of exosomes in various fields has been 
postulated in 2016 (21). Exosomes widely exist in animals, 
plants and microbes, e.g., in bodily fluids (synovial fluid, 
blood, urine, saliva and milk) and the supernatant of cell 
cultures. Exosomes have a 40‑100 nm bilayer membrane 
structure formed by endocytosis, and they contain various 
bioactive substances, including miRNAs, mRNAs, proteins 
and lipids (22). These molecules are termed ‘cargo’ and are 
released into the intercellular space by exocytosis in response 
to the body's requirements or pathogen stimulation. Adjacent 
or long‑distance cells may selectively absorb the released 
substances by endocytosis for use in cellular processes, 
including proliferation, differentiation, migration, apoptosis 
and extracellular matrix degradation (Fig. 1) (23). The 
composition of cargo affects the health status of organisms 
and vice versa. Changes in cargo composition may induce 
abnormal expression of genes and proteins in the body. In 
addition, psychological and/or physiological disorders may 
lead to abnormal cargo composition in exosomes (24).

Kato et al (25) and Withrow et al (26) reported that exosome 
and cargo concentrations were abnormal in osteoarthropathy, 
as reflected by differential expression of genes associated with 
cell apoptosis, inflammatory factors and extracellular matrix. 
In 2016, a pathogenesis study of osteoarthritis (OA) indicated 
that exosomes, extracted from chondrocytes cultured with 
interleukin (IL)‑1β, increased the level of matrix metallopro-
teinase (MMP)‑13 in fibroblast‑like synoviocytes up to 3‑fold, 
accompanied by elevated levels of IL‑1β, tumor necrosis factor 
(TNF)‑α and cyclooxygenase‑2 (26). It suggests that exosomes 
of chondrocytes affect the expression of inflammatory factors 
and MMP, which further causes metabolic disorders of the 
cartilage matrix and induces pathological changes.
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Exosomes also have an important role in the development 
of rheumatoid arthritis (RA) by influencing the synthesis, 
transportation and activation of disease‑associated compo-
nents, including immune complexes, micro (mi)RNA, 
inflammatory factors and proteases (26). In an animal model 
of RA, extracellular matrix degradation was induced by 
exosomal cargo, including MMPs, a disintegrin and metallo-
proteinase with thrombospondin motifs‑5, hexosaminidase D 
and B‑glucuronidase, released by inflammatory cytokines, 
and resulting in cartilage damage and aggravated inflamma-
tory reaction (23).

The amount and activity of IL‑1β and TNF‑α in the chon-
drocytes, serum and synovial fluid of KBD patients were 
reported to be significantly increased compared with those 
in normal controls. Overexpression of MMP‑13 was also 
detected in articular cartilage of KBD patients, in addition to 
substantial loss of type II collagen and aggrecan (27). To date, 
it has not been explored whether the pathological changes 
in KBD described above are associated with abnormal 
exosomes. Furthermore, whether the level of exosomal cargo 
may be affected by low selenium and T‑2 toxin is also a novel 
topic in this field.

As traditional therapies for diseases comprising cartilage 
injury, including KBD and OA, intra‑articular injection of 
sodium hyaluronate may be performed to relieve pain and 
arthroplasty may be applied to regain working capacity for 
advanced patients. However, these therapies are limited by 
utility duration and side‑effects and are not able to decrease 
the incidence of the disease. Exosomal cargo (e.g., miRNAs) 
derived from autologous cells, when used for therapeutic 
purposes, may contribute to the normal biological function 
without side effects, including immunogenicity and tumouri-
genicity. Exosomal miRNA‑140‑5p derived from human 
synovial mesenchymal stem cells (hSMSCs) promoted 
the proliferation and migration of chondrocytes, and also 
depressed the inhibition of extracellular matrix molecules, 
including type II collagen and aggrecan (28,29). Exosomes 
derived from hSMSCs are also able to promote osteochondral 
regeneration (30,31). Due to these effects, the maintenance of 
cartilage homeostasis was facilitated and tissue regeneration 
was enhanced, and exosomes may therefore be an effective 
means to prevent OA.

