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Abstract. Human epidermal growth factor receptor-2 positive 
breast cancer (HER2+ BC) is characterized by a high rate of 
metastasis and drug resistance. The advent of targeted therapy 
drugs greatly improves the prognosis of HER2+ BC patients. 
However, drug resistance or severe side effects have limited 
the application of targeted therapy drugs. To achieve more 
effective treatment, considerable research has concentrated 
on strategies to overcome drug resistance. Abemaciclib 
(CDK4/6 inhibitor), a new antibody-drug conjugate (ADC), src 
homology 2 (SH2) containing tyrosine phosphatase-1 (SHP-1) 

and fatty acid synthase (FASN) have been demonstrated to 
improve drug resistance. In addition, using an effective vector 
to accurately deliver drugs to tumors has shown good appli-
cation prospects. Many studies have also found that natural 
anti-cancer substances produced effective results during 
in vitro and in vivo anti-HER2+ BC research. This review 
aimed to summarize the current status of potential clinical 
drugs that may benefit HER2+ BC patients in the future.
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1. Introduction

Breast cancer (BC) is the most diagnosed disease among 
women and has the second highest incidence among all types 
of cancer worldwide (1.7 million cases, 11.9%) (1). Excessive 
expression of human epidermal growth factor receptor-2 
(HER2) has been investigated in 20-30% of BC patients and 
generally recognized as a marker for invasive disease, which is 
likely to be highly metastatic, to be drug resistant and to spread 
rapidly (2-4). HER2 is a member of the HER/EGFR/ERBB 
group of protein kinase superfamily, which receives signals 
to regulate cell survival, adhesion, motility, proliferation and 
resistance to apoptosis (5,6). A tyrosine kinase (TK) domain 
located in the HER2 receptor plays an important role in the 
occurrence of BC, as it is induced by phosphorylation after 
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HER2 homo/hetero dimerization and then activates multiple 
signal transduction pathways (5,7). The phosphatidylinositol 
3-kinase (PI3K) pathway and the Ras/Raf mitogen-activated 
protein kinase (MAPK) pathway are the most fully investi-
gated of these pathways, both of which may contribute to the 
acquired resistance against targeted therapy drugs (8-10). 
Related research has identified that inhibition of the PI3K‑Akt 
pathway with PI3K inhibitors is effective to reverse tumor 
growth (11-13). When the HER2 proto-oncogene undergoes 
mutation and conversions into the HER2 oncogene (14), HER2 
receptor protein is highly expressed at the cell membrane, and 
multiple downstream signaling pathways are excessively acti-
vated, resulting in uncontrollable cell growth, repeated division 
of cells, and altered adhesion properties (7,14,15). Based on 
its unique role in the development of HER2+ BC, HER2 and 
its downstream signaling pathways have become extremely 
important targets for therapy. HER2+ BC that is induced by 
HER2 amplification was significantly reversed by treatments 
that targeted HER2 and HER2 TK (15,16). Targeted therapy 
that depends on the expression levels of HER2 has made great 
progress, although a considerable portion of the population are 
resistant.

2. Current targeted therapy drugs

Among all of the drugs that target HER2 and HER2 TK, trastu-
zumab, pertuzumab, trastuzumab emtansine (T-DM1) and 
lapatinib have been proven to be effective in treating HER2+ 
BC in several clinical trials compared with chemotherapy 
drugs alone (17-20). Trastuzumab, the first‑generation targeted 
therapy drug, is a humanized monoclonal antibody targeting 
the extracellular domain of HER-2 (21,22) and has the ability 
to downregulate the signaling pathways involving PI3K/Akt 
and MAPK (23,24), which in turn inhibits the proliferation of 
BC cells that overexpress HER2. Trastuzumab, both adminis-
tered as a single agent or injected in combination with a series 
of chemotherapy agents (such as docetaxel or vinorelbine plus 
trastuzumab (25-27), showed anti-tumor effects and remark-
ably improved time to progression, response and survival 
rate (22,28,29). Furthermore, several randomized control 
trials have revealed that trastuzumab plus chemotherapy drugs 
significantly reduce the risk of recurrence and death and 
promote survival incidence compared to chemotherapy drugs 
alone (26,27), making trastuzumab the cornerstone of adjuvant 
treatments for HER2+ BC.

