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Abstract. Type 2 diabetes mellitus (T2DM) is a chronic 
progressive disease, which manifests as an endocrine disorder. 
Among the different methods of surgery available to treat 
patients with T2DM, Roux-en-Y gastric bypass (RYGBP) and 
ileal transposition (IT) are the most commonly performed. 
The aim of the present study was to investigate the effects of 
RYGBP combined with IT on rats with T2DM. A total of 8 
healthy male rats were used as a control group and 40 GK 
rats were randomly divided into 5 groups: A diabetes mellitus 
(DM) group, a sham operative group (SO), a RYGBP group, an 
IT group and a RYGBP+IT group. The results demonstrated 
that fasting blood glucose, triglyceride, total cholesterol and 
gastric inhibitory polypeptide levels in all treatment groups 
were significantly lower than those of the SO and DM groups. 
Furthermore, levels TC and TG in the RYGBP+IT group were 
significantly lower than in the RYGBP and IT groups. Levels 
of phosphoenolpyruvate carboxykinase and glucose-6-phos-
phatase mRNA and IRS-2 protein in all treatment groups 
were also significantly lower than those of the SO group; 
and they were significantly lower in the RYGBP+IT group 
compared with the RYGBP and IT groups. The expression of 
phosphorylated Akt in the treatment groups was significantly 
higher than the SO group and was significantly higher in the 
RYGBP+IT group compared with the RYGBP and IT groups. 
These results indicate that RYGBP and IT surgical treatment 
can induce T2DM remission by mediating the expression of 
insulin-related factors to reverse insulin resistance. The current 
study also indicated that the effect of RYGBP combined with 

IT may be developed as a novel first‑line method of treating 
T2DM.

Introduction

Diabetes is a chronic progressive disease that primarily mani-
fests as an endocrine disorder (1). According to the World 
Health Organization, the prevalence of diabetes worldwide 
will reach 334 million people (2) and therefore it poses a 
serious threat to human health. Diabetes typically results 
from hyperglycaemia due to insulin resistance and a relative 
lack of insulin; the majority of the increased risk of mortality 
is attributable to associated macrovascular atherosclerotic 
diseases (3,4). Out of all patients with diabetes, >90% have 
type 2 diabetes mellitus (T2DM) (5). Currently, the most 
effective methods of treating T2DM are medical interven-
tions, including surgical procedures such as Roux-en-Y gastric 
bypass (RYGBP) and ileal transposition (IT), anti-diabetes 
medication (insulin, metformin) and undergoing lifestyle 
changes, such as adhering to a healthy diet and partaking in 
regular exercise (6-8).

RYGBP surgery and IT are the most commonly performed 
surgical procedures to treat patients with T2DM (9,10). 
Pories et al (11) demonstrated that, following RYGBP, blood 
glucose levels in patients with T2DM are more effectively 
regulated compared with prior to the operation. Indeed, 
following RYGBP, 83% of patients with T2DM exhibit normal 
glucose and glycated hemoglobin levels, even following 
discontinuation of all glucose-lowering agents (12). It is also 
worth noting that overweight patients exhibited normal insulin 
levels following RYGBP surgery, which reduced glucose 
levels (13). RYGBP markedly improves the prognosis of obese 
patients with T2DM and reduces the likelihood of complica-
tions occurring, including perioperative mortality, pulmonary 
embolism and dysrhythmias (11). However, a significant 
proportion of patients with T2DM are not obese and it remains 
unknown whether they can benefit from RYGBP. Previous 
studies have demonstrated that IT is able to induce a hypo-
glycemic effect in a non-obese rat model of T2DM (10,14). 
However, the effectiveness, safety and clinical applications of 
IT in humans still require further clarification.

It has been reported that the expression of phosphoenolpyr-
uvate carboxykinase (PEPCK) is upregulated in a rat model of 
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diabetes and these rats are either completely lacking in insulin 
or exhibit increased plasma glucocorticoid levels (15,16). 
Glucose‑6‑phosphatase (G‑6‑Pase) is the final gatekeeper of 
glucose efflux from cells and catalyzes the last step of gluco-
neogenesis (17). Previous studies have suggested that G-6-Pase 
contributes to the development of diabetes and its promoter 
has several elements in common with PEPCK (18-20). Insulin 
receptor substrate (IRS) proteins, including IRS-1, IRS-2 and 
IRS-4 also serve a critical role in the signal transduction of 
insulin (21). In humans, a number of polymorphisms have been 
identified in the IRS2 gene and these polymorphisms may 
increase the risk of T2DM in various populations where they 
are more prevalent (22).