Therefore, based on the therapeutic role of exosomes in 
preventing cartilage injury‑associated diseases, identification 

of the link between exosomes and the pathogenesis of KBD 
is necessary for the etiological study and development of 
novel prevention measures for KBD.

4. Regulation of the PKA signaling pathway in 
chondrocytes by miR-23b may be involved in the 
mechanism of cartilage damage in KBD

miRs are small, non‑coding RNAs consisting of 20‑24 nucle-
otides, which regulate gene expression in humans and other 
species (32). miR‑23b has recently been identified to be asso-
ciated with osteoarticular diseases. It is involved in several 
cellular functions, including proliferation, differentiation, 
reconstruction of the cytoskeleton and migration. miR‑23b 
was identified to promote the differentiation of human 
mesenchymal stem cells (hMSCs) into chondrocytes (33). 
It also depressed the expression of Smad3 at the gene and 
protein level, which ameliorated lipopolysaccharide‑induced 
inhibition of osteogenic differentiation in MC3T3‑E1 
pre‑osteoblast cells (34).

Protein kinase A (PKA) is composed of two regulatory 
subunits and two catalytic subunits and is normally inac-
tive. PKA is activated by the combination of cyclic AMP 
(cAMP) and its regulatory subunits, and it is also known 
as cAMP‑dependent protein kinase (35). The activated 
form is functional in numerous biological processes by 
phosphorylating target proteins, including those involved 
in the regulation of glycogen, sugar and lipid metabo-
lism (36). Prostaglandin D2 dose‑dependently decreased the 
IL-1β‑induced production of MMP‑1 and MMP‑13 protein 
and mRNA in chondrocytes through the PKA signaling 
pathway. This suggests that the PKA may be a promising 
therapeutic target for the prevention of cartilage degrada-
tion (37,38). In addition, Yokoyama et al (39) reported that the 
PKA pathway is involved in the proliferation of chondrocytes 
in patients with neonatal‑onset multisystem inflammatory 
disease.

Interactions between miR‑23b and the PKA pathway have 
a role in maintaining normal physiological functions of chon-
drocytes. miR‑23b may promote the production of aggrecan, 
SRY‑box 9, as well as type II and type X collagens, and it 
also suppresses the productions of MMPs. More importantly, 
it affects the expression of phospho‑cAMP response element 
binding protein, a key phosphorylated response element, to 

Figure 1. Process of exosomes delivering substances from donor cells to recipient cells. MMP, matrix metalloproteinase; IL, interleukin; TNF, tumor necrosis 
factor; COX, cyclooxygenase.
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inhibit the PKA pathway, which then accordingly facilitates 
the differentiation of hMSCs into chondrocytes (40,41).

KBD is characterized by upregulated apoptosis and 
necrosis of chondrocytes in the deep zone of articular carti-
lage (42). These pathological changes are usually combined 
with the increased expression of type I collagen and MMPs, 
as well as decreased productions of type II and type X 
collagens and degradation of aggrecan (43). A meta‑analysis 
of 139 studies describing differentially expressed miRNAs 
in osteoarticular diseases indicated that miR‑23b was over-
expressed in lesion chondrocytes and cartilage tissue (44). 
Therefore, the pathological changes in KBD may be regu-
lated by miR‑23b and the PKA pathway.

5. Dietary exosomal miRNAs are resistant to digestion 
and exert functions across species

It has been confirmed that miRNAs are also contained in vege-
tables, meat and animal products, and insufficiency of these 
dietary sources of miRNAs cannot be compensated for by 
endogenous synthesis (22). The cargo of exogenous and endog-
enous exosomes is released and enters the circulation, which 
is then taken up by different organs. However, it is currently 
elusive how dietary exosomes are specifically targeted to the 
recipient cells (45). It has been proven that dietary miRNAs 
may be absorbed and utilized by mammalians as a form of 
exosomal cargo to regulate vital pathways and participate 

in responses to pathological triggers in the body to promote 
health, such as the tumor‑suppressive effect of milk‑derived 
exosomal miRNAs (46) and the role of grape‑derived exosomal 
cargo (including miRNAs) in protecting mice from dextran 
sulfate sodium‑induced colitis (47).