Pertuzumab belongs to the second-generation targeted 
drug family, which elicits similar effects to trastuzumab 
and can significantly promote survival outcomes (25,30). 
Pertuzumab binds to HER2 and thus blocks the signaling 
pathways by blocking a binding pocket necessary for receptor 
dimerization (31). Pertuzumab was approved by FDA as a 
neoadjuvant therapy in combination with trastuzumab and 
cytotoxic chemotherapy (32). Related research demonstrated 
that pertuzumab in combination with trastuzumab was more 
effective in the blockade of HER2 signaling pathways in vitro 
and in vivo than either antibody alone (33).

T-DM1, a second-generation antibody, has attracted great 
interest from researchers for its effective role as an adjuvant 
and neoadjuvant (34). The phase III EMILIA study and RESA 
study proved that T-DM1 was efficacious as afunctional 

treatment and facilitated better prognosis and improvements 
in health-related quality of life (35-37). T-DM1 has been inves-
tigated to promote progression-free survival (PFS) and overall 
survival (OS) in patients who were HER2+ and previously 
treated with trastuzumab and taxane (17).

Lapatinib is a reversible HER2 TK inhibitor that reacts 
with the ATP binding site, which in turn improves PFS and 
clinical benefit rate (CBR) by inhibiting the autophosphory-
lation of ErbB1 and ErbB2 and downstream proliferative 
signaling pathways (25,38,39). Similarly, in some neoadjuvant 
clinical trials, lapatinib has been used in dual blockade with 
trastuzumab to treat patients with HER2+ BC (18,40-42).

3. Does every HER2+ BC patient benefit from targeted 
therapy?

With the development of targeted therapy, drugs targeting 
HER2+ BC, such as trastuzumab, pertuzumab and lapatinib, 
have been proven to significantly improve the prognosis of 
patients. Though the incidence of PFS, OS and overall response 
rate (ORr) are significantly promoted among HER2+ BC 
patients by treatment with HER2-targeting drugs (17-19), drug 
resistance and progression of metastatic breast cancer (MBC) 
still develop gradually and are detrimental to the prognosis 
of patients. It has been estimated that about half of HER2+ 
MBC does not respond to anti-HER2 drugs (28). Abnormal 
activation of the PI3K-Akt signaling pathway caused by 
PI3KCA mutations could promote trastuzumab resistance (43). 
Similarly, phosphatase and tensin homologue (PTEN) loss 
also correlated with trastuzumab resistance (44,45). HER2+ 
BC with PTEN drops and/or PI3K mutations had a worse 
prognosis (45,46), making this drug resistance a rigorous and 
persistent clinical challenge. So, patients who present both 
HER2+ tumors and PI3KCA mutations may benefit from the 
application of HER2-targeted drugs plus PI3K inhibitors. 
Rexer et al found that dual HER2 and PI3K blockade in vitro 
and in xenograft models showed the most effective role in 
inducing tumor regression, even with a PI3KCA mutation (47). 
Interestingly, there were also preclinical studies showing that 
trastuzumab-induced reprogramming of the HER axis resulted 
in the increase of EGFR and HER3 expression after long-term 
trastuzumab treatment in cell lines, which may correlate with 
primary resistance to trastuzumab (48). As mentioned above, 
trastuzumab resistance in HER2+ BC might be caused by 
excessive EGFR expression (49,50), making EGFR an effective 
target to evaluate in response to trastuzumab treatment (51).

