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Abstract. Breast cancer is one of the primary threats to 
women's health worldwide. However, the molecular mecha-
nisms underlying the development of breast cancer remain to be 
fully elucidated. The present study aimed to investigate specific 
target gene expression profiles in breast cancer tissues in general 
and in different breast cancer stages, as well as to explore their 
functions in tumor development. For integrated analysis, a total 
of 5 gene expression profiling datasets for 3 different stages of 
breast cancer (stages I-III) were downloaded from the Gene 
Expression Omnibus of the National Center for Biotechnology 
Information. Pre-processing of these datasets was performed 
using the Robust Multi-array Average algorithm and global 
renormalization was performed for all studies. Differentially 
expressed genes between breast cancer patients and controls 
were estimated using the empirical Bayes algorithm. The 
Database for Annotation, Visualization and Integrated 
Discovery web server was used for analyzing the enrichment 
of the differentially expressed genes in Gene Ontology terms 
of the category biological process and in Kyoto Encyclopedia 
of Genes and Genomes pathways. Furthermore, breast cancer 
target genes were downloaded from the Thomson Reuters 

Integrity Database. We merged these target genes with the genes 
in breast cancer datasets. Analysis of anti-breast cancer gene 
networks was performed using the Genome-scale Integrated 
Analysis of Gene Networks in Tissues web server. The results 
demonstrated that the normal functions of the cell cycle, cell 
migration and cell adhesion were altered in all stages of breast 
cancer. Furthermore, 12 anti‑breast cancer genes were identified 
to be dysregulated in at least one of the three stages. Among all 
of these genes, ribonucleotide reductase regulatory subunit M2 
(RRM2) exhibited the highest degree of interaction with other 
interacting genes. Analysis of the network interactions revealed 
that the transcription factor of RRM2 is crucial for cancer devel-
opment. Other genes, including mucin 1, progesterone receptor 
and cyclin-dependent kinase 5 regulatory subunit associated 
protein 3, also exhibited a high degree of interaction with the 
associated genes. In conclusion, several key anti-breast cancer 
genes identified in the present study are mainly associated with 
the regulation of the cell cycle, cell migration, cell adhesion and 
other cancer-associated cell functions, particularly RRM2.

Introduction

Breast cancer is one of the most common cancer types among 
women worldwide. According to global cancer statistics, an 
estimated >1.6 million patients were newly diagnosed and 
500,000 breast cancer-associated mortalities occurred in 
2012 worldwide (1). The Global Burden of Disease estimated 
that there were more than 1.7 million new cases and more 
than 545 thousand deaths in 2016 (2). In China, breast cancer 
alone is estimated to account for 15% of all newly diagnosed 
cancers in women, and its incidence has increased in the past 
decades (3). At present, chemotherapy is an important means 
of systemic therapy for breast cancer, in addition to surgical 
treatment. However, breast cancer may still be associated 
with poor prognosis, short survival time and rapid recur-
rence after therapy (4). The treatment and prognosis of breast 
cancer are affected by the expression levels of certain genes 
and proteins. For instance, triple-negative breast cancer 
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[estrogen receptor (ER)-, progesterone receptor (PGR)- and 
human epidermal growth factor receptor 2 (HER2)-negative] 
is associated with poor prognosis and no targeted systemic 
therapy is currently available (5). However, patients with 
triple-positive breast cancer have a better prognosis and 
longer overall survival compared with triple-negative breast 
cancer patients (6).

The American Joint Committee on Cancer (AJCC) breast 
cancer staging system provides important information for the 
treatment and prognosis of this type of cancer (7). According 
to the 8th edition of the AJCC staging system, breast cancer 
may be divided into four main stages (stages I-IV) based on 
various factors, including the size of the tumor, the status of 
the lymph nodes and metastasis (7). Breast cancer staging 
is crucial for determining the extent of disease progression, 
as well as for containing and eliminating the cancer. The 
treatment of breast cancer depends partly on the stage of the 
disease, particularly in the case of targeted therapy. During 
breast cancer progression, diverse genetic signatures have 
been identified to drive processes of genome, transcriptome 
and epigenome remodeling (8‑13). Therefore, it is necessary 
to select the most effective treatment options for breast cancer 
patients at different stages.

