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Abstract. The loss of insulin secretion in type I diabetes 
mellitus (T1DM) is caused by autoimmune‑mediated destruc-
tion of insulin‑producing pancreatic β‑cells. Inflammatory 
cytokines and immune cell infiltration activate oxidative and 
endoplasmic reticulum (ER) stress, resulting in reduced β‑cell 
viability. The current pharmacological agents used to control 
blood glucose have a limited effective duration and are accom-
panied by strong side effects. Blocking the inflammatory and 
immune responses that cause the β‑cell damage has been inves-
tigated as a novel therapeutic approach to control T1DM. Icariin 
is a flavonoid component of Chinese medicinal herbs that has 
anti‑inflammatory effects in vitro and in vivo. The results of the 
present study revealed that icariin abrogates the pro‑apoptotic 
effect of inflammatory cytokines and significantly suppresses 
the activation of nuclear factor (NF)‑κB in rat pancreatic β‑cell 
lines. The present study may provide a basis for the potential 
use of icariin as a therapeutic agent for T1DM.

Introduction

The incidence of diabetes mellitus (DM), a complex meta-
bolic disorder associated with defective insulin secretion 
and activity, has been increasing worldwide over the past 
20 years (1,2). According to the World Health Organization 
estimation, ~7% of the world's adult population is diabetic and 

the diabetic population is likely to increase to ≥300 million 
by the year 2025 (3). Type 1 DM (T1DM) is an organ‑specific 
autoimmune disease associated with failure to distinguish 
self‑ from non‑self‑antigens (4). It is caused by T cell‑mediated 
destruction of insulin‑producing pancreatic β‑cells (4). The 
incidence of T1DM is increasing steadily by 3% annually and 
has a concordance rate of 40‑60% for monozygotic twins (4). 
As such, environmental and genetic factors may contribute to 
disease onset (5‑7). Currently, insulin therapy is the primary 
treatment for T1DM. However, tight glycemic control is diffi-
cult to achieve in a number of patients, leading to long‑term 
vascular damage associated with kidney failure, heart disease, 
retinopathy and neuropathy (8). Recent advances in pancreatic 
islet transplantation and partial or whole pancreas transplan-
tation represent alternate treatment options for T1DM (9). 
However, due to the limited number of organs available for 
transplant, this approach is not widely used (9). Since β‑cell 
damage is crucial to the development of T1DM, treatments 
that are able to prevent β‑cell damage may slow disease 
progression.

Pancreatic β‑cell damage is known to be mediated by the 
immune response (10‑12). Previous studies have suggested 
that inflammatory cytokines and immune cell infiltration 
activate oxidative and endoplasmic reticulum (ER) stress and 
damage β‑cell viability (10‑16). In the early stages of disease, 
the infiltration of inflammatory cells promotes the release of 
cytokines, including interleukin‑1β (IL‑1β), tumor necrosis 
factor‑α (TNF‑α) and interferon‑γ (IFN‑γ) (15‑16). IL‑1β, 
alone or in combination with TNF‑α or IFN‑γ, upregulates 
the expression of inducible nitric oxide synthase (iNOS) and 
promotes the generation of nitric oxide (NO) in pancreatic 
islets (17,18). Excessive NO production leads to dysfunctions 
of mitochondrial metabolism, protein modification and DNA 
cleavage, which may contribute to the impairment of insulin 
secretion and triggering β‑cell death (19).

Considering the inflammatory nature of T1DM, it is 
plausible that anti‑inflammatory agents may have potential 
as anti‑DM drugs. Icariin is a naturally occurring flavonoid 
isolated from traditional Chinese medicinal herbs of the 
Epimedium genus (20). The compound has been revealed to 
have anti‑inflammatory, antidepressant, male reproductive, anti-
neoplastic, bone‑healing and neuroprotective effects (20). Early 
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in vivo and in vitro studies revealed that icariin acts as a natural 
anti‑inflammatory drug via multiple mechanisms targeting 
pro‑inflammatory cytokines (TNF‑α and IL‑6), inflamma-
tory mediators (NO) and adhesion molecules (CD11b) (21,22). 
Xu et al (23) reported that icariin activates the phosphoinositide 
3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway to 
ameliorate lipopolysaccharide (LPS)‑induced acute inflamma-
tory responses. The known anti‑inflammatory effects of icariin 
suggest that it may inhibit inflammation‑induced β‑cell death. 
The aim of the present study was to use rat pancreatic β‑cell 
lines as an in vitro model to investigate the role of icariin. The 
results suggest that icariin inhibits cytokine‑induced NF‑κB 
activation and prevents β‑cell death.