In addition to the gradual increase in resistance, another 
important issue that hampers the application of trastuzumab 
in clinical patients is side effects, especially cardiomyopathy, 
which was reported to affect 2.8-3.3% of patient (52,53). 
More concerning, when trastuzumab was administered in 
combination with anthracyclines, cardiac dysfunction, such as 
left ventricular ejection fraction (LVEF) and congestive heart 
failure (CHF), affected about a quarter of patients as reported 
by some studies (28,54).

It has been confirmed that pertuzumab could strengthen 
the effect of trastuzumab (33). Similarly, a clinical study found 
that trastuzumab plus pertuzumab received an ORr of 24.2% 
and a CBR of 50% (55). In another clinical trial, a response rate 
of 18% was demonstrated after treatment with trastuzumab 
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and pertuzumab combination (56); however, over half of the 
patients did not benefit from treatment.

It is reported that the objective response rate of T-DM1 was 
approximately 44% (17), which indicated that more than 50% 
of eligible patients did not benefit from T‑DM1. In addition, 
preclinical studies showed that T-DM1 resistance could be 
caused by downregulation of HER2 expression (57,58), consis-
tent with decreased activity of T-DM1 in tumors that express 
low levels of HER2, suggesting that patients who initially 
responded to T-DM1 might develop acquired resistance as 
HER2 levels decline. Though a 43.6% objective response rate 
was achieved by T-DM1, more than half of patients receive little 
benefit from treatment (40). At the same time, many clinical 
trials reported that T-DM1 could bring about side effects, such 
as fatigue, nausea, thrombocytopenia and headache (59,60).

Lapatinib yielded response rates from 24-53.2% in clinical 
activity in advanced HER2-overexpression BC (17,19,40). 
Although lapatinib was speculated to play a vital role in 
treating trastuzumab-resistant, HER2-overexpressed tumors, 
the response rates ranged from 1.4-8.8% after lapatinib mono-
therapy (19,61). The addition of lapatinib and capecitabine 
received a 51% reduction in the risk of disease progression 
and a 2-fold time to progression compared to capecitabine 
alone (16). However, at least half of the patients showed no 
benefit from treatment.

Furthermore, with the presence of two kinds of drug resis-
tance, ‘a primary or inherent resistance and a secondary or 
acquired resistance’ (24,46,62), we are facing two serious chal-
lenges: i) Overcoming the drug resistance; and ii) searching 
for new effective drugs.

4. How should we treat HER2+ BC patients who do not 
benefit from trastuzumab, pertuzumab, trastuzumab 
emtansine (T‑DM1) and lapatinib?

The inherent or acquired resistance to targeted therapy drugs, 
as well as the relatively serious side effects, limit the applica-
tion of targeted therapy drugs. These two kinds of unfavorable 
factors are the driving forces to continue to develop new drugs. 
To overcome the development of drug resistance, some studies 
explored the possible treatment methods and identified some 
substances that had potential value. Specifically, the discovery 
and application of Taxol greatly improved the prognosis of 
patients. Interestingly, several studies investigated natural 
anti‑cancer substances that had shown significant anti‑cancer 
effects, which might prevent the tumorigenesis of BC. 
Furthermore, the new ADC and targeted delivery of drugs 
were found to be effective in treating HER2+ BC patients. 
In this review, we concentrate on some research studies for 
putative application in clinical treatment. And we summarize 
the signaling pathways of corresponding effective potential 
clinical drugs (Fig. 1).