To date, numerous genes and pathways have been identified 
to be associated with breast cancer, and this information may 
be useful for studies into the pathological mechanisms and 
clinical treatment of breast cancer. According to the evidence 
provided by a functional study, the Wnt/β-catenin signaling 
pathway controls cell fate in developmental processes and 
tumorigenesis, with β‑catenin identified as a transforming 
factor (14). Based on a genome-wide assessment of allelic 
imbalances, an ATR/ATM-regulated DNA damage response 
network was identified to be activated in early human tumori-
genesis, which may delay or prevent tumor progression (15). 
The results of a medical genomics study indicated that 
paired-box gene 2 may mediate endometrial carcinogenesis 
induced by tamoxifen, which has been widely used in the treat-
ment of hormone-responsive breast cancer at all stages (16).

Thomson Reuters Integrity™ is a knowledge solution 
integrating biology, chemistry and pharmacology data 
(https://thomsonreutersintegrity.com). It contains exhaus-
tive information on therapeutic drugs and gene targets 
for numerous complex human diseases. To the best of our 
knowledge, no previous study has compared the expres-
sion profiles of breast cancer target genes at different tumor 
stages. Gene expression profiling datasets at different stages 
of breast cancer are available from public databases, including 
the Gene Expression Omnibus of the National Center for 
Biotechnology Information (NCBI‑GEO; http://www.ncbi.
nlm.nih.gov/geo) (17,18). The present study aimed to perform a 
comprehensive integrated analysis of gene expression datasets 
to identify key targets for breast cancer treatment and explore 
similarities and differences in the abnormalities of molecular 
signaling pathways/biological functions at different stages of 
breast cancer.

Materials and methods

Microarray data collection and pre‑processing. Human breast 
cancer microarray datasets were searched and downloaded 

from the NCBI-GEO database in March 2016. The key words 
‘breast cancer’, ‘breast adenocarcinoma’ and ‘breast tumor’ 
were used to perform a specific search. The selection criteria for 
the datasets were as follows: i) All datasets were genome‑wide; 
ii) the samples of each dataset included breast cancer patients 
and controls; iii) the samples in tumor and control group were 
from breast tissue; iv) the dataset included different stages of 
breast cancer; and v) raw data were available. Datasets were 
excluded if: i) The number of samples was <3 for cases or 
controls; and ii) severe RNA degradation or an insufficient 
number of detected genes. Based on the aforementioned 
criteria, five datasets were finally selected for the integrated 
analysis [GSE10810 (19), GSE16391 (20), GSE29431 (21), 
GSE42568 (22) and GSE61304 (23)]. The integrated data-
sets included 257 breast cancer patients and 98 controls. A 
summary of the selected datasets is presented in Table I. All 
datasets had been generated using the Affymetrix Human 
Genome U133 Plus 2.0 Array. Among these five studies, one 
study included two stages of breast cancer (stages I-II), three 
studies included three stages of breast cancer (stages I-III), and 
one study included four stages of breast cancer (stages I-IV). 
As there was only 1 patient in stage IV, the datasets were 
divided into three subgroups (stage I-III).

R v3.2.2 (https://www.r‑project.org/) was used for data 
pre-processing. The Robust Multichip Average (RMA) algo-
rithm in the oligo-package was used to normalize the raw 
expression data and generate normalized gene expression inten-
sity (24). Gene annotation, integration and re-normalization 
of the five datasets were performed using the custom‑written 
Python code (25). Probes with no gene annotation or those that 
matched multiple gene symbols were removed. Next, the mean 
expression value of multiple probe IDs that matched an official 
gene symbol was calculated, and this value was considered to 
represent the expression intensity of the corresponding gene 
symbol. The re-normalization method was reported in a 
previous study (26).

Differential gene expression analysis. Differential gene 
expression analysis was performed using R v3.2.2 and 
the Bioconductor Library (http://www.bioconductor.org/). 
The empirical Bayes algorithm (function ‘eBayes’) in the 
limma package was used to detect differentially expressed 
genes between breast cancer and controls (27). Genes were 
considered to be upregulated if the logarithmic transformed 
fold‑change log2(FC) was ≥log2(1.5) and the false discovery 
rate (FDR)‑adjusted P‑value was ≤0.05. Genes were considered 
to be downregulated if log2(FC) ≤‑log2(1.5) and FDR‑adjusted 
P≤0.05. Differential expression analysis was performed for 
the whole cohort and the sub-groups (stage I-III). The control 
samples in the analysis for different stages were the same as 
the controls in the analysis for the whole cohort.

