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Abstract. Sepsis is a type of systemic inflammatory response 
syndrome with high morbidity and mortality. Skeletal muscle 
dysfunction is one of the major complications of sepsis that may 
also influence the outcome of sepsis. The aim of the present 
study was to explore and identify potential mechanisms and 
therapeutic targets of sepsis. Systemic bioinformatics analysis 
of skeletal muscle gene expression profiles from the Gene 
Expression Omnibus was performed. Differentially expressed 
genes (DEGs) in samples from patients with sepsis and 
control samples were screened out using the limma package. 
Differential co‑expression and coregulation (DCE and DCR, 
respectively) analysis was performed based on the Differential 
Co‑expression Analysis package to identify differences in 
gene co‑expression and coregulation patterns between the 
control and sepsis groups. Gene Ontology terms and Kyoto 
Encyclopedia of Genes and Genomes pathways of DEGs were 
identified using the Database for Annotation, Visualization 
and Integrated Discovery, and inflammatory, cancer and 
skeletal muscle development‑associated biological processes 
and pathways were identified. DCE and DCR analysis revealed 
several potential therapeutic targets for sepsis, including genes 
and transcription factors. The results of the present study may 
provide a basis for the development of novel therapeutic targets 
and treatment methods for sepsis.

Introduction

Sepsis is a type of systemic inflammatory response syndrome 
with high morbidity and mortality due primarily to multiple 
organ failure (MOF), including lung injury, renal dysfunction 
and skeletal problems, particularly in elderly people  (1‑3). 
Despite recent advances, sepsis remains an economic and 
humanistic burden to society that is increasing in developing 

and developed countries due to delayed diagnoses  (4‑6). 
Identifying the biomarkers of MOF may increase our under-
standing of the underlying mechanisms and allow for earlier 
diagnosis of sepsis.

Bacterial culturing of blood samples, which requires several 
days to complete, is a traditional method used to diagnose 
sepsis (4). Polymerase chain reaction (PCR)‑based molecular 
quantification has emerged as a novel diagnostic method for 
several diseases, such as sepsis (7). For example, 16S ribosomal 
RNA gene amplification by quantitative PCR and sequencing 
has been reported to improve the sensitivity, specificity, and 
positive and negative predictive value of bacteria detection 
in neonatal sepsis  (7). Furthermore, the development of 
‘omics’ technologies, including high‑throughput sequencing 
and mass spectrometry, has accelerated the exploration of 
biomarkers for early diagnosis and treatment of sepsis (8). A 
study by Scherag et al (9) identified vacuolar protein sorting 
13 homolog A, cysteine rich secretory protein LCCL domain 
containing 2 and chromosome 13 loci as potential hot points 
for sepsis via a genome‑wide association study. A study by 
Gosiewski et al (10) demonstrated that bacterial DNA in the 
blood was a valuable biomarker for sepsis via high‑throughput 
cationic trypsinogen sequencing. It has also been reported that 
elevated levels of serum trypsin and the PRSS1 mutation may 
also contribute to susceptibility of sepsis (11).

Skeletal muscle dysfunction is a major risk factor of sepsis, 
as well as a complication, and contributes to sepsis‑associated 
mortality (12). The perturbation of several hormones, proteins 
and gene expression in skeletal muscle have been demonstrated 
to be associated with the outcome of sepsis, including glucocor-
ticoids (13), lipopolysaccharide (14), regulated in development 
and DNA damage response 1 (15) and glucose transporter 
type 4 (16) expression. Gene co‑expression and coregulation 
are important indicators of their functions in some biological 
processes or diseases (17). Altered co‑expression or coregu-
lation patterns under different conditions may indicate the 
role of different genes in specific diseases. To the best of our 
knowledge, there have been no previous studies investigating 
differential co‑expression (DCE) or differential coregulation 
(DCR) analysis in the skeletal muscles of patients with sepsis. 
In the present study, DCE and DCR analysis of gene expres-
sion was performed using the skeletal muscles of patients with 
sepsis. Several genes and transcription factors (TFs) that may 
contribute to the progression of sepsis were identified. These 
results may be helpful to improve our understanding of the 
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underlying mechanisms and potential effective treatments for 
sepsis.

Materials and methods

Microarray datasets. The skeletal muscle transcriptome‑wide 
expression profiles of 13 patients with sepsis and 8 controls 
were downloaded from the Gene Expression Omnibus (ncbi.
nlm.nih.gov/geo/; accession number, GSE13205) deposited 
by Fredriksson et al  (18). No significant differences were 
observed in age (P=0.115; Student's t‑test) or sex (P=0.336; 
Fisher's exact test) between the groups.