Materials and methods

Cell culture. Rat pancreatic β‑cell RINm5F cells were obtained 
from ATCC (Manassas, VA, USA). Cells were cultured in 
RPMI‑1640 medium (Hyclone; GE Healthcare Life Sciences, 
Logan, UT, USA) with 10% (v/v) heat‑inactivated fetal bovine 
serum (FBS; Gibco; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), 2  mM glutamine (Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany), 1% non‑essential amino acids 
(Sigma‑Aldrich; Merck KGaA), 100 U/ml streptomycin and 
100 U/ml penicillin (Sigma‑Aldrich; Merck KGaA) at 37˚C in 
an atmosphere containing 5% CO2. Icariin was purchased from 
Sigma‑Aldrich (Merck KGaA). Rat IL‑1β and IFN‑γ proteins 
were obtained from R&D Systems (Minneapolis, MN, USA).

MTT assay. MTT (Sigma‑Aldrich; Merck KGaA) was used 
to determine cell viability according to the manufacturer's 
protocols. Briefly, 5 ml MTT solvent (Beyotime Institute of 
Biotechnology, Haimen, China) was used to dissolve 25 mg 
MTT to form an MTT solution at 5 mg/ml. A total of 10 µ1 
MTT solution was added to each well and incubated for 4 h 
at 37˚C in an incubator. Subsequently, 100 µl formazan solu-
tion (Beyotime Institute of Biotechnology) was added for 4 h 
at 37˚C. The optical density of viable cells was measured 
using a microplate reader (BMG Labtech GmbH, Ortenburg, 
Germany) at a wavelength of 570 nm.

NO measurement. Biologically synthesized NO is quickly 
oxidized to form nitrite and nitrate in aqueous solutions (19). 
Therefore, detecting the nitrite concentration in cell‑free 
culture supernatants using a colorimetric assay may be 
indicative of NO generation. In brief, RINm5F cells (5x106) 
or 30 islets were treated with the 5 or 10 µM concentrations 
of icariin for 3 h, prior to being treated with IL‑1β (1 U/ml) 
and IFN‑γ (100 U/ml) for 24 h. Subsequently, 100 µl aliquots 
of culture supernatant were incubated at room temperature for 
5 min with 100 µl modified Griess reagent in a 1:1 mixture of 
1% sulfanilamide in 30% acetic acid and 0.1% N‑(1‑naphthyl) 
ethylenediamine dihydrochloride in 60% acetic acid (Beyotime 
Institute of Biotechnology). The absorbance was measured 
at 540 nm. The NO concentration was calculated from the 
linear standard curve of serial dilutions of sodium nitrite in a 
working medium.

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted from cultured 

cells using TRIzol reagent (Thermo Fisher Scientific, Inc.). 
The primer for iNOS was synthesized based on the following 
previously published sequences (24): Forward, 5'‑GAA​TCT​
TGG​AGC​GAG​TTG​TGG‑3' and reverse,  5'‑AGGA​AGT​
AGG​TGA​GGG​CTT​GG‑3'. First‑strand cDNA was obtained 
using Super M‑MLV Reverse transcriptase (BioTeke 
Corporation, Beijing, China). Reverse transcription was 
performed at 42˚C for 15 min and 72˚C for 2 min according 
to the manufacturer's protocols. PCR was performed using 
SYBR‑Green master mix (Beijing Solarbio Science & 
Technology Co., Ltd., Beijing, China). The following ther-
mocycling conditions were used: Predenaturation at 95˚C 
for 30 sec followed by 40 cycles of amplification at 95˚C 
for 5 sec and annealing and extension at 60˚C for 30 sec. 
GADPH was used to normalize iNOS mRNA expression. 
GAPDH forward, 5'‑GAT​GAC​CTT​GCC​CAC​AGC​CT‑3' and 
reverse,  5'‑ATC​TCT​GCC​CCC​TCT​GCT​GA‑3'. The 2‑∆∆Cq 
method was used to quantify data (24). ABI Prism 7000 soft-
ware (Applied Biosystems; Thermo Fisher Scientific, Inc.) was 
used to analyze data.

