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Abstract. Paeoniflorin serves important cellular roles, 
exerting anti‑cancer, anti‑inflammatory and anti‑pulmonary 
fibrosis effects and possesses immune‑modulatory properties. 
However, the exact role of paeoniflorin in the pathogenesis of 
osteoarthritis (OA) remains unclear. The aim of the present 
study was to investigate the effects of paeoniflorin on articular 
surfaces in vitro. Rat chondrocytes were cultured in vitro and 
an MTT assay was performed to assess chondrocyte survival. 
Following treatment with interleukin (IL)-1β and paeoniflorin, 
the production of matrix metalloproteinases (MMPs) and tissue 
inhibitor of metalloproteinases‑1 (TIMP‑1) was examined using 
reverse transcription‑quantitative polymerase chain reaction 
and western blotting. The interleukin (IL)‑1β‑induced nuclear 
factor (NF)-κB pathway activation was also investigated. 
The results demonstrated that paeoniflorin was able to down-
regulate the expression of MMP and increase the expression of 
TIMP‑1ntmRNA and protein in IL‑1β‑induced rat chondrocytes. 
Furthermore, treating chondrocytes with paeoniflorin blocked 
the activation of NF-κB. These results suggest that paeoniflorin 
may serve am anti‑catabolic role in the progression of OA and 
may be an effective preventative treatment for OA.

Introduction

Osteoarthritis (OA), which is the most common joint disorder, 
is characterized by the destruction of articular cartilage and 
osteophyte formation (1). OA has been recognized as a slowly 
progressing whole‑joint soft tissue disease, characterized by 
synovial inflammation and subchondral bone degradation (2). 

During the development of OA, the imbalance between synthesis 
and degradation of extracellular matrix remodeling may lead 
to erosion of articular cartilage (3). Matrix metalloproteinases 
(MMPs) are considered to be the most important catabolic 
enzymes associated with the pathogenesis of OA due to their 
ability to digest collagen fibers and proteoglycans (4). Tissue 
inhibitors of metalloproteinases (TIMPs), which inhibit MMP 
activity, also serve an important role in the catabolic and anabolic 
processes of cartilage matrix maintenance (5). Additionally, 
pro‑inflammatory cytokines, including interleukin (IL)‑1β, 
tumor necrosis factor (TNF)-α and IL‑6, are able to stimulate the 
expression of MMP and the subsequent development of OA (6,7).

Paeoniflorin, a pinane monoterpene glucoside, was first 
isolated from plants in the Ranunculaceae family in the 
1960s (8). Recent studies have reported that paeoniflorin 
exhibits a number of pharmacological activities, including 
anti‑cancer, anti‑inflammation, anti‑pulmonary fibrosis and 
anti‑spasmodic effects (9‑11). In nucleus pulposus cells, 
paeoniflorin serves an anti‑apoptotic role via regulating B‑cell 
lymphoma‑2 family and caspase expression (12). At present, 
the association between paeoniflorin and chondrocytes 
remains unclear. A recent study demonstrated that paeoni-
florin‑6'‑O‑benzene (CP‑25), a derivative of paeoniflorin, 
is able to decrease the production of ILs and TNF‑α whilst 
increasing the expression of transforming growth factor-β in 
an adjuvant‑induced arthritis model (13). Furthermore, CP‑25 
decreased the expression of receptor activator of nuclear factor 
(NF)-κB ligand and MMP‑9, which suggests that it may have 
an anti‑arthritic effect and so may be used in the treatment 
of human rheumatoid arthritis (RA). Although MMPs are 
considered to be important for the pathophysiology of OA, the 
role of paeoniflorin in OA remains unclear.

The aim of the present study was to assess the protective 
effects of paeoniflorin on IL‑1β‑induced chondrocytes and 
measure the levels of MMP‑1, MMP‑3, MMP‑13 and tissue 
TIMP-1 in vitro. In addition, the activation of the NF‑κB 
pathway was measured using western blotting.