HER2 TK inhibitors. Neratinib is an irreversible kinase inhib-
itor and a derivative of EKB-569 (EGFR inhibitor) (63-65). 
Neratinib significantly inhibited EGFR/HER2 kinase after 
binding to the ATP pocket and blocking downstream signaling 
pathways (59) and showed anti-cancer bioactivities in 
HER2-overexpression cell lines and in patients with or without 
prior trastuzumab treatment (66-68). Neratinib inhibited 

proliferation and promoted G1-S phase arrest by regulating 
HER2 and its downstream signaling pathways, specifically 
through downregulation of pEGFR, pHER2, pAKT, pMEK 
and pRb levels and cyclin D1 (CCND1) expression and increase 
of p27 levels in a HER2-dependent manner (69). Some studies 
also discovered that neratinib improved trastuzumab resistance 
and restored sensitivity to trastuzumab in HER2+ BC (69,70). 
Many clinical trials investigated the functions of neratinib in 
treating HER2+ BC alone or in combination with trastuzumab, 
which exhibited great clinical application prospects. A more 
important role of neratinib was observed when combined with 
paclitaxel in treating patients who received prior taxane, trastu-
zumab and lapatinib therapies (71). Neratinib was effective as 
a single agent or in combination with different chemotherapy 
drugs in the treatment of HER2+ MBC patients and early BC 
patients (68,72-74). In a multicenter, randomized, double-blind 
and placebo-controlled phase III trial (ExteNET), which 
involved 2,840 women, a total of invasive disease-free survival 
events of 70 patients in the neratinib group and 109 patients in 
the placebo group occurred, corresponding to 93.9 and 91.6% 
2-year invasive disease-free survival rates, respectively (75). 
All of these results above show that neratinib is quite effective 
and is close to clinical application.

Lapatinib showed significant activities in treating HER2+ 
BC either alone or combined with trastuzumab. A considerable 
portion of HER2+ patients were insensitive to lapatinib, which 
prompted development of a modified drug form. KU004, a 
derivative of lapatinib, remarkably inhibited pEGFR, pHER2, 
pAkt and pMAPK in BT474 and NCI-N87 cells, which were 
treated with lapatinib or not. Treatment with KU004 achieved 
a G0/G1 phase arrest and corresponding reduction of cells 
in S and G2/M phases in BT474 cells. KU004 could induce 
caspase-dependent apoptosis, as caspase-8 and caspase-3 were 
significantly activated by KU004. In vivo study found that 
KU004 reduced growth of NCI-N87 xenograft dramatically in 
a dose-dependent manner by inducing apoptosis. These in vivo 
and in vitro results indicate that KU004 has the potential to 
treat HER2+ BC in the future (76).

Improvements of drug resistance. Trastuzumab, as the 
first‑generation targeted therapy drug, helped many HER2+ 
BC patients to improve their prognosis and quality of life in 
the future. As we mentioned above, the resistance to trastu-
zumab limited its application to a large extent. Thus, research 
and development of new drugs to overcome trastuzumab resis-
tance may contribute significantly to the treatment of HER2+ 
BC patients.

It has been proven that CCND1 and CDK4 played a 
vital role in BC (77,78). CDK4/6 inhibitors have shown 
great potential in preclinical studies and clinical trials, such 
as palbocilcib and ribociclib which has been applied in 
clinical (79,80). Though CDK4/6 inhibitors are mainly used 
to treat estrogen receptor (ER)+/HER2- patients, some studies 
found that they also have potential therapeutic effect on 
ER+/HER2+ patients (81). In an exploratory, open-label, phase 
2 study (NA-PHER2), the combination of palbociclib, fulves-
trant, trastuzumab and pertuzumab was found reduced the 
expression of Ki67 significantly (82). Palbocilcib could also 
efficiently inhibit the proliferation of residual HER2+ tumor 
cells that survive T-DM1 in preclinical BC models (83). In 
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a preclinical study, they found that both residual tumor cells 
and recurrent tumor cells that were present after treatment 
presented high levels of CCND1and CDK4, which promoted 
cell proliferation. In addition, abemaciclib, a CDK4/6 
inhibitor, inhibited Rb phosphorylation and significantly 
postponed the process of recurrent tumors, which showed 
a CDK4/6-dependent increase in expression of CCND1. 
Strikingly, reduced sensitivity to both lapatinib and trastu-
zumab was found when CCND1 was over-expressed in 
trastuzumab/lapatinib-sensitive BC cell lines. Knockdown of 
CCND1 in resistant cells partially restored the sensitivity to 
trastuzumab. Phosphorylation of TSC2 and its downstream 
effectors, P70-S6K and S6RP, was reduced after abemaci-
clib treatment, which could be enhanced by combined 
CDK4/6-HER2 inhibition. Furthermore, in vivo study showed 
that trastuzumab combined with abemaciclib inhibited 
tumor growth more than either single agent (84). In another 
preclinical study, abemaciclib with trastuzumab significantly 
improved tumor growth inhibition and tumor regressions 
in xenografts progressing on trastuzumab alone (81). In a 
phase I study, one patient with hormone receptor-negative 
and HER2+ BC experienced an antitumor effect with a 30% 
decrease in tumor size from baseline. At the same time, some 