Western blotting. Following treatment, proteins were 
extracted from RINm5F cells using a Nuclear and 
Cytoplasmic Protein Extraction kit (cat. no. P0027; Beyotime 
Institute of Biotechnology). Protein concentrations were 
determined using an Enhanced BCA Protein Assay kit (cat. 
no. P0010S; Beyotime Institute of Biotechnology). A total of 
20 µg/lane was separated by 12% SDS‑PAGE and transferred 
to polyvinylidene difluoride membranes (EMD Millipore, 
Billerica, MA, USA). The membranes were blocked using 
Blocking Buffer (cat. no.  P0023B; Beyotime Institute of 
Biotechnology) for 2 h at room temperature. Proteins were 
probed using specific primary antibodies at 4˚C overnight, 
followed by incubation with secondary antibodies at room 
temperature for 1 h. Specific primary antibodies against 
pro‑caspase‑3 (ab44976; 1:500), cleaved caspase‑3 (ab13847; 
1:500) and cleaved poly ADP‑ribose polymerase (PARP; 
ab32064; 1:2,000) were purchased from Abcam (Cambridge, 
UK). Secondary antibodies against β‑actin (ab8227; 1:2,000) 
and Larmin A (ab26300; 1:1,000) used in this study were 
horseradish peroxidase (HRP) conjugated goat anti‑rabbit 
IgG or anti‑mouse IgG‑HRP (Beyotime Institute of 
Biotechnology). β‑actin and Larmin A were used as internal 
controls to normalize results. Signals were monitored using 
a chemiluminescent substrate (KPL, Inc., Gaithersburg, 
MD, USA). Following electrophoresis, gray values were 
analyzed using Quantity One v4.4.0.36 software (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA).

Caspase‑3 activity. The activity of caspase‑3 was conducted 
using a commercial ELISA kit (cat. no. HC079; Shanghai 
Gefan Biotechnology Co., Ltd., Shanghai, China) according to 
the manufacturer's protocols. In brief, cells (1x106) were resus-
pended in 50 µl lysis buffer (Shanghai Gefan Biotechnology 
Co., Ltd.) and incubated for 1 h in an ice bath. The supernatant 
was collected following centrifugation for 10 min at 800 x g 
at room temperature, following which a colorimetric reagent 
was added and incubated for 4 h at 37˚C. The colorimetric 
product was monitored using an ELISA reader at a wavelength 
of 405 nm.
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Apoptosis detection using f low cytometry. A total of 
1x106 cells were washed with PBS and resuspended in binding 
buffer containing Annexin V‑APC and propidium iodide, and 
incubated at 20‑25˚C for 10‑20 min (Beyotime Institute of 
Biotechnology). The samples were analyzed using a FACScan 
flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). 
The percentage of apoptotic cells in a 10,000‑cell cohort was 
determined using flow cytometry.

NF‑κB P65 activity. Following treatment, nuclear extracts 
were isolated using the Nuclear Extract kit according to the 
manufacturer's protocols (Active Motif, Carlsbad, CA, USA; 
cat. no. 40010). The activity of NF‑κB p65 was assessed using 
an ELISA kit (cat. no. 40596; Active Motif).

Statist ical analysis. Values are presented as the 
mean ± standard deviation. Statistical comparisons between 
cell lines were performed using one‑way analysis of variance, 
followed by Dunnett's t‑test. GraphPad Prism 7.03 software 
(GraphPad Software Inc., La Jolla, CA, USA) was used to 
analyze experimental data and a P<0.05 was considered to 
indicate a statistically significant difference.