Materials and methods

Primary cultures of normal rat articular chondrocytes. A 
total of 24 Sprague‑Dawley rats (male:female, 1:1; 4‑week 
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old; Animal Center of Zhejiang University, Hangzhou, 
China) were housed at 25˚C with 45‑75% relative humidity 
and food and water at regular intervals with a 12 h light/dark 
cycle. Rat articular chondrocytes were isolated as previously 
described (14). Briefly, the rats were sacrificed by intra-
peritoneal injection with 10% chloral hydrate (4 ml/kg; Sigma 
Aldrich; Merck KGaA, Darmstadt, Germany). Rat knees 
were then disinfected with 75% alcohol and transferred into a 
sterile bench. Following this, knee joints were opened and the 
articular cartilage were carefully isolated, rinsed three times in 
PBS, cut into 1‑3 mm3 pieces and digested with 0.2% pronase 
(Sigma Aldrich; Merck KGaA) for 30 min at 37˚C followed 
by 0.1% collagenase (Sigma Aldrich; Merck KGaA) for 4 h at 
37˚C. Cells were cultured in complete Dulbecco's modified 
Eagle's medium (DMEM; Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) containing antibiotic‑antimycotic 
solution and 10% fetal bovine serum (Gibco; Thermo Fisher 
Scientific, Inc.) at 37˚C in a humidified atmosphere containing 
5% CO2. The medium was replaced every 2 days. The present 
study was approved by the University of Zhejiang Institutional 
Animal Care and Use Committee, Zhejiang University.

Assessment of cell viability. The effect of paeoniflorin on 
chondrocyte proliferation was assessed using an MTT assay. 
Chondrocytes were seeded in 96‑well plates at a density of 
5x103 cells/well and incubated with 0, 12.5, 25, 50, 100 and 
200 µM paeoniflorin (Sigma Aldrich; Merck KGaA; Fig. 1) 
for 72 h at 37˚C. The absorbance at 570 nm was subsequently 
measured using a microplate reader and the cell viability was 
calculated. Paeoniflorin concentrations that did not induce 
significant cytotoxicity were considered non‑cytotoxic and 
were selected for using in the following experiments.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Isolated articular chondrocytes were seeded in a 
6‑well plate at a density of 5x105 cells/well. Following 2 days 
of cultivation at 37˚C, cells were cultured in DMEM with 25 or 
50 µM of paeoniflorin for 3 h at 37˚C, followed by co‑incubation 
with rat recombinant IL‑1β (10 ng/ml; Sigma Aldrich; Merck 
KGaA) for 24 h at 37˚C. The monolayer of chondrocytes 
was harvested and stored at ‑80˚C until use. Total RNA was 
extracted from chondrocytes using TRIzol reagent (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) as previously 
described (15). Briefly, 1 µg of total RNA was reverse transcribed 
in a system containing 10 pmol of random hexanucleotidic 
primers (Promega Corporation, Madison, WI, USA), 0.5 mM 
dNTPs and 200 units of Moloney murine leukemia virus reverse 
transcriptase (Promega Corporation) at 37˚C for 1 h. qPCR was 
performed using the iQTM SYBR Green SuperMix PCR kit 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA) according to 
the manufacturer's protocol. Thermocycling conditions included 
45 cycles of 95˚C for 15 sec and 60˚C for 30 sec. Annealing 
temperatures and primers are listed in Table I. GAPDH was 
used as an internal control and the relative gene expression was 
calculated using the 2-ΔΔCq method (16).

Western blotting. Rat articular chondrocytes were seeded 
on a 6‑well plate at a density of 5x104 cells/cm2 for 2 days at 
37˚C. The cells were cultured in DMEM with 25 or 50 µM 
of paeoniflorin for 3 h at 37˚C and followed by co‑incubation 