Enrichment analysis for differentially expressed genes in Gene 
Ontology (GO) terms in the category biological process and in 
KEGG pathways. The Database for Annotation, Visualization 
and Integrated Discovery Bioinformatics Resources 6.7 
was used to perform GO and KEGG pathway enrichment 
analysis (28). The input parameters were the list of differen-
tially expressed genes. The significance level for enrichment 
was set at P≤0.05. The 4‑set Venn diagram in InteractiVenn 
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(http://www.interactivenn.net/) was used to present the GO 
terms in the category biological process in which the differen-
tially expressed genes in the unstaged cohort and in different 
stages of breast cancer were enriched.

Breast cancer target gene analysis. Breast cancer‑specific 
target genes were defined based on already available drugs or 
drugs under development that target these genes. All of these 
target genes were searched and downloaded from the Thomson 
Reuters Integrity Database. In total, a list of 344 breast cancer 
target genes were obtained, which were then mapped to the 
differentially expressed genes obtained in the present study 
for the whole cohort and for the sub-groups (stage I-III). The 
differentially expressed genes identified in the whole cohort 
and the sub‑groups were overlapped with the 344 breast cancer 
target genes, and the ‘barplot’ function was used to present the 
results.

Gene interaction network analysis. A genome-scale 
integrated analysis of gene networks in breast cancer was 
performed using the Genome-scale Integrated Analysis of 
Gene Networks in Tissues (GIANT) web server (http://giant.
princeton.edu/) (29). Based on the aforementioned results of 
the overlapping expression pattern of differentially expressed 
breast cancer target genes among the whole cohort and the 
sub-groups, the differentially expressed target genes in the 
unstaged cohort were used as input parameters to perform 
the gene network analysis. As the tissue options in the 
GIANT web server did not include breast tissue, ‘all tissues’ 
was selected to perform the analysis. The server generated a 
gene network of target genes and other genes that interacted 
with the target genes, and biological function enrichment 
analysis of the genes in the network was performed. The 

enriched biological processes were then presented using bar 
charts.

Results and Discussion

Overview of differentially expressed genes. The number of 
differentially expressed genes in breast cancer for each dataset 
is presented in Table II. A total of 153 upregulated and 183 
downregulated genes were obtained for the whole cohort. In 
the unstaged cohort and in the stage I-II groups, more down-
regulated than upregulated genes were identified. However, 
in the stage-III group, the number of upregulated genes was 
higher than that of downregulated genes. The number of over-
lapping up- and downregulated genes among all four groups 
was 29 and 51, respectively.

GO and KEGG enrichment results. A Venn diagram displaying 
the enrichment results for the GO category biological process 
for the unstaged cohort and the individual stages is presented 
in Fig. 1. In the unstaged cohort, stage I-III groups, the differ-
entially expressed genes were enriched in 138, 21, 119 and 
136 GO terms, respectively. The top 10 enriched GO terms 
in the category biological process in each group are presented 
in Table III. Only one GO term in the category biological 
process, namely ‘cell migration’, was enriched in all four 
groups (the P-values for the unstaged cohort, stage I-III groups 
were 0.018, 0.001, 0.008 and 0.035, respectively). Activated 
cell migration is known to promote breast cancer progres-
sion (30). By contrast, inhibition of breast cancer cell migration 
contributes to successful treatment (31). Furthermore, 67 GO 
terms in the category biological process were enriched in the 
unstaged cohort, stage II‑III groups, and 29 were enriched in 
the unstaged cohort and the stage III group.

Table I. Summary of Gene Expression Omnibus breast cancer datasets used in the present study.

Dataset ID Author (year) Samples (n) Breast cancer stages (Refs.)