In the present study, a T2DM rat model was used to 
evaluate the effects of RYGBP combined with IT on T2DM, 
compared with RYGBP or IT alone. Levels of diabetes-related 
factors, including triglyceride (TG), total cholesterol (TC), 
fasting blood glucose (FBG), gastric inhibitory polypeptide 
(GIP), glucagon-like peptide (GLP-1), PEPCK1, G-6-Pase 
and IRS-2, were measured and used as evaluation indicators. 
The primary aim of the present study was to assess the effects 
of RYGBP combined with IT in the treatment of non-obese 
T2DM, with the aim of developing a novel effective treatment 
of T2DM that induces T2DM remission and reduces the risk 
of complications occurring.

Materials and methods

Animals. A total of 40 male Goto-Kakizaki (GK) rats (age, 
8 weeks; weight, 270±30 g) with non-obese T2DM and 
8 healthy male Sprague Dawley (SD) rats (age, 8 weeks; 
weight, 270±30 g), were allowed to acclimate to the facility in 
cages for 1 week prior to experiments under a 12 h dark/light 
cycle at 22±2˚C. All rats were obtained from Shanghai SLAC 
Laboratory Animal Co., Ltd. (Shanghai, China). The 8 healthy 
rats formed the control group and the 40 GK rats were 
randomly divided into the following groups (all n=8): An 
untreated T2DM group (DM group), a sham group, a RYGBP 
surgery group (RYGBP group), an IT surgery group (IT 
group) and an RYGBP and IT combination group (RYGBP+IT 
group). All protocols involving animals were approved by the 
Ethical Committee of the Fifth Hospital of Wuhan, Wuhan 
University (Wuhan, China; ethical approval no. 20160311). All 
dissections were performed according to recommendations 
proposed by the European Commission, and all efforts were 
made to minimize suffering in our animals.

Surgical intervention. All rats were fasted overnight for ≥12 h 
and then intraperitoneally anesthetized with 350 mg/kg 10% 
chloral hydrate (Sigma-Aldrich; Merck KGaA, Darmstadt, 
Germany). For RYGBP, the gastric bypass model was established 
following a previously described protocol (23). For IT surgery, 
Treitz's ligament was identified, the jejunum was divided 5 cm 
aborally and the ileal loop was the interpositioned in an isope-
ristaltic fashion, forming two end-to-end anastomoses (24). For 
the combination of RYGBP and IT surgery, Treitz's ligament 
was identified, the jejunum was divided 5 cm aborally and 
anastomoses were formed in the distal jejunum and proximal. A 
total of 8 male GK rats were selected to undergo sham surgery. 
A division of the small intestine with subsequent anastomoses 

was performed at the distal jejunum and proximal and ileum 
without IT. The sham procedure involved gastrotomy, enter-
otomy and repair. All rats were maintained on a standardized 
post-operative protocol during which a liquid diet was provided 
from day 2 post-surgery. During the experiment, 1 rat from the 
sham group, 1 rat from the RYGBP group and 2 rats from the 
RYGBP+IL group succumbed. This is in line with the mortality 
rates of rats in previous studies (25-27).

Blood and tissue collection. Blood was collected from rat tail 
veins prior to and 4, 8, 12 and 16 weeks following surgery. 
FBG levels were measured using a glucometer. Blood was then 
centrifuged at 2,000 x g for 10 min to separate the serum at 
room temperature. ELISA was then used evaluated the levels 
of GLP-1 and GIP and an automatic biochemical analyzer 
used to measure the levels of TG and TC (BS-450; Mindray, 
Nanshan, Shenzhen, China). All rats were euthanized via intra-
peritoneal administration of 150 mg/kg sodium pentobarbital 
(Sigma-Aldrich; Merck KGaA) 16 weeks following surgery. 
Liver tissue was collected and stored at ‑80˚C.