with 10 ng/ml rat recombinant IL‑1β for 24 h at 37˚C. Cells 
were rinsed with ice‑cold PBS, lysed using cell lysis buffer 
(Cell Signaling Technology, Danvers, MA, USA). Protein 
concentrations were determined by a BCA kit and the 
protein was boiled at 100˚C for 10 min. Western blotting 
was performed as previously described (17). Briefly, a total 
of 50 µg protein was loaded per lane. The samples were then 
separated by 10% SDS‑PAGE and then transferred onto nitro-
cellulose membranes. After blocking with 5% bovine serum 
albumin. (Sigma‑Aldrich; Merck KGaA) for 1 h at room 
temperature, proteins were probed using primary antibodies 
against MMP‑1, MMP‑3, MMP‑13, TIMP‑1 (all Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA), inhibitor of NF‑κB 
(IκB-α), NF-κB p65 and β‑actin (all Cell Signaling Technology, 
Danvers, MA, USA) at 4˚C overnight (Table II). Blots were 
subsequently incubated with horseradish peroxide‑labeled 
secondary antibodies for 1 h at 37˚C, blots were visualized 
using an enhanced chemiluminescence substrate (Fude 
Biological Technology, Hangzhou, China) and exposure to 
Kodak X‑Omat film (Kodak, Rochester, NY, USA) according 
to the manufacturer's protocol. The densitometry of the bands 
was quantified using the ImageJ software (version 1.45s; 
National Institutes of Health, Bethesda, MD, USA).

Statistical analysis. All experiments were performed in 
triplicate. Data are presented as the mean + standard deviation 
and were analyzed using one‑way analysis of variance. 
Statistical analyses were performed using SPSS for Windows 
software (v19.0; IBM Corp., Armonk, NY, USA). P<0.05 was 
considered to indicate a statistically significant difference.

Results

Effects of paeoniflorin on cell viability. To investigate whether 
paeoniflorin is cytotoxic to chondrocytes, cells were treated 
with varying concentrations of paeoniflorin and an MTT 
assay was performed. The results revealed that treatment with 
12.5‑200 µM paeoniflorin was not cytotoxic to chondrocytes 
(Fig. 2). Referring to previous results from Pubmed, concen-
trations ranging from 25 to 50 µM were used in the following 
experiments (18,19).

Effect of paeoniflorin on MMP‑1, MMP‑3, MMP‑13 and 
TIMP‑1 mRNA expression. Following treatment with rat 
recombinant IL‑1β (10 ng/ml) and paeoniflorin (25 and 50 µM), 
the expression of MMP‑1, MMP‑3, MMP‑13 and TIMP‑1 were 

Figure 1. Chemical structure of paeoniflorin.
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examined using RT‑qPCR. Stimulation with IL‑1β resulted in 
a significant upregulation in MMP‑1, MMP‑3 and MMP‑13 
expression and a significant decrease in TIMP‑1 expression 
compared with the negative control (P<0.05; Fig. 3). Treatment 
with 25 or 50 µM paeoniflorin significantly reversed the 
IL-1β‑induced upregulation of MMP‑1, MMP‑3 and MMP‑13 
and downregulation of TIMP‑1 (P<0.05; Fig. 3).

Effect of paeoniflorin on protein synthesis of MMP‑1, MMP‑3, 
MMP‑13 and TIMP‑1. Following treatment with IL-1β, the 
expression of MMP‑1, MMP‑3 and MMP‑13 was significantly 
upregulated (P<0.05; Fig. 4A and B), whereas the expression of 
TIMP‑1 was significantly decreased compared with the nega-
tive control group (P<0.05; Fig. 4A and B). Compared with 
IL-1β treatment alone, the expression of MMP‑1, MMP‑3 and 
MMP‑13 was significantly decreased (P<0.05; Fig. 4A and B) 
and the expression of TIMP‑1 was significant increased in cells 
treated with 25 or 50 µM paeoniflorin (P<0.05; Fig. 4A and B).

Effect of paeoniflorin on IκB‑α degradation and NF‑κB 
activation in IL‑1β‑treated chondrocytes. Activation of the 
NF-κB pathway was assessed using western blotting. NF‑κB 

p65 levels were significantly increased and IκB-α levels were 
significantly decreased in chondrocytes treated with IL‑1β 
alone (P<0.05; Fig. 5A and B). The effects of IL‑1β were 
significantly reversed by treatment with 25 or 50 µM paeoni-
florin (P<0.05; Fig. 5A and B).