clinical trials are ongoing to prove whether CDK4/6 inhibi-
tors could be applied to ER+/HER2+ patients (NCT02947685; 
NCT02774681; NCT02907918; NCT02675231) (81).

Antibody-drug conjugates (ADCs) are constructed 
by covalently attaching small-molecule toxins to anti-
bodies (85-87). T‑DM1 is a ADCs that has shown significant 
activity in treating HER2+ BC (86,87). A new biparatopic 
ADC was constructed, consisting of the trastuzumab scFv 
unit, the 39S Fv unit, and AZ13599185, which inhibits micro-
tubule polymerization during mitosis. The new biparatopic 
ADC retained HER2 binding specificity and could effectively 
deliver cytotoxic agents into the targeted tumors. Compared 
to T-DM1, the new biparatopic ADC demonstrated at least 
10-fold cell killing activity in HER2-expressing cancer cell 
lines in a HER2-dependent manner and showed activity in 
cancer cells that were intrinsically resistant to T-DM1. In vivo 
study suggested the possibility of clinical application of the 
new biparatopic ADC, as it induced full tumor degradation and 
inhibited tumor growth in a primary BC xenograft model and 
an intrinsically or acquired T-DM1-resistant xenograft model, 
which was not observed after treatment with T- DM1 alone or 
in combination with pertuzumab. These valuable results show 
that development of the new biparatopic ADC was necessary 

Figure 1. Effectors of EGFR/HER2 downstream signaling pathways and corresponding effective potential clinical drugs. ATA, acetyltanshinone IIA; AE, 
aloe-emodin; SHP-1, src homology 2 (SH2) containing tyrosine phosphatase-1; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α; rVP1, recombinant 
DNA-derived viral capsid protein-1; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; TK, tyrosine kinase; HP, 
hesperetin; NG, naringenin; PI3K, phosphatidylinositol 3-kinase; Ras, ras kinase family; Akt, protein kinase B; RAF, receptor activation factor; TSC2, 
tuberous sclerosis complex 2; MEK, mitogen/extracellular signal-regulated kinase; mTOR, mechanistic target of rapamycin; MAPK, mitogen-activated 
protein kinase; CCND1, cyclin D1; P70-S6K, ribosomal protein S6 kinase beta-1; S6RP, S6- ribosomal protein; HIF-1α, hypoxia inducible factor 1α; YB-1, 
Y-box binding protein 1; RB, retinoblastoma protein.
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to explore a more effective drug for the treatment of HER2+ 
BC (88).

Due to the putative role of EGFR in trastuzumab resistance, 
blocking EGFR and its corresponding downstream signaling 
pathways may produce better prognosis. The src homology 2 
(SH2) containing tyrosine phosphatase-1 (SHP-1) regulated 
the intracellular phosphotyrosine level and was reduced or 
absent in many kinds of cancer cell lines and tissues (89-91). 
Overexpression of wild-type SHP-1 sensitized trastu-
zumab-resistant cells to trastuzumab treatment. Furthermore, 
overexpression of wild‑type SHP‑1 also significantly upregu-
lated apoptosis and decreased EGFR and HER2, as well as 
their phosphorylation levels, in trastuzumab-resistant cells. 
Wild-type SHP-1 could bind to pEGFR and pHER2, and thus 
reduced both pEGFR and pHER2 protein levels. In vivo study 
demonstrated that SHP-1-overexpression mice showed delayed 
tumor progression and growth and achieved a better OS after 
treatment with trastuzumab compared with the control (92).

