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Abstract. Epitopes serve an important role in influenza 
infection. It may be useful to screen universal influenza 
virus vaccines, analyzing the epitopes of multiple subtypes 
of the hemagglutinin (HA) protein. A total of 40 monoclonal 
antibodies (mAbs) previously obtained from flu virus HA 
antigens (development and characterization of 40  mAbs 
generated using H1N1 influenza virus split vaccines were 
previously published) were used to detect and classify mAbs 
into distinct flu virus sub‑categories using the ELISA method. 
Following this, the common continuous amino acid sequences 
were identified by multiple sequence alignment analysis with 
the GenBank database and DNAMAN software, for use 
in predicting the epitopes of the HA protein. Synthesized 
peptides of these common sequences were prepared, and used 
to verify and determine the predicted linear epitopes through 
localization and distribution analyses. With these methods, 
nine HA linear epitopes distributed among different strains 
of influenza virus were identified, which included three from 
influenza A, four from 2009 H1N1 and seasonal influenza, 
and two from H1. The present study showed that considering 
a combination of the antigen‑antibody reaction specificity, 
variation in the influenza virus HA protein and linear 

epitopes may present a useful approach for designing effective 
multi‑epitope vaccines. Furthermore, the study aimed to 
clarify the cause and pathogenic mechanism of influenza virus 
HA‑induced flu, and presents a novel idea for identifying the 
epitopes of other pathogenic microorganisms.

Introduction

Infection by pathogenic microorganisms and viruses presents 
a significant threat to human life worldwide; their constant 
variation, evolution and spread render it difficult to prevent 
and control infection. HBV, one of the most infectious diseases 
worldwide, often varies due to the pressures of host immunity, 
natural selection and the use of antiviral agents. Such varia-
tions may cause changes in HBV pathogenicity, including the 
development of tolerance and immune escape, and have greatly 
hindered clinical diagnosis and treatment (1). A number of 
new HIV GAG subtypes have been reported due to its constant 
variation and accumulation  (2). Continual variation in the 
influenza virus hemagglutinin (HA) antigen gene is the main 
cause of influenza outbreaks (3). This poses challenges for 
immunology, virology and immunopharmacology research, 
and for the development of vaccines against influenza and 
other pathogenic microorganisms.

Epitopes, also known as antigenic determinants, represent 
the material base of immunogen antigenicity, and is the part of 
an antigen recognized by the immune system. Epitopes can be 
classified as either conformational epitopes or linear epitopes, 
based on their structure and interaction with the paratope (4). 
The linear epitope is a section of the continual amino acid 
sequence of the antigen, and its interaction with the paratope 
predominantly depends on its primary structure. Variations in 
any area of the linear epitopes may lead to structural changes, 
a reduced antibody binding ability, and the ability to escape 
recognition by existing antibodies and vaccines (5).

Different subtypes of a pathogen may have a variety of 
antigens; thus, it is challenging to distinguish the subtype of 
pathogenic microorganisms, to establish immunodetection 
technologies, and to clarify the mechanisms of disease spread. 
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Consequently, epitope prediction and utilization are of value in 
differential diagnosis, the prediction of variation trends, deter-
mining the mechanisms of pathogenic microorganism infection, 
and in the design of multi‑epitope vaccines (6).

Recently, several methods of epitope prediction have been in 
use, the majority of which are limited to one antigen, although 
they still provide a satisfactory predictive capacity (7‑9). X‑ray 
diffraction requires more time and energy to identify epitope 
structures. To elucidate the biological profile of the epitope, 
multiple factors should be considered, including its location 
on the surface of the antigen, the flexibility, and the acces-
sibility, although it showed a growing acceptance among this 
field (10‑14). In addition to α‑helices and β‑pleated sheets, 
glycosylation sites are also important for prediction  (15). 
However, the predictive accuracy of these methods is just 
~60% (16). Larger protein libraries are required for phage 
display technology, and certain peptides have strong hydro-
phobicity, which influences their structure on the surface of 
phages. Furthermore, the predictions obtained via this method 
still require further verification (17). Thus, a single optimal 
approach is required, which is capable of predicting the epitope 
sequences of microorganisms comprehensively and in one 
pass, establishing a biological profile with the characteristics 
and functions of the epitopes, and modeling the behavior of 
these epitopes during changes to virus antigenicity. This will 
have an important and direct role in the design of biologically 
active drugs, research into pathogenic mechanisms, and the 
prediction of variation in certain pathogenic microorganisms.