Gene expression profile analysis. The analysis of gene 
expression profiles consisted of two steps: Preprocessing and 
differential expression (DE) analysis. Briefly, the raw micro-
array datasets were imported into R version 3.4.3 (https://
www.r‑project.org/), a free open‑source statistical software 
package, and the affy version 1.56.0 (http://bioconductor.
org/packages/release/bioc/html/affy.html)  (19) package 
was used for background correction and normalization in 
order to compare expression profiles of different samples. 
DE genes (DEGs) with the thresholds of fold change >2 
and Benjamin adjusted P<0.05 were screened out using the 
limma version 3.34.8 (http://www.bioconductor.org/packages/
release/bioc/html/limma.html)  (20) package. Additionally 
supervised two‑way clustering, including cluster analysis of 
samples and DEGs, was conducted through the Euclidean 
distance method (21) based on pheatmap 1.0.8 package (https://
cran.r‑project.org/web/packages/pheatmap/index.html).

Functional enrichment analysis. To explore the functions 
associated with DEGs, functional enrichment analysis was 
performed using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID; david.ncifcrf.gov/) (22). 
Gene Ontology (GO) terms (http://www.geneontology.org/) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (http://www.kegg.jp/), which had P<0.05 and a gene 
count ≥2, were identified in the present study.

DCE and DCR analysis. As a type of polygenic inheritance, 
the progression of sepsis is associated with multiple gene inter-
actions; similarly, the co‑expression of two genes indicates that 
they may serve similar functions in sepsis (17). Differences in 
co‑expression patterns in the control and sepsis groups may 
reveal the roles of particular genes in a specific biological 
process or disease. This type of link is a DCE link (DCL). 
Genes involved in DCLs are considered to be DCE genes if the 
links surrounding them are significantly enriched in a bino-
mial probability model (P<0.05); these genes are differential 
co‑expression genes (DCGs).

TFs serve important roles in the regulation of gene 
expression. Multiple genes are regulated by common TFs, the 
differential expression of which may result in DCE among 
those genes. This is referred to as DCR (17). In the present 
study, DCE and DCR analyses were performed based on the 
DCGL version 2.1.2 (https://cran.r‑project.org/web/packages/
DCGL/index.html) (17) package. DCGs were screened out 
when the P‑value of the differential co‑expression enrichment 
(DCe) test and Q‑value of the differential co‑expression profile 

(DCp) test in DCGL were <0.05. Two types of DCL were 
identified: TF_bridged_DCLs, in which the two DCGs share 
≥1 TF, and TF2target_DCLs, in which TF‑gene regulation 
relationships were identified. The DCL network was visual-
ized using Cytoscape 3.6.0 software (http://www.cytoscape.
org/) with nodes and edges, representing genes and interac-
tions, respectively.

Results

Differential expression genes. The preprocessing step 
produced comparable expression profiles among all the 
samples (Fig.  1A), which were subsequently used for DE 
analysis. A total of 1,052 DEGs were screened out in sepsis 
samples, including 441 downregulated and 611 upregulated 
genes (Fig. 1B). Supervised two‑way hierarchical clustering 
of DEGs and samples was performed based on the pheatmap 
package (Fig. 1C).

Enriched functions of DEGs. A total of 129 significantly 
enriched GO terms were identified using DAVID according 
to the thresholds of P<0.05 and gene count ≥2. The 10 most 
enriched significant GO terms are presented in Table I. The 
majority of GO terms were associated with biological processes 
in the skeletal muscle, RNA binding and cell responses to 
stimuli. A total of 12 KEGG pathways were identified and 
these were primarily associated with substance metabolism 
and synthesis, and inflammatory and cancer‑associated 
processes (Fig.  2). The number of upregulated genes was 
markedly greater than the number of downregulated genes in 
the four most enriched pathways, suggesting that upregulated 
genes serve an important role in these pathways.

DCLs and DCRs. A total of four DCGs were identified using the 
DCGL package, including GTP binding protein 1 (GTPBP1), 
chaperonin containing T‑complex 1 complex (CCT2), meiosis 
regulator of oocyte development (MIOS) and cytochrome 
P450 family 2 subfamily J member 2 (CYP2J2), and 93 DCLs. 
The network composed by the four DCGs and 90 non‑DCGs 
was visualized using Cytoscape software (Fig. 3A) (23). No 
TF2target_DCLs were identified; however, 73 TF_bridged_
DCLs were revealed using DCR analysis. The DCR network 
is presented in Fig. 3B. A total of eight TFs, including TATA 
box binding protein, melanocyte inhibiting factor‑1 (MIF‑1), 
signal transducer and activator of transcription 5B (STAT5B), 
POZ‑, AT hook‑, and zinc finger‑containing protein 1, LIM 
homeobox 3 (LHX3)a, LHX3b, AP‑2γ and AP‑2αA, were 
considered to be associated with the development of sepsis due 
to their target enrichment in the DCGs.

Discussion

Severe sepsis induces skeletal muscle dysfunction  (24,25) 
and, in turn, skeletal muscle dysfunction is associated with 
the outcome of sepsis  (12). Identifying biomarkers associ-
ated with this process may increase our understanding of the 
underlying mechanisms and allow for the development of 
therapeutic targets and novel treatment methods. In the present 
study, DE, DCE and DCR analysis were performed for this 
purpose. Functional enrichment analysis identified several 
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inflammatory and skeletal muscle development‑associated 
GO terms and KEGG pathways, which was consistent with 
previous studies (26,27).