GSE10810 Pedraza (2010)   58 I, II, III (19)
GSE16391 Desmedt (2009)    48a I, II (20)
GSE29431 Lopez (2012)   66 I, II, III (21)
GSE42568 Clarke (2013) 121 I, II, III (22)
GSE61304 Aswad (2015)   62 I, II, III, IV (23)

aThe dataset contained 55 samples, but only 48 were used, as the others lacked case/control information. In the other datasets, all samples were 
used.

Table II. Number of differentially expressed genes in breast cancer.

Group Casesa Mapped genes Upregulated Downregulated

Entire cohort 257 20307 153 183
Stage I   22 20307   53 275
Stage II   98 20307 167 309
Stage III 113 20307 202 165

Values are expressed as n. aWith 98 controls in each group.
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Figure 1. Venn Diagram of enriched Gene Ontology terms in the category Biological Process in breast cancer. The four groups (unstaged cohort, stage I-III) 
are represented by red, blue, cyan and orange color, respectively. The unstaged cohort contained 1 stage IV sample and 23 samples without stage information.

Figure 2. Gene expression profiles of enriched KEGG pathways in breast cancer. The 15 enriched KEGG pathways are represented by different colors. The red 
bars represent the upregulated genes and the blue bars represent the downregulated genes. KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracel-
lular matrix; PPAR, peroxisome proliferator activated receptor. The unstaged cohort contained 1 stage IV sample and 23 samples without stage information.
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The KEGG pathways in which the differentially expressed 
genes of the four groups were enriched are presented in 
Table IV. The pathways ‘glutathione metabolism’, ‘peroxisome 
proliferator activated receptor (PPAR) signaling pathway’, 
‘metabolism of xenobiotics by cytochrome P450 (CYP)’, 
‘arachidonic acid metabolism’, ‘drug metabolism’ and ‘tight 
junction’ were significantly enriched in the whole cohort 
(P‑values of <0.001, 0.001, 0.004, 0.018, 0.025 and 0.034, 
respectively). Fig. 2 presents the gene expression profiles in the 
sets of enriched pathways in the whole cohort and the three 
sub-groups based on cancer stage. Overall, all of these path-
ways were severely affected. The pathways ‘PPAR signaling’, 

‘arachidonic acid metabolism’, ‘propanoate metabolism’ and 
‘fatty acid metabolism’ had a large number of downregulated 
genes across all groups. However, the ‘spliceosome’ pathway 
had more upregulated than downregulated genes. Glutamine has 
been reported to control cancer cell proliferation by activating 
signal transducer and activator of transcription 3 independent of 
glutamine metabolism (32). According to a study on mammary 
epithelial cell‑specific PPARγ knockout mice, PPARγ expres-
sion and signaling has an inhibitory role in breast tumor 
progression (33). According to a previous study by our group, 
certain downstream genes mainly involved in lipid metabolism 
and adipocyte differentiation in the PPAR signaling pathway 

Figure 3. LogFC bar graph of mapped breast cancer‑associated genes. (A) LogFC in the unstaged cohort. (B) LogFC in different stage groups. The horizontal 
dashed lines represent the logFC cut-off for the up- and downregulated genes. *False discovery rate‑adjusted P<0.05. FC, fold change.

Figure 4. Genome-scale integrated analysis of gene networks in breast cancer. (A) The gene interaction network of breast cancer-associated target genes (query 
genes) and associated genes (other genes). (B) Top 15 Gene Ontology terms in the category biological process among the breast cancer-associated genes in the 
network. FDR, false discovery rate.
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were suppressed following downregulation of PPARγ in breast 
cancer, which may lead to tumorigenesis (13). It was previously 
reported that the expression of the CYP1A1, ‑2E1 and ‑3A4 was 
downregulated in tumor tissue, which may alter the biological 
effects of carcinogens and may represent a potential target for 
breast cancer chemoprevention (34). Previous studies demon-
strated that induction of the expression of CYP2E1 reduces, 
whereas downregulation of CYP2E1 increases the migratory 
capacity, thereby promoting breast cancer cell progression (35). 
Thus, CYP2E1 may be associated with the regulation of breast 
cancer cell migration. CYP2E1 gene encodes a member of the 
cytochrome P450 superfamily of enzymes. Cytochrome P450 
proteins are monooxygenases that catalyze many reactions 
involved in drug metabolism and synthesis of cholesterol, 
steroids and other lipids (36). It was previously demonstrated 
that differences in the expression of drug and xenobiotic metab-
olizing enzymes (DXME) markedly affect drug resistance. 
Substantial differences in DXME expression were identified in 

Table III. Top 10 enriched GO terms in the category biological 
process by the differentially expressed genes from the gene 
expression datasets for breast cancer.