Monoclonal antibodies (mAbs) are a subset of antibodies 
generated by identical immune cells with a strong monovalent 
affinity, in that they bind to the same epitope, with high speci-
ficity and sensitivity, and define the structure and character 
of epitopes (18). Such specificity can also be used as a tool 
to analyze the epitopes of viruses and their subtypes, provide 
information on the main functions of the epitopes and on 
genetic variations involved in changes to the epitopes, and 
assist research into epitope variation and improvements in 
vaccine design (19,20).

In the present study, mAbs from 40 previously developed 
anti‑H1N1 influenza virus HA split vaccines had been developed 
and characterized (21), which were used as experimental tools 
to predict the epitopes of influenza virus HA proteins, after 
which their distribution and expression were investigated using 
synthesized peptides. The present study aimed to illuminate 
the association between variation in the influenza virus and its 
immunogenicity, and to develop a useful method for predicting 
the variable epitopes of other pathogenic microorganisms. In 
the present study, we just preliminary report a new method 
for predicting the variability epitope of influenza virus. Next, 
we will carry out biological functional studies on predicted 
different epitopes one by one, which can help us to develop 
epitope vaccines of influenza virus, further contribute to the 
diagnosis and prevention of influenza virus.

Materials and methods

Antigens. H1N1 influenza virus split vaccine (2009; SFDA 
Approval no.: S20090015) was obtained from Hualan Biological 
Bacterin Co., Ltd., (Henan, China); seasonal A1 and A3 influenza 
[2009; Veterinary Drug Production Approval no.: 150132145], 

and H9N2 (SD696) strains were purchased from Qingdao Yebio 
Bioengineering Co., Ltd., (Shandong, China).

Antibodies. mAbs against the anti‑H1N1 A influenza virus HA 
protein were prepared in our laboratory, and HRP‑conjugated 
goat anti‑mouse antibodies were provided by Beijing 
Zhongshan Golden Bridge Biotechnology Co., Ltd., (Beijing, 
China).

HA protein synthetic peptides. Part of the continuous amino 
acid sequence of influenza virus HA was determined using 
DNAMAN software, and peptides were synthesized by 
ChinaPeptides Co., Ltd., (Shanghai, China).

ELISA analysis and classification. Indirect ELISA analyses 
were performed using the following: Hybridoma culture super-
natant; H1N1 influenza virus split vaccine (2009); seasonal 
influenza viruses A1 and A3; and avian influenza viruses 
H5N1 and H9N2. Briefly, the 96‑well plate was pre‑coated 
with 100 µl of each vaccine (2‑5 µg/ml). After washing three 
times with PBST (including 8 g of NaCl, 0.2 g of KCl, 1.44 g 
of Na2HPO4, 0.24 g of KH2PO4, 2 ml of Tween‑20, pH 7.2, 
volume adjusted to 1L with additional distilled H2O), the 
plates were blocked with 200 µl skim milk (dilution, 1:20) and 
incubated for 1 h at 37˚C. Subsequently, 100 µl/well superna-
tant aspirated from the hybridoma cell cultures for 40 mAbs 
was added, including the supernatant of SP2/0 as a negative 
control, which was incubated for 1 h at 37˚C. After washing 
a further three times, the concentration (dilution, 1:2,500) of 
the HRP‑labeled goat‑anti‑mouse IgG mAb (100 µl/well) was 
added and incubated for 1 h at 37˚C. Next, 100 µl TMB‑H2O2 
chromogenic solution was added to each well and incubated 
for 10 min at 37˚C in the dark, and terminated with H2SO4 
solution (2 M, 50 µl/well). Finally, the proportion of bound 
antibodies, which is correlated with the color intensity, was 
measured with an ELISA reader via absorbance at 450 nm. 
The ratio of each test sample (OD450: Control OD450) was calcu-
lated. Samples with a ratio of ≥2.1 were classified as exhibiting 
a positive reaction. Considering each test sample reaction with 
the five subtypes of the influenza virus, the antibodies were 
categorized into different groups.