Discussion

Paeoniflorin is commonly used as a Chinese medicine 
anti‑inflammatory treatment for autoimmune diseases (20‑22). 
At present, little is known about the effects of paeoniflorin on 
OA. In the present study it was demonstrated that paeoniflorin 
exhibits a significant chondroprotective effect in vitro.

Previous studies have reported an association between 
paeoniflorin and arthritis (23,24). Paeoniflorin has been 
demonstrated to exhibit a potential protective effect against 
RA in rat models by decreasing the production of IL‑1β 
and TNF‑α, thus impeding the progression of arthritis and 
bone erosion (25). Jia and He (24) reported that paeoniflorin 
ameliorated RA in rats by decreasing the activity of the 
NF-κB p65 unit, TNF-α, IL-1β and IL‑6, as well as reducing 
cyclooxygenase‑2 protein expression. In human pancreatic 

Table II. Information of antibodies.

Name Catalogue numbers Dilution

MMP‑1 sc‑21731 1:1,000
MMP‑3 sc‑21732 1:1,000
MMP‑13 sc‑515284 1:1,000
TIMP‑1 sc‑21734 1:1,000
IκB-α #9242 1:3,000
p65 #6956 1:500
β‑actin #3700 1:1,000
Goat anti-Mouse IgG #31160 1:5,000
Goat anti‑Rabbit IgG #31210 1:5,000

MMP, matrix metalloproteinase; TIMP, tissue inhibitor of MMPs; 
IκB-α, inhibitor of NF‑κB; Ig, immunoglobulin. Figure 2. Effects of paeoniflorin on cell viability. Chondrocytes were treated 

with 0‑200 µM paeoniflorin for 72 h and examined using the MTT assay.

Table I. Primers and conditions for reverse transcription‑quantitative polymerase chain reaction.

Gene Genbank accession Direction Primer sequences (5' to 3') Size (bp) Annealing temp (˚C)

MMP‑1 NM_001134530.1 Forward GCTTAGCCTTCCTTTGCTGTTGC 136 60
  Reverse GACGTCTTCACCCAAGTTGTAGTAG  
MMP3 NM_133523 Forward CTGGGCTATCCGAGGTCATG 77 60
  Reverse TGGACGGTTTCAGGGAGGC  
MMP13 NM_133530 Forward CAACCCTGTTTACCTACCCACTTAT 85 60
  Reverse CTATGTCTGCCTTAGCTCCTGTC  
TIMP‑1 NM_053819 Forward TCCCTGTTCAGCCATCCCTTG 96 60
  Reverse TCGCTCTGGTAGCCCTTCTC  
GAPDH  NM_017008.4 Forward GAAGGTCGGTGTGAACGGATTTG 127 60
  Reverse CATGTAGACCATGTAGTTGAGGTCA  

MMP, matrix metalloproteinase; TIMP, tissue inhibitor of MMPs.
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cancer cells, paeoniflorin has potential anti-tumor func-
tions, enhancing apoptosis via the inhibition of MMP‑9 and 
extracellular‑related kinase signaling (26). A recent study by 
Zhao et al (27) reported that paeoniflorin is able to reduce the 
IL-1β‑induced upregulation of inflammatory mediators and 
MMPs in human chondrocytes, which is similar to the results 
of the present study.

The MMP family, in particular MMP‑1, MMP‑3 and 
MMP‑13, is known to serve a role in the degeneration of 
articular cartilage matrix components (28). MMP‑1 predomi-
nantly destroys fibrillar collagens, while MMP‑3 decays 
extracellular cartilage matrix substrates (29,30). MMP‑13, 
also referred to as collagenase‑3, is an enzyme that serves a 
role in the degradation of type II collagen and is considered to 

Figure 3. Effects of paeoniflorin on the expression of (A) MMP‑1, (B) MMP‑3, (C) MMP‑13 and (D) TIMP‑1. Chondrocytes were pretreated with 0, 25 or 50 µM 
paeoniflorin for 3 h, followed by stimulation with IL‑1β (10 ng/ml) for 24 h. Gene expression was assessed using reverse transcription‑quantitative polymerase 
chain reaction. *P<0.05 vs. IL‑1β alone and #P<0.05 vs. negative control. MMP, matrix metalloproteinase; TIMP, tissue inhibitor of MMP; IL, interleukin.