ELISA. GLP-1 and GIP levels in the sera of rats were evalu-
ated by GLP-1 (cat. no. RA20061) and GIP (cat. no. RA20389) 
ELISA kits obtained from Bio-Swamp Life Science (Wuhan, 
China) and the assay was performed in accordance with the 
manufacturer's protocols.

Total RNA extraction and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA was 
extracted from liver tissue using TRIzol reagent (Takara Bio 
Inc., Dalian, China) and assessed using an ultraviolet spectro-
photometer and 1% agarose electrophoresis. For each sample, 
1 µg RNA was reverse transcribed to obtain first‑strand cDNA 
using the PrimeScript® RT reagent kit with gDNA Eraser 
(Takara Bio, Inc.) following the manufacturer's instructions. 
The reaction mixture (20 µl total volume) contained 10 µl 
2X SYBR Premix Ex Taq™ (Takara Bio, Inc.), 0.5 µmol/l 
each primer and 0.2±0.02 µg cDNA template. The following 
three-step qPCR reaction was performed: Pre-denaturation at 
95˚C for 30 sec, followed by 40 cycles, including denaturation at 
95˚C for 3 min and annealing at 60˚C for 20 sec and elongation 
at 72˚C for 20 sec. The primes used were as follows: PEPCK 
forward, 5'-TCA AGT GCC TCC ACT CCG-3' and reverse, 
5'-GAA CAA GCC CGT GTA GTC CTT-3'; G-6-Pase forward, 
5'-GAA AGA ATG AAC GTG CTC C-3' and reverse, 5'-CAG 
TAT CCC AAC CAC AAG AC-3'; β-actin forward, 5'-AGA GGG 
AAA TCG TGC GTG AC-3' and reverse, 5'-CAA TAG TGA TGA 
CCT GGC CGT-3'. The threshold cycle (Cq) was determined 
for each reaction and the Cq values for each gene of interest 
were normalized to that of β-actin, which acted as a control. 
Levels of gene expression were then calculated using the 2-ΔΔCq 
method (28). For each group, three samples were measured and 
three technical replicates of each measurement were obtained.

Western blot analysis. Protein expression was analyzed by 
western blot analysis. Tissue samples were washed with 
PBS and homogenized at 4˚C in radioimmunoprecipitation 
assay lysis buffer (Beyotime Institute of Biotechnology, 
Haimen, China) containing protease inhibitor. Subsequently, 
tissues were centrifuged at 12,000 x g for 15 min at 4˚C. Protein 
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concentration was determined using a BCA kit (Bio-Swamp 
Life Science). Equal amounts of protein (30 µg) were sepa-
rated by 10% SDS-polyacrylamide gel and then transferred 
onto a PVDF membrane (EMD Millipore, Billerica, MA, 
USA). Membranes were blocked for 2 h at room temperature 
with 5% skim milk in Tris-buffered saline (20 mmol/l Tris, 
500 mmol/l NaCl and 0.05% Tween-20). Subsequently, the 
membrane was incubated with primary antibodies against 
IRS-2 (cat. no. ab13410), Akt (cat. no. ab8805), phosphorylated 
(p)-Akt (cat. no. ab38449) (all dilution 1:500) and β-actin (cat. 
no. ab6276; dilution, 1:4,000) overnight at 4˚C (all Abcam, 
Cambridge, UK). β-actin was used as an internal reference. 
Membranes were subsequently washed with Tris-buffered 
saline and incubated with goat anti-rabbit secondary antibody 
conjugated to horseradish peroxidase (cat. no. W4011; dilu-
tion, 1:3,000; Promega Corporation, Madison, WI, USA) for 
2 h at room temperature. Immunoreactivity was visualized 
via a colorimetric reaction using enhanced chemiluminscent 
substrate buffer (EMD Millipore). Membranes were analyzed 
using a Gel Doc EZ imager and bans were quantified using 
Quantity One 5.0 (Bio-Rad Laboratories, Hercules, CA, USA).

Statistical analysis. SPSS 19.0 software (IBM Corp, Armonk, 
NY, USA) was used for data analysis and statistical differences 
were detected using one-way analysis of variance followed 
by Dunnett's post hoc test. All values were expressed as the 
mean ± standard error mean. Differences were considered to 
be statistically significant at P<0.05.