Epitopes of inf luenza A virus HA protein prediction. 
I n  t h e  NC BI  d a t a ba s e  ( h t t p: //w w w. ncb i . n l m.
nih.gov/genomes/FLU/FLU.html), the amino acid sequences 
of various influenza virus subtypes were accessed and down-
loaded with their GenBank IDs (Table I). Consequently, a 
multiple sequence alignment analysis was performed using 
DNAMAN software, following which the common contin-
uous amino acid sequence (5‑7 aa) between the antigens of 
the different groups were defined, and used to predict the 
epitopes of influenza A virus HA proteins. Overall, 27 candi-
date epitope fragments were selected, and complementary 
peptides were synthesized, each with a >85% purity as 
measured by HPLC and MS methods; these peptides were 
stored as freeze‑dried powders at ‑20˚C.

Localization of predicted epitopes with anti‑influenza virus 
HA mAbs. To investigate the positions of the predicted epit-
opes of influenza A virus HA, 27 candidate‑epitope peptides 
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were used and screened using mAbs against influenza virus 
HA. The process was as follows: The synthesized peptides 
were mixed with 40 HA mAbs, and incubated for 1 h at 37˚C. 
A total of 100 µl mixed reagent was placed into each well of 
an ELISA plate pre‑coated with H1N1 influenza virus HA 
antigens (2 µg/ml), according to standard ELISA protocols. 
After a 1 h incubation and three washes, the goat anti‑mouse 
antibodies (dilution, 1:2,500) were added, and the steps of a 
conventional ELISA were performed. The OD450 values for all 
wells were calculated from TMB coloration and an inhibition 
rate (IR) was calculated. The formula used to calculate the 
IR was as follows: IR=(ODCTL‑ODTEST)/ODCTL. Correlations 
between the antigens and the antibody binding sites were 
defined according to the following criteria: No correlation 
(IR ≤0.4); correlation (0.4≤ IR ≤0.8); and strong correlation 
(IR ≥0.8).

Distribution of predicted epitopes in the HA crystal structure. 
The PyMOL Molecular Graphics System (http://www.PyMOL.
org) and Protein Database (PDB) were used to analyze the 
distribution of predicted epitopes in the HA crystal struc-
ture. Peptides recognized by mAbs against influenza virus 
HA proteins in the ELISA experiments were selected and 
analyzed. First, the PDB database was used to search for and 
generate a model of the HA protein X‑ray crystal structure 
by referring to the 3LZG structure, which was produced from 
the A/California/04/2009 H1N1 virus HA and had a similar 
structure to that of the antigen in the present study. Secondly, 
the selected peptides' distributions were determined using 
PyMOL software according to the manufacturer's protocol.

Results

Specificity and cross reactivity of mAbs. ELISA reactions 
between 40 influenza virus HA antigen mAbs and five 
different influenza virus subtype vaccines were evaluated 
using the OD450 ratio, and classified as positive (OD450 ≥2.1) or 
negative (OD450 <2.1) reactions. According to the cross‑ELISA 
results, all the assessed influenza virus HA antigens can be 
classified into three groups. Approximately half (20/40) were 
recognized by all five antigens, ~35% (14/40) were recognized 
by the antigens of 2009 H1N1 virus A, or seasonal influenza 
virus A1 and A3, and 6 mAbs only reacted with the antigens 
of H1N1 virus A and seasonal A1 (Table II).

Detection of conserved peptides in influenza virus A HA. 
Twenty seven common continuous amino acid sequences of 
influenza HA antigens detected through multiple sequence 
alignment analysis of the three groups using DNAMAN 
software  (Table  III). There were 9 peptides located in the 
conserved sequences of vaccines in group 1, 7 peptides in the 
conserved sequences of group 2, and 11 in group 3 (Table III).

Locations of predicted epitopes determined using anti‑influenza 
virus HA mAbs. The ELISA results demonstrated that 9/27 
peptides were recognized by 13/40 mAbs, considering their IRs 
calculated with OD450 values (Figs. 1‑3). In group 1, 5 mAbs 
were identified by 3 peptides, designated peptides 1, 2 and 9 
(Fig. 1); in group 2, 6 mAbs reacted with 4 peptides (peptides 
10, 11, 15 and 16; Fig. 2); and 2 mAbs in group 3 were identified 
by 2 peptides (peptides 17 and 27; Fig. 3).