Figure 4. Effects of paeoniflorin on the expression of MMPs and TIMP‑1. (A) Western blotting and (B) quantified western blotting results for MMP‑1, MMP‑3, 
MMP‑13 and TIMP‑1. Chondrocytes were pretreated with 0, 25 or 50 µM paeoniflorin for 3 h, followed by stimulation with IL‑1β (10 ng/ml) for 24 h. Protein 
expression was assessed using western blotting with β‑actin as a control. *P<0.05 vs. IL‑1β alone and #P<0.05 vs. negative control. MMP, matrix metallopro-
teinase; TIMP, tissue inhibitor of MMP; IL, interleukin.
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be the principal collagenase associated with restructuring of 
the collagen matrix (31‑33). However, MMP‑induced cartilage 
disintegration may be ameliorated by reducing the expression 
of endogenous TIMPs (4). As MMPs and TIMP are essential 
for the pathophysiological progression of OA, the aim of the 
present study was to assess whether paeoniflorin serves an 
important role in OA by regulating the expression of MMPs. 
An in vitro model was produced by cultivating a monolayer 
of primary rat chondrocytes in a medium containing IL‑1β, 
which is one of the most important pro‑inflammatory 
cytokines released by chondrocytes (34,35). When cells 
were pre‑treated with IL‑1β, the expression of MMPs was 
significantly upregulated at the mRNA and protein levels, 
whereas TIMP‑1 expression decreased compared with the 
control group. These results were consistent with a previous 
report (36). However, the IL‑1β‑induced changes in expres-
sion may be attenuated by pretreatment with paeoniflorin (25 
and 50 µM), which exerts a protective effect by downregu-
lating the expression of MMPs while upregulating TIMP‑1. 
It is therefore possible that paeoniflorin is able to balance the 
MMP/TIMP ratio and may be used as a therapeutic treatment 
for OA.

The results of the present study revealed that NF‑κB is 
associated with paeoniflorin‑mediated MMP/TIMP system 
regulation. The NF‑κB signaling pathway regulates the 
expression of several genes (37,38), including MMP‑1, 
MMP‑3 and MMP‑13. NF‑κB in the cytoplasm maintains 
an inactive form via binding with IκB (39). When stimu-
lated with IL‑1β, NF-κB dimers are activated via a series 
of signaling pathways, resulting in the phosphorylation and 
degradation of IκB (37). In the present study, paeoniflorin 

blocked the activation of NF‑κB p65 by protecting IκB-α 
against degradation. It has previously been reported that 
paeoniflorin is able to inhibit the nuclear translocation of 
NF-κB by preventing IκBα phosphorylation in gastric carci-
noma cells, which is in agreement with a previous in vitro 
study by our group (18,40).

The underlying mechanism of inflammation in chondro-
cytes exposed to paeoniflorin remains unclear. Further studies 
are required to elucidate the precise signal transduction 
pathway underlying paeoniflorin regulation in inflammatory 
processes. The present study is limited as rat articular chon-
drocytes were cultured in a monolayer only. In future studies, 
a dynamic three‑dimensional chondrocyte culture system is 
strongly recommended (41). In addition, a number of addi-
tional catabolic enzymes and inflammatory factors serve key 
roles in the pathophysiology of OA, including a disintegrin and 
metalloproteinase with thrombospondin motifs and inducible 
nitric oxide synthase, which should be investigated in future 
studies.

In summary, the results of the present study demonstrate 
that paeoniflorin has a chondroprotective effect in an in vitro 
model via decreasing the expression of MMP‑1, MMP‑3 
and MMP‑13 whilst upregulating TIMP‑1. Furthermore, it 
was revealed that this anti‑catabolic effect was exerted by 
inhibiting the NF‑κB pathway. These results suggest that 
paeoniflorin may be applied as an effective therapeutic for the 
treatment of OA.
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