Fatty acid synthase (FASN) showed activity in promoting 
tumorigenesis by activating HER2/PI3K/AKT/mTOR and 
MAPK signaling pathways (93-95). EGFR and pEGFR 
increased in trastuzumab resistant cells noticeably, which 
was consistent with the study of Wu et al (92). Pertuzumab 
combined with EGCG, a classical FASN inhibitor, was more 
effective than pertuzumab alone against resistant HER2+ 
BC cells and increased the apoptosis of cancer cells in a 
trastuzumab plus lapatinib-resistant HER2+ PDX model 
compared with pertuzumab alone. In vivo study showed that 
dual FASN and HER2 blockade achieved more effective 
tumor reduction compared with EGCG or pertuzumab as 
single agent (50).

Targeted delivery drugs. The occurrence of all tumors is due 
to genetic mutations, so gene therapy is the most effective 
treatment approach for all cancers. Using an effective vector to 
accurately deliver drugs to the tumors is a very valid treatment 
method to stop the tumor progression.

A new delivery platform, which was able to escape from 
lysosomal degradation and distribute symmetrical in the 
cytoplasm, was established to send mature tumor suppressor 
microRNA125a-5p to treat HER2+ MBC. miR125a-5p 
significantly decreased cellular proliferation and migration 
in comparison with control cells, which might have been 
largely caused by knockdown of the HER2 mRNA levels. 
HA-LNP-miR125a-5p reduced the levels of HER2, PI3K, 
pAKT, Ki67 and pERK1/2 by over 30, 35, 40, ~40 and 20%, 
respectively, which indicated that HA-LNP-miR125a-5p 
could treat BC through inhibiting HER2 and its downstream 
signaling pathways (96).

Vaccines that target HER2+ BC may become the best way 
to prevent tumorigenesis. Campbell et al (97) had previously 
shown that the immunostimulatory peptide Hp91 had potent 
immune effects, and subsequently, Hp91 was encapsulated 
inside poly (D,L-lactic-co-glycolic) acid nanoparticles 
(PLGA-NPs) to construct a possible BC vaccine. The new 
vaccine significantly increased DCs when compared to free 
Hp91 in vitro. Furthermore, in vivo study showed that injection 
of the new vaccine noticeably increased HER2‑specific IFN‑γ 
spot-forming cells compared to the control group and the free 
Hp91 group (whether administered at the same concentration 

or higher). Hp91 encapsulated in PLGA-NPs delayed the 
tumor development by approximately three months compared 
to mice that were injected with free Hp91 and delayed the 
tumor development by approximately 5 months compared to 
control mice, and it prolonged the OS. These results proved 
that Hp91 encapsulated inside PLGA-NPs could be developed 
into an effective BC vaccine (97).