Table II. mAb cross‑reactivity with various subtypes of influenza virus.

mAb group	 No. of cell lines

Common antigens of influenza virus	 20
(2009 H1N1 and seasonal A1, A3 and avian influenza H5N1 and H9N2)
Common antigens of 2009 H1N1 influenza virus and seasonal influenza virus	 14
(2009 H1N1 and seasonal A1, A3)
Specific H1 subtype	   6
(2009 H1N1and seasonal A1)
Total	 40

mAB, monoclonal antibody.

Table I. Information about the amino acid sequences of subtype influenza virus.

Name of antigens	 Source of HA amino acid sequence	 GenBank ID

2009 H1N1‑HA	 (A/reassortant/NYMCX‑179A (California/07/2009xNYMC X‑157)(H1N1))	 ACR47014.1
H3N2‑HA	 Influenza A virus (A/Victoria/210/2009(H3N2))	 CY121077.1
Seasonal H1N1‑HA	 Influenza A virus (A/Brisbane/59/2007(H1N1))	 CY163864.1
H5N1‑HA	 Influenza A virus (A/Goose/Guangdong/1/96(H5N1))	 AF144305.1
H9N2‑HA	 Influenza A virus (A/chicken/Shandong/6/96(H9N2))	 AAY52514.1

HA, hemagglutinin.
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Distribution of predicted epitopes in the HA crystal structure. 
After the predicted epitopes were located, three peptides 
(including 93‑WSYIVE‑98, 191‑LVLWGIHHP‑199 and 
307‑LPFQNI‑312), located in the continuous conserved amino 
acid sequences in all five HA antigens, were chosen for distri-
bution analysis. PyMOL software analysis identified the three 
peptides sequences in the HA crystal structure, and predicted 
their location in the 3D structure of HA (Fig. 4).

Discussion

Variability in the HA proteins of the influenza virus impacts 
on the suitability and efficacy of existing vaccines. Developing 
universal vaccines effective against various subtypes of 

influenza is the primary approach for controlling the spread 
of infection (22). As epitopes are a key feature of viruses, 
several strategies have been successfully applied in the design 
and development of ‘epitope‑focused’ vaccines (23,24), which 
demonstrate advantages such as high specificity, fewer side 
effects, simple preparation, and easy storage and transporta-
tion (25,26). These rapid and accurate strategies have become 
the foundation for the development of influenza virus vaccines, 
as well as supporting clinical diagnosis and treatment.

In the present study, we predicted the epitopes of multiple 
subtypes of the influenza virus HA protein using 40 previ-
ously developed mAbs, and extracted the common continuous 
amino acid sequences as linear epitopes. Following this, we 

Table III. Peptide fragments in influenza virus HA identified 
subtype influenza virus mAbs.

Groups and
peptides no.	 Sequence of peptides	 Position

Group 1: (9)a

  Peptide	 LVLWGIHHP	 191aa‑199aa
  Peptide 2	 LPFQNI	 307aa‑312aa
  Peptide 3	 LATGLRN	 331aa‑337aa
  Peptide 4	 RGLFGAIAGFIEGGW	 344aa‑358aa
  Peptide 5	 GWYGYHH	 364aa‑370aa
  Peptide 6	 STQNAID	 384aa‑390aa
  Peptide 7	 YNAELLVL	 438aa‑445aa
  Peptide 8	 ENERTLD	 447aa‑453aa
  Peptide 9	 WSYIVE	 93aa‑98aa
Group 2: (7)b

  Peptide 10	 DTLCIGYHANNSTDT	 17aa‑32aa
  Peptide 11	 MNYYWTLVEPGD	 244aa‑255aa
  Peptide 12	 ATGNLVVPR	 261aa‑269aa
  Peptide 13	 GYAADLKSTQNAIDEI	 377aa‑392aa
  Peptide 14	 EIGNGCF	 476aa‑482aa
  Peptide 15	 FYHKCDNT	 484aa‑491aa
  Peptide 16	 SVKNGTYD	 495aa‑502aa
Group 3: (11)c