Several skeletal muscle development‑associated biological 
processes were identified in the present study, including 
skeletal muscle tissue development, muscle contraction and 
skeletal muscle atrophy. Several KEGG pathways associated 
with substance biosynthesis and metabolism were identified as 
significantly enriched in skeletal muscle samples from patients 
with sepsis compared with control samples. The majority of 
genes in those pathways were upregulated in patients with 
sepsis and all of the genes associated with ribosome biogenesis 
in eukaryotes were upregulated. Ribosome biogenesis dysfunc-
tion is associated with skeletal muscle inflammation and 
results in a decrease in muscle mass, which accounts for ~60% 
of sepsis‑associated mortality (28,29). It may be a previously 
unidentified pathway that is associated with the dysfunction of 
skeletal muscle in sepsis. Several cancer‑associated pathways 
were also identified in the present study, which may be because 
cancer and sepsis are inflammation‑inducing diseases.

The regulation of gene expression serves a key role in 
several diseases (17). In the present study, 73 TF_bridged_
DCLs, which contained four DCGs (CCT2, CYP2J2, 
GTPBP1 and MIOS) were identified. A total of 29, 17, 28 and 
19 co‑expression genes were identified for CCT2, CYP2J2, 
GTPBP1 and MIOS, respectively, in the DCE network. The 
direct association between these genes and sepsis progression 
or skeletal muscle dysfunction was not investigated in the 
present study. Previous studies have focused on their associa-
tion with inflammation and cancer; for instance, CYP2J2 has 
been reported to regulate metabolic dysfunction via peroxi-
some proliferator‑activated receptor‑γ by reducing hepatic 
inflammation  (30) and to protect against lung ischemia/
reperfusion injury based on its anti‑inflammatory effects (31). 
CCT2 and TCP1 have also been demonstrated to be valuable 
potential biomarkers for the prognosis of breast cancer (32). 
Such studies support the diverse functions of these genes and 
their role as potential therapeutic targets for sepsis or skeletal 
muscle dysfunction. The differential regulated rank (DRrank) 
method, which is based on DCGs and their co‑expressed 

Figure 1. Analysis of gene expression microarray dataset. (A) Relative mRNA level following the preprocessing step. Red and blue boxes represent patients 
with sepsis and controls, respectively. (B) Scatter plot of DEGs. (C) Supervised clustering of samples and DEGs. DEGs, differentially expressed genes.
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Figure 2. Significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways of differentially expressed genes. Blue and red bars represent 
downregulated and upregulated genes contained in the corresponding pathways, respectively, and the green line is ‑log10 (P‑value). PKG, protein kinase G; 
AMPK, AMP‑activated protein kinase; HTLV‑1, human T‑cell lymphotropic virus type 1; HIF‑1, hypoxia‑inducible factor 1.

Figure 3. Differential co‑expression and coregulation analysis. (A) Differential co‑expression network. Circles and triangles represent DCGs and non‑DCGs, 
respectively. (B) Differential coregulation network composed of TF_bridged_DCLs. Squares represent TFs, circles represent non‑TFs, the pink circle repre-
sents DCGs, the blue circle represents non‑DCGs and the gray square indicates TFs that were not tested in expression microarray data. Solid lines represent 
DCLs and dashed lines represent non‑DCLs. Arrows indicate TF‑to‑target associations. DCG, differentially co‑expressed gene; TF, transcription factor; 
DCL, differential co‑expression link.

Table I. Top 10 most significantly enriched GO terms of differentially expressed genes.

Category	 GO name	 Hits	 P‑value

CC	 Z disc	   19	 <0.001
BP	 Skeletal muscle tissue development	   12	 <0.001
CC	 Cytoplasm	 318	 <0.001
CC	 T‑tubule	   10	 <0.001
BP	 Muscle contraction	   17	 <0.001
BP	 Cellular response to cadmium ion	     7	 <0.001
BP	 Skeletal muscle contraction	     8	 <0.001
CC	 Cytosol	 212	 <0.001
CC	 Nucleolus	   69	 <0.001
BP	 Response to denervation involved in regulation	     5	 <0.001
	 of muscle adaptation

GO, gene ontology; CC, cellular component; BP, biological process.
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genes surrounding a specific TF, identified AP‑2α and AP‑2γ 
as the top two highest ranked TFs significantly associated 
with the development of sepsis, and they are considered to 
be associated with the progression of inflammatory diseases, 
such as sepsis  (33‑35). DNA binding of STAT5B, another 
potential target of sepsis, was also identified to serve a role 
in sepsis in a study by Chen  et  al  (36), along with some 
novel potential sepsis‑associated TFs, including MIF‑1, ETS 
domain‑containing protein Elk‑1.

In conclusion, the present study identified aspects of 
the mechanisms of sepsis progression and skeletal muscle 
dysfunction using systemic bioinformatics analysis. DCE and 
DCR analysis provide an insight into gene regulation loops in 
sepsis and may be utilized to develop therapeutic targets and 
treatment methods for patients with sepsis.
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