Group/GO term P-value

Entire cohort
  Response to wounding <0.001
  Epithelial cell differentiation <0.001
  Response to endogenous stimulus <0.001
  Response to nutrient levels <0.001
  Epithelium development <0.001
  Regulation of hormone levels <0.001
  Defense response <0.001
  Response to drug <0.001
  Response to extracellular stimulus <0.001
  Response to steroid hormone stimulus <0.001
Stage I
  Cell migration 0.001
  Vasculature development 0.002
  Localization of cell 0.004
  Cell motility 0.004
  Endothelial cell migration 0.005
  Angiogenesis 0.009
  Odontogenesis 0.010
  Leukocyte migration 0.012
  Blood vessel development 0.016
  Blood vessel morphogenesis 0.019
Stage II
  Gland development <0.001
  Response to extracellular stimulus <0.001
  Cellular di-, tri-valent inorganic <0.001
  cation homeostasis
  Response to wounding <0.001
  Di-, tri-valent inorganic cation <0.001
  homeostasis
  Response to nutrient levels <0.001
  Response to nutrient <0.001
  Cellular cation homeostasis <0.001
  Cell-cell signaling <0.001
  Regulation of hormone levels <0.001
Stage III
  Response to endogenous stimulus <0.001
  Response to hormone stimulus <0.001
  Response to steroid hormone <0.001
  stimulus
  Response to organic substance <0.001
  Response to nutrient levels <0.001
  Response to wounding <0.001
  Oxidation reduction <0.001
  Epithelial cell differentiation <0.001
  Defense response <0.001
  Response to oxygen levels <0.001

GO, gene ontology.

Table IV. Enriched KEGG pathways by the differentially 
expressed genes from the gene expression datasets for breast 
cancer.

Group/KEGG pathway P-value

Entire cohort
  Glutathione metabolism <0.001
  PPAR signaling pathway 0.001
  Metabolism of xenobiotics by cytochrome P450 0.004
  Arachidonic acid metabolism 0.018
  Drug metabolism 0.025
  Tight junction 0.034
Stage I
  Small cell lung cancer 0.008
  Focal adhesion 0.009
  ECM‑receptor interaction 0.035
  Spliceosome 0.038
  Cytosolic DNA-sensing pathway 0.047
Stage II
  Tight junction 0.034
  Focal adhesion 0.041
  ECM‑receptor interaction 0.043
  Vascular smooth muscle contraction 0.043
  Metabolism of xenobiotics by cytochrome P450 0.048
Stage III
  Propanoate metabolism 0.001
  Glutathione metabolism 0.001
  PPAR signaling pathway 0.001
  Metabolism of xenobiotics by cytochrome P450 0.002
  Fatty acid metabolism 0.011
  Arachidonic acid metabolism 0.033
  Glycolysis/gluconeogenesis 0.041
  Drug metabolism 0.046

KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracel-
lular matrix; PPAR, peroxisome proliferator activated receptor.
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breast cancer patients of different ethnicities, which may affect 
pathways involved in drug metabolism (37).