  Peptide 17	 KAILVVLLYTFA	 2aa‑13aa
  Peptide 18	 SVNLLEDK	 46aa‑53aa
  Peptide 19	 KLRGVAPLHLGK	 60aa‑71aa
  Peptide 20	 ESLSTASS	 85aa‑92aa
  Peptide 21	 TSSSDNGT	 99aa‑106aa
  Peptide 22	 PNHDSNKGVTA	 141aa‑151aa
  Peptide 23	 PHAGAKSFYKNLI	 154aa‑166aa
  Peptide 24	 KLSKSYINDKGKEV	 177aa‑190aa
  Peptide 25	 GSSRYSKKFKPE	 219aa‑230aa
  Peptide 26	 RYAFAMERNAGSG	 269aa‑281aa
  Peptide 27	 VVSLGAISF	 544aa‑552aa

a2009 H1N1 and seasonal A1, A3 and avian influenza H5N1 and 
H9N2; b2009 H1N1 and seasonal influenza virus A1, A3; c2009 
H1N1and seasonal A1. mAB, monoclonal antibody; HA, HA, 
hemagglutinin.

Figure 1. Positioning results of mAbs against common antigens of influenza 
virus A in conserved areas of the influenza virus HA protein sequence. In 
total, 5 mAbs (H1‑5, H1‑16, H1‑74, H1‑80 and H1‑81) showed a strong inter-
action (IR ≥0.8) with 3 epitopes (peptides 1, 2, and 9). mAbs, monoclonal 
antibodies; HA, hemagglutinin.

Figure 2. Positioning results of mAb against common antigens of the influ-
enza A virus H1N1 and seasonal influenza virus in conserved areas of the 
influenza virus H1N1+A1+A3 and HA sequences. A total of 6 mAbs (H1‑13, 
H1‑27, H1‑38, H1‑40, H1‑50 and H1‑51) showed a strong interaction (IR ≥0.8) 
with 4 epitopes (peptides 10, 11, 15 and 16). mAbs, monoclonal antibodies; 
HA, hemagglutinin.
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determined the localization and distribution with candidate 
peptide analysis, to verify and confirm 9 linear epitopes of the 
HA protein. For five common subtypes of the influenza virus, 
3 epitopes (peptides 1, 2 and 9) showed a strong association 
with multiple influenza viruses. Additionally, three epitopes 
are known to overlap with three neutralizing epitopes, HA183 
~195, HA127 ~133 and HA92 ~105, of the H3 subtype influ-
enza virus HA protein, as reported by Li et al (27). It is also 

suspected that the three peptides 1‑LVLWGIHHP, 2‑LPFQNI 
and 9‑WSYIVE may stimulate organisms to produce neutral-
izing antibodies and promote immunogenicity, which may 
benefit the development of universal influenza vaccines.

In the second group, which included the 2009 influenza A 
virus H1N1, and the seasonal influenza A1 and A3 virus, four 
linear epitopes were identified. The epitopes in the conserved 
sequences of this group were immunodominant epitopes, 
capable of stimulating organisms to produce a high volume 
of antibodies in response. Therefore, there were more chances 
of mixed infection of three of them presently (28). In the third 
group, two linear epitopes were predicted, which are the main 
markers used to distinguish between the HA proteins of H1 
and other subtypes. Our results suggested that only 15% (6/40) 
of the antibodies are produced by organisms when stimulated 
by epitopes in group 3, due to there being fewer common 
epitopes between these two subtypes of the influenza virus. 
To an extent, this observation may also explain the significant 
difference between the H1N1 influenza virus subtypes in 
terms of the infection frequency, pathogenicity and infection 
scale, among other variables (29).

As identified in ELISA experiments, 13/40 anti‑influenza 
virus HA antigens were positioned at 9 epitopes. In group 1, we 
synthesized 9 peptides after analyzing the common sequences 
of the human and avian influenza viruses using DNAMAN soft-
ware and 20 mAbs against epitopes common to both viruses; 
we positioned 5 antigens to 3 epitopes. Li et al (27), used an E. 
coli model to demonstrate that rabbits and mice are immune to 
recombinant multi‑epitope peptides specific to three neutral-
izing epitopes, HA183~195, HA127~133 and HA92~105, from 
the H3 subtype of influenza virus HA, and neutralizing anti-
bodies with high titer were produced. This indicated that, in the 
first group, among peptides able to identify multiple subtypes 
of the influenza virus, 1‑LVLWGIHHP and 9‑WSYIVE 
could potentially stimulate organisms to produce neutralizing 
antibodies, which would benefit the development of universal 
influenza vaccines. In the second group, we designed 7 peptides 
complementary to the antigen‑conserved areas of 14 mAbs. 
We positioned 4 epitopes to 6 mAbs. Epitopes in the conserved 
areas of the 2009 influenza A virus H1N1, and the seasonal 
influenza A1 and A3 viruses were immunodominant, and 
stimulated organisms to produce an abundance of antibodies 
in response. In the third group, 2 antigens were positioned to 2 
epitopes. Epitopes corresponding with these antibodies are the 
primary markers used to distinguish between the HA proteins 
of H1 and other subtypes.