Natural anti‑cancer substances. Natural anti-cancer 
substances played an important role in the treatment of BC and 
some new natural anti-cancer substances will play a role in 
the treatment of HER2+ BC. Paclitaxel is the most successful 
natural anti‑cancer drug, which was extracted first from the 
bark and wood of Pacific Yew tree (98). Hesperetin (HP) and 
naringenin (NG) belong to flavonoids, which have shown 
anti-cancer and pro-apoptotic activity (99). An anthraqui-
none compound, aloe-emodin (AE), effectively suppressed 
HER2 expression and cell proliferation in a dose-dependent 
manner consistent with promotion of apoptosis and G1 cell 
cycle arrest in HER2+ BC cells. Twist and Y-box binding 
protein 1 (YB-1) have been investigated for promoting cell 
proliferation, tumor metastasis, invasion, angiogenesis and 
anticancer-drug resistance (100,101). In vitro study showed 
that AE observably inhibited cancer cell migration and 
invasion rates through promoting E-cadherin levels, which 
restored the epithelial cell adhesion, and inhibiting factors, 
which activated cancer cell metastasis. These results had 
important clinical significance and were confirmed by 
in vivo study in a SkBr3 cell xenograft model (102). Irisin is 
newly discovered, secreted from muscle tissue and adipose 
tissue, and recognized as an adipokine, which has been 
proven to participate in breast carcinogenesis (103,104). 
Irisin or its structural analogues may become new thera-
peutic drugs (105). Several studies have investigated the 
use of apigenin decreasing the risk of a variety of cancers, 
including BC (106-108). NAX014, a derivative of berberine 
(BBR), was effective in inhibiting a variety of cancer 
cells (109,110) tended to reduce HER2 expression in tumor 
tissues (111). Acetyl tanshinone IIA (ATA), a tanshinone IIA 
derivative (112), had shown activity against BC (113). In vivo 
study showed that injection of ATA reduced tumor volume 
and tumor weight remarkably (112).

Immune factors. IFN-γ and TNF-α had shown antitumor 
effects (114). This study emphasized the exciting roles of 
TNF-α and IFN-γ in treating HER2+ BC. No HER2+ BC cell 
increase due to induction of cell apoptosis was observed in the 
dual cytokine-treated group in comparison with the untreated 
or single cytokine-treated group. To investigate the mechanism 
of whether TNF-α and IFN-γ induced cell apoptosis, they 
treated TUBO and 4T1 cells with either dual Th1 cytokines, 
actinomycin D (positive control), or no treatment (negative 
control). They found that dual TNF-α and IFN-γ treatment 
decreased pro‑caspase‑3 levels significantly, corresponding 
with marked increase in activated caspase-3 levels. Treatment 
of Th1 cytokines and selective caspase-3 agonist (PAC-1) 
induced HER2 loss observably and showed a strong correla-
tion with cancer cell apoptosis. Interestingly, downregulated 
HER2 expression could be eliminated by caspase-3/7 inhibitor 
in TUBO cells (115).
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Anti-ErbB2 mAb therapy failed to reduce tumor growth in 
IL21R-/- mice; however, anti-ErbB2 mAb therapy succeeded in 
WT mice, which indicated that the IL21 signaling pathway had 
a strong correlation with trastuzumab resistance. Furthermore, 
IL21R expressed by CD8+ T-cells was required for mice that 
transferred with WT CD8+ T-cells to achieve anti-ErbB2 mAb 
therapy success, compared with the mice treated with IL21R-/- 
CD8+ T-cells. Recombinant IL21 combined with anti-ErbB2 
mAb therapy significantly inhibited tumor growth and showed 
activity in lowering metastatic tumors (116).

Anticancer active substances. Recombinant DNA-derived 
viral capsid protein-1 (rVP1) has been proven to induce 
apoptosis and suppress invasion in several cancers. They 
investigated that both in vivo and in vitro rVP1 treatment 
significantly inhibited cancer cell metastasis and inva-
sion, consistent with increased E-cadherin and decreased 
a-vimentin levels in vitro. Furthermore, the mRNA and 
protein expression of HER2 were inhibited by rVP1 in a 
dose-dependent manner (117).

Valproic acid (VPA) showed activity in cell apoptosis (118) 
and controversial effects in inhibiting BC cells (119,120). 
During HER2-overexpression in SKBR3 BC cells, cell 
growth was inhibited by VPA in a dose- and time-dependent 
manner consistent with observably increased p21 WAF1 
expression, which could inhibit tumor cell differentiation and 
growth (121,122). Cleaved caspase-3 levels were upregulated 
by ~2-fold after the treatment with VPA, corresponding with 
a higher number of TUNEL positive cells in the SKBR3 cell 
line compared with the control group (123).