Results

Icariin prevents cytokine‑induced loss of cell viability. To 
assess the therapeutic potential of icariin in rat pancreatic 
β cells, the viability of cultured RINm5F cells was initially 
examined. As presented in Fig. 1, treatment with icariin up 
to 10 µM did not result in a significant loss of cell viability. 
Next, whether icariin protected RINm5F cells from cyto-
kine toxicity was investigated. Treatment with cytokines 
IL‑1β and IFN‑γ significantly reduced the cell viability 
to 49.9±5.2% of the control value  (Fig. 1). Pretreatment 
with icariin significantly abrogated the cytotoxic effects of 
cytokines on RINm5F cells in a concentration‑dependent 
manner.

Icariin prevents cytokine‑induced NO production. NO 
production was significantly increased following 24  h 

treatment with cytokines  (Fig.  2A). However, the cyto-
kine‑induced NO production was effectively inhibited by 
treatment with 10 µM icariin (Fig. 2A). To investigate the 
underlying mechanisms responsible for the effects of icariin, 
RT‑qPCR and western blotting were performed to measure 
the expression of iNOS at the mRNA and protein level, 
respectively. Treatment with IL‑1β and IFN‑γ significantly 
increased the expression of iNOS, while icariin treatment 
significantly ameliorated this increase at the mRNA and 
protein level (Fig. 2).

Icariin prevents cytokine‑induced apoptosis. Cytokines 
are able to promote β‑cell death through apoptosis and 
necrosis (25). Caspase‑3 serves a pivotal role in the apoptotic 
signaling pathway, and so the activation status of caspase‑3 
was assessed in the present study. Treatment with IL‑1β and 
IFN‑γ increased the activity of caspase‑3 and cell apoptosis 
in RINm5F cells, while icariin effectively reversed these 
effects (Fig. 3). The activation of apoptotic signaling was also 
confirmed by western blotting (Fig. 3B). Cleaved caspase‑3 is 
the main marker of cell apoptosis (26), and so its expression 
was assessed. As presented in Fig. 3B, IL‑1β and IFN‑γ were 
able to activate caspase‑3 and increase the cleavage of PARP 
in RINm5F cells, while treatment with icariin reduced cleaved 
caspase‑3 and cleaved PARP levels in cytokine‑stimulated 
cells.

Icariin suppresses the cytokine‑induced activation of NF‑κB. 
NF‑κB is a key transcription factor that induces iNOS and 
regulates subsequent NO production (27). The results of a 
previous study by our group demonstrated that NF‑κB was 
activated by cytokines or oxidative stress (28). Based on this, it 
was investigated whether icariin affects the cytokine‑induced 
activation and translocation of NF‑κB from the cytosol to 
the nucleus in RINm5F cells. NF‑κB and the nuclear trans-
location of p65, a key subunit of the NF‑κB complex, were 
significantly promoted by treatment with IL‑1β and IFN‑γ 
compared with the control (Fig.  4). In contrast, icariin 
pretreatment markedly suppressed the cytokine‑stimulated 
activation and nuclear translocation of NF‑κB. In summary, 
these data suggest that icariin may downregulate iNOS 
expression via inhibiting the cytokine‑stimulated activation 
of NF‑κB.

Discussion

Icariin is a biologically active flavonoid with a favorable 
therapeutic profile in metabolic syndrome (29,30). Notably, 
icariin has been reported to ameliorate streptozocin‑induced 
rat diabetic retinopathy and nephropathy (31,32). A previous 
study demonstrated that icariin could serve as a peroxisome 
proliferator‑activated receptor  α agonist, which activates 
gene expression associated with lipid metabolism in the 
liver to contribute towards diabetes management (33). In the 
present study, it was revealed that icariin is able to prevent 
cytokine‑induced β‑cell death, which is an important cause of 
T1DM.

Inflammation is the primary cause of T1DM as well as 
a direct cause of a number of diabetic complications (34). 
An acute, intense inflammatory response triggers T1DM 

Figure 1. Icariin prevents cytokine‑induced cell death in RINm5F cells. 
RINm5F cells were treated with icariin at 5 or 10 µM with or without IL‑1β 
and IFN‑γ stimulation and cell viability was assessed using an MTT assay. 
*P<0.05 vs. control and #P<0.05 vs. IL‑1β+IFN‑γ. IL, interleukin; IFN, 
interferon.
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through lymphocyte‑mediated destruction of pancreatic 
β cells. A chronic state of low‑grade inflammation persists 
within in the body, which is periodically exacerbated by 

hyperglycemic fluctuations  (34‑35). Increased inflamma-
tion markers  (35), immune activation  (36) and oxidative 
stress have been recorded in patients with T1DM (37,38). 