Results

Surgical treatment regulates hyperglycemia and decreases 
TC and TG levels in the blood of T2DM rats. FGB, TC and 

TG were evaluated in each of the groups prior to and 4, 8, 12 
and 16 weeks following surgery. FBG, TC and TG levels in all 
treatment groups were higher than those of the control group 
prior to surgery (Fig. 1). However 16 weeks following surgery, 
FBG, TC and TG levels in the RYGBP, IT and RYGBP+IT 
groups were significantly decreased compared with the sham 
and DM groups. Notably, TC and TG levels in the RYGBP+IT 
group were significantly lower than those in the RYGBP and 
IT groups 16 weeks following surgery.

Surgical treatment decreases GIP and GLP‑1 levels 
in the serum of T2DM rats. GIP and GLP-1 levels in the 
serum of rats were determined using ELISA (Fig. 2). GIP 
levels in all rats with T2DM were increased significantly 
compared with the control group prior to surgery. However, 
16 weeks following surgery, GIP levels in the RYGBP, IT 
and RYGBP+IT groups were significantly lower than those 
of the DM and sham groups (Fig. 2A). GLP-1 levels in the 
rats with T2DM were significantly decreased compared with 
control group prior to surgery. However, 16 weeks following 
surgery, GLP-1 levels in the RYGBP, IT and RYGBP+IT 
groups were significantly higher than those of the DM, sham 
and control groups (Fig. 2B). GLP-1 levels in the sham and 
DM groups remained significantly lower than those of the 
control.

Surgical treatment reduces the mRNA expression levels of 
PEPCK and G‑6‑Pase in the liver of T2DM rats. The mRNA 
expression levels of PEPCK and G-6-Pase in the liver of rats 
were evaluated using RT-qPCR. Compared with the control 
group, mRNA levels of PEPCK and G-6-Pase in the DM, 
sham, RYGBP and IT groups were significantly increased 
(Fig. 3). However, compared with the sham group, the mRNA 

Figure 1. Levels of FBG, TC and TG of rats in each group prior to and 4, 8, 12 and 16 weeks following surgery. (A) Changes in FBG following surgery. 
(B) Changes in TC following surgery. (C) Changes in TG following surgery. Data are presented as the mean ± standard error of the mean (n=3); *P<0.05 and 
**P<0.01 vs. CON; ##P<0.01 vs. SO; ▲P<0.05 and ▲▲P<0.01 vs. IT group. CON, control group; DM, diabetes model group; SO, sham operation group; RYGBP, 
RYGBP surgery group; IT, ileal transposition group; RYGBP+IT, RYGBP combined with IT surgery group; RYGBP, Roux-en-Y gastric bypass; FBG, fasting 
blood glucose; TC, total cholesterol; TG, triglyceride.
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levels of PEPCK and G-6-Pase in the RYGBP and IT groups 
were decreased significantly. Furthermore, compared with 
the IT group, the mRNA levels of PEPCK and G-6-Pase in 
the RYGBP+IT group were significantly decreased and were 
similar to those of the control group.

Surgical treatment reduces the protein levels of IRS‑2 and 
p‑Akt in the liver of T2DM rats. Levels of IRS2, Akt and 
p-Akt protein in the liver of rats were evaluated by western 
blotting (Fig. 4A). Compared with control group, the expres-
sion of IRS-2 in the DM, sham, RYGBP and IT groups were 
increased significantly (Fig. 4B). However, compared with the 
DM group, IRS-2 expression in the RYGBP and IT groups 
were significantly decreased. Furthermore, IRS‑2 expression 
in the RYBGP+IT group was significantly lower than that 
of the RYBGP and IT groups. p-Akt expression in the DM, 
sham, RYGBP and IT groups was significantly lower than in 
the control group; however, p-Akt expression in the RYGBP 
and IT groups was significantly increased compared with the 
sham group. In addition, p-Akt expression in the RYGBP+IT 
group was significantly higher than that of the RYBGP or IT 
groups. Akt expression did not differ significantly among any 
of the groups.