EZN4150, an antisense oligonucleotide, is an inhibitor 
of the PIK3CA gene that encodes the p110α type I PI3K 
catalytic subunit. EZN4150 combined with lapatinib or 
BKM120 (a type I PI3K inhibitor) decreased pAkt and 
increased cleaved caspase-3 levels, achieving a greater effect 
in combination than either compound alone. Autophagy is a 
process that could inhibit tumor initiation but support tumor 
progression (124,125). The role of autophagy in promoting 
cell survival was blocked by EZN4150 instead of BKM120 
in a p110α-independent manner, which might be mediated by 
Vps34 ablation, as EZN4150 downregulated both p110α and 
Vps34 expression. The combined knockdown of p110α and 
Vps34 significantly decreased cell numbers, increased the level 
of cleaved caspase-3 and increased lapatinib-mediated growth 
inhibition in BT474 and SKBR3 cell lines. Although both 
lapatinib and BYL719 (a p110α‑specific PI3K inhibitor (126) 
treatment robustly induced caspase 3/7 activity, SAR405, an 
inhibitor of Vps34, more significantly increased caspase 3/7 
activity than lapatinib, BYL719 or their combination. These 
results established Vps34 as a new therapeutic target, and 
EZN4150 was able to improve clinical prognosis by increasing 
tumor cell killing (127).

PD‑1 and PD‑L1 agents. Programmed death ligand 1 (PD-L1) 
is the ligand of programmed death 1 (PD-1). Anti-PD-1/PD-L1 
therapy is a novel immune-checkpoint inhibition therapy 
and anti-PD-1/PD-L1 agents, such as nivolumab, pembroli-
zumab, atezolizumab, durvalumab and avelumab have been 
widely applied to treat various types of cancer (128-130). 
Anti-PD-1/PD-L1 agents have shown antitumor activity in 

BC, especially in the triple-negative subtypes of breast cancer 
(TNBC) (131,132). But PD-L1 expression is associated with 
HER2+ status and there is an independent poor prognostic 
impact of PD-L1 in HER2+ BCs (132-134). In a phase 1b trial 
which 168 patients with MBC received avelumab, avelumab 
showed an acceptable clinical activity (135). Currently, 
many clinical trials in HER2+ cohort are ongoing, such as 
NCT02648477 and NCT02129556 for pembrolizumab, 
NCT02605915 for atezolizumab and NCT02649686 for 
durvalumab (131). Anti‑PD‑1/PD‑L1 agents will benefit the 
patients with HER2+ BC in the future.

5. Conclusions

The advent of targeted therapy drugs is a revolutionary 
breakthrough in the history of BC treatment. Trastuzumab is 
the first‑generation targeted therapy drug and has been used 
widely to treat HER2+ BC. Due to the resistance to trastu-
zumab and severe side effects, second-generation targeted 
therapy drugs have been successfully developed and applied 
for clinical treatment, such as pertuzumab, T-DM1 and lapa-
tinib. Although all of them achieved efficacy in the treatment 
of HER2+ BC, quite a number of patients did not benefit on 
account of inherent insensitivity, acquired resistance, or 
potential side effects. How should we treat this subgroup 
of HER2+ BC patients? Elucidating the mechanism of drug 
resistance and seeking effective drugs to overcome this hurdle 
may benefit these patients. In addition, new drugs should be 
developed for clinical application, and many researchers are 
actively working in this direction, with particular focus on 
natural anti-cancer substances and accurate delivery drugs 
that were identified for putative ability to treat HER2+ BC. 
Moreover, these new drugs may also strengthen the effect of 
targeted therapy drugs in treating HER2+ BC patients who 
are inherently sensitive to targeted therapy drugs. Based on 
this review, further investigations are needed to strengthen 
these findings and identify drugs that can overcome targeted 
therapy drug-resistance or natural anti-cancer substances that 
are effective in treating HER2+ BC.
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