A simulation of the digestion process has indicated 
that the protection of the exosome, their cargos, including 
RNA, miRNAs and other degradable bioactive molecules, 
is able to resist damage caused by stomach conditions and 
still retains bioactivity in target cells, where they may be 
utilized (Fig. 2) (48). For instance, a computer‑controlled 
gastrointestinal model of TNO intestinal model‑1 proved 
that a large quantity of dairy milk Bos taurus (bta) miR‑223 
and bta‑miR‑125b withstood digestion under simulated 
gastrointestinal tract conditions. A large quantity of these 
2 microRNAs was detected in the upper small intestine 
compartments, which supports their potential bioacces-
sibility (48). As another example, oral administration of 
exosomal curcumin in Sprague Dawley rats demonstrated 
3‑5 times higher levels in various organs compared with 
those achieved by administration of the free substance (49). 
miRNAs in a vegetarian diet, including soy milk and rice, are 
not significantly reduced by storage, processing and cooking. 
In addition, these dietary miRNAs maintain relatively high 
bioactivity after entering the digestive tract (50).

The results of previous studies suggest that exosomal 
cargo may stimulate cell growth and differentiation in vitro 

Figure 2. Dietary exosomes are resistant to damage from digestion and function in target cells.
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and may have therapeutic effects in in vivo models of disease. 
Exosomes derived from fruit and vegetables may be absorbed 
by macrophages and monocytes so that exosomal cargo 
may have a beneficial effect by inhibiting the inflammatory 
reaction (51,52). Grape exosome‑like nanoparticles added 
in culture media of stem cells facilitated the processes of 
proliferation and organ differentiation, and they also effec-
tively elongated the life span of mice (47). Animal models 
of spontaneous polyarthritis and collagen‑induced arthritis 
indicated that inflammatory regulation factor‑associated 
miRNAs (miR‑30a, ‑223 and ‑92a) in milk‑derived exosomes 
may delay the occurrence of arthritis. This treatment was also 
effective in dose‑dependently alleviating physical and patho-
logical manifestations, including ankle swelling, cartilage 
damage and bone marrow inflammation. Furthermore, the 
treatment may decrease the serum levels of pro‑inflammatory 
cytokines, including IL‑6, growth‑regulated alpha protein, 
monocyte chemoattractant protein‑1 and anti‑collagen 
immunoglobulin G2a, to facilitate the prevention and treat-
ment of articular cartilage injury (53).

6. Potential protective effect of dietary exosome-miR-23b 
in residents of endemic regions and KBD patients from 
articular cartilage injury stimulated by environmental 
risk factors through regulation of the PKA pathway

The preliminary studies mentioned above encourage 
further investigation. There may be an abnormal quantity of 
exosome‑miR‑23b in chondrocytes affected by KBD, which 
may lead to the dysregulation of the PKA pathway and stimu-
late further pathological changes.

If this is the case, to reverse the pathological changes 
associated with KBD, intake of dietary (e.g., milk‑derived) 
exosome‑miR‑23b should be able to positively regulate 
the PKA pathway to protect chondrocytes against damage 
induced by environmental risk factors, namely low selenium 
and T‑2 toxin (Fig. 3).

Therefore, further study is warranted to i) clarify the 
association between exosome and the disease; ii) verify the 
interaction between miR‑23b and the PKA pathway in KBD; 

and iii) identify whether dietary exosome‑miR‑23b inhibits 
articular cartilage injury stimulated by environmental risk 
factors through regulating the PKA pathway.

7. Conclusions

The pathogenesis of KBD, which is stimulated by environ-
mental risk factors, is still a conundrum, and the protective 
mechanisms of dietary components in preventing KBD 
remains elusive. Supplementation of exosomal miRNA has 
been suggested as a promising therapeutic method to prevent 
osteoarticular diseases. miR‑23b and the PKA pathway 
have been identified to be abnormal in cartilage tissue and 
chondrocytes of KBD patients. Hence, it is worth exploring 
whether dietary exosome‑miR‑23b inhibits articular carti-
lage injury stimulated by environmental risk factors through 
regulating the PKA pathway to prevent KBD.
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