Discussion

Diabetes is chronic metabolic disease characterized by 
hyperglycemia that is induced by defects in insulin secretion 
or activity (1). T2DM is the most common type of clinical 
diabetes. At present, the pathogenesis of T2DM has not been 

Figure 3. The mRNA expression of PEPCK and G-6-Pase of rats from each 
group 16 weeks following surgery. Data are presented as the mean ± standard 
error of the mean (n=3). **P<0.01 vs. CON group, ##P<0.01 vs. SO group, 
▲▲P<0.01 vs. IT group. CON, control group; DM, diabetes model group; SO, 
sham operation group; RYGBP, RYGBP surgery group; IT, ileal transposi-
tion group; RYGBP+IT, RYGBP combined with IT surgery group; PEPCK, 
phosphoenolpyruvate carboxykinase; G-6-pase, Glucose-6-phosphatase.

Figure 4. The expression of IRS-2, Akt and p-Akt proteins in rats from 
each group 16 weeks following surgery. (A) Representative western blots 
and (B) quantification of western blotting results. Data are presented as the 
mean ± standard error of the mean (n=3); *P<0.05 or **P<0.01 vs. CON group, 
#P<0.05 vs. SO group, ▲P<0.05 or ▲▲P<0.01 vs. IT group. CON, control 
group; DM, diabetes model group; SO, sham operation group; RYGBP, 
RYGBP surgery group; IT, ileal transposition group; RYGBP+IT, RYGBP 
combined with IT surgery group; RYGBP, Roux-en-Y gastric bypass; IRS-2, 
insulin receptor substrate 2.

Figure 2. GIP and GLP-1 levels in rats from each group prior to and 4, 8, 12 
and 16 weeks following surgery. (A) Changes in GIP levels in rats following 
surgery. (B) Changes in GLP-1 levels in rats following surgery. Data are 
presented as the mean ± standard error of the mean (n=3); **P<0.01 vs. CON 
group, ##P<0.01 vs. SO group. CON, control group; DM, diabetes model 
group; SO, sham operation group; RYGBP, RYGBP surgery group; IT, ileal 
transposition group; RYGBP+IT, RYGBP combined with IT surgery group; 
RYGBP, Roux-en-Y gastric bypass; GIP, gastric inhibitory polypeptide; 
GLP-1, glucagon-like peptide.
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fully elucidated; however its primary clinical features, which 
are insulin resistance and β cell dysfunction, have been iden-
tified (29). Medication to treat patients with diabetes aims to 
achieve glycemic control and reduce the risk of associated 
complications arising; this differs from the desired end-point 
following metabolic surgery, which is euglycemia (30). It has 
been demonstrated that metabolic surgery is able to effectively 
regulate T2DM and obesity (31). Although innovative proce-
dures to treat diabetes are being investigated, including the novel 
anti-diabetic drugs, DDP-4 inhibitor and SGLT-2 inhibitor, as 
well as surgical treatment by laparoscopic sleeve gastrectomy, 
RYGBP and IT, their precise mechanisms of action remain to 
be elucidated (32,33). In the present study, the effects of three 
surgical treatments on a rat model of T2DM were investigated. 
Levels of insulin metabolism-related genes and proteins were 
used to assess the effect of surgery on T2DM.

Buchwald et al (12) reported that RYGBP surgery can 
regulate glycosylated hemoglobin and FBG in obese patients 
and may also alleviate symptoms of the disease, including 
hypertension, hyperlipidemia and gastroesophageal reflux. 
Furthermore, Pories et al (11) demonstrated that the treatment 
efficiency of RYGBP on T2DM may reach 99%. The results 
of the present study demonstrated that RYGBP and IT signifi-
cantly decrease levels of FBG, TC and TG in rats with T2DM 
and indicated that these decreases were more significant in rats 
that underwent RYGBP combined with IT. GIP is a member 
of the glucagon peptide superfamily, which is secreted by 
K cells that are distributed throughout the proximal digestive 
tract. The main roles of GIP are to promote the secretion of 
insulin, increase sensitivity to insulin and induce secretion of 
GLP-1 (34). Previous studies have reported that GIP receptor 
gene knockout reduces the efficacy of GIP and therefore 
promotes insulin resistance, indicating that GIP may serve 
an important role in the development of T2DM (35,36). The 
results of the current study indicated that surgical treatment 
significantly decreased GIP levels in rats with T2DM and 
also reduced blood glucose levels. This indicates that the low 
secretion of GIP caused by the digestion of food without the 
involvement of the proximal small intestine may serve an 
important role in the surgical treatment of T2DM.