Influenza virus HA proteins include 562‑566 amino acids and 
consist of a HA1 spherical head (319‑328aa) and a HA2 bacilli-
form stalk (221‑222aa). HA1 includes 8 anti‑parallel β‑laminated 
structures, including a receptor‑binding domain (RBD) and 
5 antigenic determinants: A, B, C, D and E (30). The RBD 
domain is composed of a helix at site 190, and of rings at sites 
130 and 220; one of the predicted epitopes, verified by peptide 
191‑LVLWGIHHP‑199, was located near this domain (Fig. 4), 
indicating that the current method was effective and reliable, 
and could be used to investigate the mechanisms underlying the 
spread of influenza, its genetic variation, and in the development 
of epitope‑specific vaccines.

To predict the epitopes of influenza HA proteins, we used 
the antigen‑antibody reaction method. Multiple reactivity 

Figure 3. Positioning results of mAbs allowed the identification of the H1 
subtype influenza virus HA. Additionally, 2 mAbs (H1‑58 and H1‑73) showed 
a strong interaction (IR ≥0.8) with 2 epitopes (peptides 17 and 27). mAbs, 
monoclonal antibodies; HA, hemagglutinin.

Figure 4. Distribution of three peptides in the HA crystal structure. We 
searched for a crystal structure of the H1N1 influenza A virus in the PDB, and 
used 3LZG as a reference structure. PyMOL software was used to determine 
the distribution of three peptides in the 3D crystal structure of HA, from 
which we noted that the WSYIVE peptide (red) and the LPFQNI peptide 
(purple) are located on the random coil domain, whereas the LVLWGIHHP 
peptide (blue) is situated within the β‑sheet structure. HA, hemagglutinin.
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modes were observed, including the one‑to‑one mode, the 
one‑to‑many mode (H1‑74 reacted with peptides 1 and 2; 
H1‑51 reacted with peptides 10 and 11; H1‑58 reacted with 
peptides 17 and 27), and the unresponsive mode. Two find-
ings were notable: First, two peptides that react with the same 
antibody were close to the 3D structure of HA, and formed 
a conformational epitope, although they were separated by 
a long sequence in the primary structure; second, 40 mAbs 
were obtained using the split influenza virus vaccine, and 
these immunogens can induce organisms to produce the same 
antibodies as those induced by natural pathogens. Synthesized 
peptides, for which the design and utilization were based on 
the primary sequence of the protein, were used for linear 
epitope prediction and identification.

These short peptides can be also used as good immunogens to 
research different subtypes of influenza virus epitope vaccines. 
Li et al (31) applied short‑peptide immunization to the mice 
directly, and screened the prepared mAbs. In order to enhance 
immunogenicity, connection of polypeptides and macromolec-
ular protein can also be used. Gong et al (32) coupled the short 
peptides P1~P6 of the chemically synthesized influenza virus 
H3N2 sequence with the Keyhole Limpet Hemocyanin (KLH) 
carrier protein in order to increase the immunogenicity of the 
polypeptide, and induced a strong humoral immune response. 
We have previously linked 9 different polypeptides with KLH 
one by one, obtaining high titer and high affinity polyclonal 
antibodies after immunizing mice. Polyclonal antibodies were 
then tested for their neutralizing activity and cross‑reactivity 
with human tissues. These experiments are underway.

In conclusion, the present study identified 9 linear epitopes 
of the influenza HA protein via traditional mAb and antigen 
interaction analysis, and verified these using ELISA and 3D 
structure location analyses with synthesized peptides. The 
results provide a novel, effective and reliable method for inves-
tigating the mechanisms underlying the spread and variation of 
influenza virus and other pathogenic microorganisms, in addi-
tion to improving the development of epitope‑focused vaccines.
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