Figure 2. Icariin prevents cytokine‑induced NO production in RINm5F cells. RINm5F cells were treated with 5 or 10 µM icariin with or without IL‑1β and 
IFN‑γ stimulation. (A) NO production and (B) iNOS levels were detected using a colorimetric assay, reverse transcription‑quantitative polymerase chain 
reaction and western blotting, respectively. *P<0.05 vs. control and #P<0.05 vs. IL‑1β+IFN‑γ. NO, nitric oxide; IL, interleukin; IFN, interferon; iNOS, inducible 
nitric oxide synthase.

Figure 3. Icariin inhibits cytokine‑induced caspase‑3 activation and PARP cleavage as well as cell apoptosis in RINm5F cells. RINm5F cells were treated with 
icariin at 5 or 10 µM with or without IL‑1β and IFN‑γ stimulation. Subsequently, caspase‑3 activation and PARP cleavage were determined using (A) ELISA 
and (B) western blotting assays. (C) Cell apoptosis was detected using flow cytometry with Annexin V‑Allophycocyanin and propidium iodide staining. 
*P<0.05 vs. control, #P<0.05 vs. IL‑1β+IFN‑γ. PARP, poly ADP‑ribose polymerase; IL, interleukin; IFN, interferon.
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It has therefore been hypothesized that anti‑inflammatory 
agents may be an effective clinical treatment for patients 
with T1DM. A number of in vivo and in vitro studies have 
confirmed the anti‑inflammatory effect of icariin, including 
in the brain, heart, bones and airways (22,23,39‑50). The 
present study demonstrated that icariin prevents viability 
loss in rat pancreatic β cells, as well as suppressing 
cytokine‑induced NO production and apoptosis activation. 
These results suggest that icariin may interfere with the 
inflammatory response and resulting pancreatic β cell death 
during T1DM.

Furthermore, a key factor in cytokine‑induced pancreatic 
β‑cell damage is NF‑κB. In vivo studies of transgenic mice 
revealed that NF‑κB inhibition is a protective mechanism 
against cytokine‑induced apoptosis in pancreatic β‑cells (28). 
In addition, the use of A20‑overexpressing islets to abrogate 
NF‑κB signaling during islet transplantation reduces the 
number of islets required to achieve euglycemia in diabetic 
recipients (51). Therefore, suppression of the NF‑κB pathway 
may also be a novel strategy for delaying the progression 
of T1DM. The regulatory role of icariin on NF‑κB has 
been reported, however it may vary between different cell 
types  (20). Xu and Huang  (52) demonstrated that icariin 
could increase the expression of endothelial NOS in human 
endothelial cells, which was implicated in the activation 
of NF‑κB (53). In contrast, icariin was able to abrogate the 
effects of LPS on neuroinflammation, lung inflammation, 
osteoclast differentiation and bone resorption via decreasing 
NF‑κB activity (23,49,54,55). It has also been reported that 
icariin inhibits NF‑κB activity in a wide range of cancerous 
cells (56‑59). The results of the present study demonstrated 
that icariin suppresses the cytokine‑induced activation of 
NF‑κB in rat pancreatic β cells. It is likely that icariin exerts 
cell‑specific regulatory effects and only suppresses high 
levels of NF‑κB activity in tumor cells or cells stimulated by 
inflammatory cytokines.

The results of the present study demonstrate that icariin 
abrogates the pro‑apoptotic effect of cytokines and signifi-
cantly suppresses NF‑κB activation in rat pancreatic β‑cells. 
Despite being used extensively as a model for the human 
pancreas, the physiology of rat pancreatic β cells does not 

perfectly mimic that of primary cells  (60). The RINm5F 
cells used in the present study have limitations in terms of 
glucose sensitivity, transport and phosphorylation (60,61). 
Therefore, experiments utilizing human pancreatic cells 
and in  vivo analysis are required to confirm these find-
ings. Nevertheless, the results of the present study suggest 
that icariin may have potential as a therapeutic agent against 
T1DM.
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