GLP-1 is a core mediator in the intestine-islet axis regu-
lation of T2DM (37). RYGBP surgery induces a decrease in 
FBG, which is accompanied by an increase in GLP-1 and a 
decrease in insulin resistance (38). In the present study, GLP-1 
levels in T2DM rats were significantly decreased compared 
with the control group. However, following surgical treatment, 
GLP‑1 levels were significantly increased and GLP‑1 levels 
in the RYGBP+IT group were significantly higher than in the 
RYGBP and IT groups. This indicates that surgical treatment 
can induce GLP-1 release to exert a hypoglycemic effect 
and the RYGBP+IT surgery is the most effective method of 
achieving this. The results of the present study are in accor-
dance with a study by Patriti et al (39), which reported that IT 
surgery significantly improved glucose tolerance and reduced 
insulin resistance in GK rats.

T2DM primarily manifests as abnormally elevated FBG, 
caused by glucagon regulation of liver gluconeogenesis (40,41). 
Research has demonstrated that glucagon is able to promote 
liver gluconeogenesis by regulating the expression of key 
enzymes, including PEPCK and G-6-Pase; dysregulation of 

these enzymes may stimulate the development of glucose 
metabolism disorders (17). In the present study, PEPCK and 
G‑6‑Pase mRNA levels were significantly increased in the 
liver of rats with T2DM, in contrast to previous studies, which 
demonstrated that the expression of G-6-Pase and PEPCK 
is not increased in rats with T2DM (17,42). Notably, in the 
current study, PEPCK and G-6-Pase mRNA levels decreased 
significantly in rats following surgical treatment. Furthermore, 
PEPCK and G-6-Pase mRNA levels in rats treated with 
RYGBP combined with IT were significantly lower than in rats 
treated with RYGBP or IT alone. In G‑6‑Pase‑deficient mice, 
adenoviral rescue with the G-6-Pase gene suggests that even 
a fraction of phosphatase activity allows mice to maintain 
normal plasma glucose levels (43). This suggests that surgical 
treatment may promote plasma glucose levels by regulating 
PEPCK and G-6-Pase.

The current study also demonstrated that RYGBP combined 
with IT treatment significantly decreased IRS‑2 expression and 
increased p-Akt expression in rats with T2DM. IRS-2 is highly 
expressed in insulin sensitive tissues and serves a critical role 
in insulin-signaling pathway (44). At the molecular level, 
IRS-2 deficiency results in impaired insulin-mediated Akt 
phosphorylation, despite intact IR and IRS-1 tyrosine phos-
phorylation responses (45). Akt activation may promote the 
inhibitory effect of insulin resistance on T2DM by stimulating 
glucose transfer, glycogen synthesis, fat deposition and protein 
synthesis (46). IRS-2 knockout mice exhibit characteristics 
of T2DM and a reduction in IRS-2 phosphorylation may also 
induce insulin resistance (47,48). These results demonstrate that 
IRS-2 serves an important role in the development of insulin 
resistance and T2DM. Previous studies have also demonstrated 
that Akt activation is decreased in Lepr (db/+) mice with spon-
taneous gestational diabetes mellitus, leading to an increase in 
the expression G-6-Pase and the inhibition of hepatic glycogen 
production in the offspring of these mice (49,50). The results 
of the current study indicate that RYGBP and IT surgical 
treatment decrease the expression of PEPECK, G-6-Pase and 
IRS-2, and increase the expression of p-Akt in the liver of 
T2DM rats. Furthermore, the regulation of insulin signaling 
pathway related factors was most effective in rats treated with 
RYGBP and IT. This indicates that treatment with RYGBP and 
IT may stimulate T2DM remission by regulating the insulin 
signaling pathway to inhibit insulin resistance.

In conclusion, the present study used RYGBP combined 
with IT surgery to treat mice with T2DM and the results 
demonstrated that it more effectively promoted the remis-
sion of T2DM compared with RYGBP or IT surgery alone. 
Additionally, RYGBP combined with IT may mediate the 
insulin-signaling pathway by regulating the expression of 
associated factors to induce T2DM remission.
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