Mapping of anti‑breast cancer target genes. The differentially 
expressed breast cancer target genes were screened in the 
four groups. Subsequently, 8, 6, 9 and 7 breast cancer target 
genes from the differentially expressed genes in the unstaged 
cohort and stage I-III groups, respectively, were mapped. 
The combined set of these target genes contained 14 genes. 
Fig. 3 presents the log2(FC) of these targets in each group. 
Insulin-like growth factor (IGF) 1 and TCDD-inducible poly 
(ADP-ribose) polymerase (TIPARP) were overexpressed in all 
groups, whereas aryl hydrocarbon receptor nuclear translocator 
2 (ARNT2), INSM1, mucin (MUC)1 and PGR were downregu-
lated in all groups, compared with the healthy controls. Overall, 
all these targets in the groups of different stages exhibited the 
same expression pattern as in the unstaged cohort. The IGF1 
signaling axis has been reported to be crucial for tumorigenesis, 
and the activation of IGF1 receptor may promote breast cancer 
development by increasing glycolysis and promoting biomass 
production (38). Several polymorphisms of IGF1 pathway 
genes were reported to be associated with the risk of breast 
cancer (39). TIPARP is a poly(ADP‑ribose) polymerase and 
a transcriptional repressor of the aryl hydrocarbon receptor, 
the polymorphism of which was previously reported to be 
associated with ovarian and breast cancer (40,41). The mRNA 
expression level of ARNT2 was previously reported to be useful 
in determining the prognosis of breast cancer, and ARNT2 was 
reported to form functional complexes with hypoxia-inducible 
factor (HIF), which is a key to factor involved in tumor angio-
genesis (42,43). The results of small interfering RNA‑mediated 
knockdown of ARNT2 suggested that ARNT2 may have a 
pivotal part in the modulation of HIF-1-regulated signaling 
and metabolism in MCF7 human breast cancer cells (43). The 
tumor oncoprotein MUC1 is a potential target in breast cancer 
immunotherapy, and the expression of MUC1 is absent or low 
in normal breast tissue, while it is high in breast cancer (44). 
PGR is one of the well-established breast cancer biomarkers, 
along with HER2/ERBB2 and ER (45).

Gene network of breast cancer targets. The present study 
identified 8 differentially expressed anti‑breast cancer target 
genes in the whole cohort (Fig. 3), which were used to perform 
a genome-scale integrated analysis. The gene-gene interac-
tion network and the top 15 enriched biological processes are 
shown in Fig. 4. Among all these targets, RRM2 displayed 
the highest degree of interaction with other interacting 
genes. Ribonucleotide reductase M2 (RRM2) is required for 
pyrimidine metabolism, and it is associated with aggressive 
tamoxifen-resistant breast tumors, whereas pharmacological 
inhibition and genetic knockdown of RRM2 sensitizes tumors 
to tamoxifen (46). In MCF-7 breast cancer cells, overexpres-
sion of RRM2 reduced the expression of ERα66 and caused an 
upregulation of the 36‑kDa variant of ER, ERα36, resulting in 
a reduction in the effectiveness of tamoxifen, which is widely 
used as an adjuvant therapy for patients with ERα-positive 
tumors (47). Therefore, RRM2-associated metabolites may 
potentially be developed as prognostic markers for breast 
cancer. Furthermore, MUC1 exhibited a high degree of 
interaction with ERBB2 and ERBB3, PGR exhibited a high 

degree of interaction with nuclear receptor corepressor 2 and 
CUE domain containing 2, and cyclin-dependent kinase 5 
regulatory subunit associated protein 3 exhibited a high degree 
of interaction with collapsin response mediator protein 1 
(Fig. 4A). It has been demonstrated that the oncogenic MUC1 
C-terminal may act on the polycomb repressive complex 1 
during epigenetic gene silencing, which is overexpressed in 
breast and other cancer types (48). The MUC1 oncoprotein 
was reported to be aberrantly overexpressed and associated 
with HER2/ERBB2 activation in breast cancer cells (49). The 
ERBB2/ERBB3 heterocomplex is a vital etiological feature of 
breast cancer, and it is important to understand its mechanisms 
of action to improve the design of novel, effective chemothera-
peutics (50). As presented in Fig. 4B, the enriched biological 
processes of these target genes and interacting genes were 
mostly associated with cell cycle and mitosis. These results 
indicated that altered expression of these anti-breast cancer 
genes may severely affect the cell cycle and mitosis. Previous 
cell cycle-targeting agents have been reviewed, and emerging 
strategies for targeting mitosis in cancer have been refined and 
improved (51). Of note, in a recent study on functional muta-
genesis screens in mice, human breast cancer susceptibility 
genes were, at large, not associated with cell cycle/mitosis 
genes (52). These results suggested that integration of human 
cancer transcriptomic data is required to identify breast cancer 
biomarkers with a high prognostic value. A limitation is that 
the tissue options in the GIANT web server did not include 
breast tissue, we choose ‘all tissues’ option to perform the 
analysis. This may have some influence on the result.
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