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Abstract. Enterotoxigenic Escherichia coli (ETEC)-induced 
diarrhea is a devastating disease and one of the third leading 
causes of infectious disease-associated mortalities worldwide. 
Despite recent advances in the identification of the association 
between gut microbiota and diarrhea, a lack of understanding 
exists on the status of gut microbiota in rats treated with 
ETEC. In the present study, a rat model of Escherichia (E.) coli 
O101-induced diarrhea was established. The diarrhea incidence 
and index, as well as histological changes, were assessed. In 
addition, Illumina MiSeq sequencing of V3-V4 hypervariable 
regions of 16S ribosomal RNA was employed to investigate 
the changes in the gut microbiota profiles in the feces of the 
diarrhea rats. The results indicated that E. coli O101 increased 
the diarrhea index and injury in the intestinal tissues, whereas 
it decreased the bacterial richness and shifted the distribution 
pattern of the bacterial communities in the phylum, order 
and genus levels in the fecal samples. Notably, the propor-
tion of bacteria Prevotella, Enterococcus and Akkermansia 
was significantly decreased, while the pathogenic bacteria 
Escherichia/Shigella were significantly increased in diarrhea 
rats. Taken together, the gut microbiota is closely associated 
with E. coli O101-induced diarrhea in lower microbial diversity 
and dysbiosis of gut microbiota at different taxonomical levels.

Introduction

Diarrhea is a common clinical symptom and is the third leading 
cause of infectious disease-associated mortalities worldwide, 
mainly affecting children (1). Approximately 1.87 million 
children succumb to diarrhea annually worldwide (2), and 
children with an age of <5 years in developing countries are 
reported to experience an average of three diarrheal episodes 
per year (3). The most common cause of diarrhea is an infec-
tion of the gastrointestinal tract due to viruses (4), bacteria (5), 
or parasites (6). Enterotoxigenic Escherichia coli (ETEC) is 
considered to be the most common cause of bacterial diarrhea, 
also known as traveler's diarrhea (7). The major serotypes 
of ETEC are O6, O27, O148, O159, O149 and O101 (8,9). O101 is 
commonly associated with diarrhea and poses a significant 
threat worldwide (10). Thus, the present study attempted to 
establish a rat model of Escherichia (E.) coli O101-induced 
diarrhea.

Gut microbiota, the complex microbial communities 
harbored in the digestive tracts of animals, serve a major role 
in the host's metabolism (11,12), nutrient absorption or produc-
tion (13), and immune system (14), greatly contributing to the 
overall health status of the host (15,16). Accumulating evidence 
indicated that gut microbiota is closely associated with the 
incurrence and development of a variety of diseases, including 
obesity (17,18), diabetes (19) and diarrhea (20). Previous studies 
have suggested that diarrhea can cause changes in intestinal 
microbiota (21,22), and altered intestinal microbial composi-
tion and function may result in an increased risk of bacterial 
diarrhea (20). However, the specific changes in intestinal 
microbiota in individuals suffering from E. coli-associated 
diarrhea are poorly understood. Therefore, it would be of great 
interest to identify the systemic microbiome alterations and 
the specific microorganisms involved in E. coli-associated 
diarrhea.

The next-generation sequencing technique facilitates 
the investigation of the taxonomic composition of intestinal 
microbiota and provides a new perspective for studying 
E. coli-induced diarrhea (23). In the present study, the effects 
of E. coli O101 on the intestinal tissues of rats were investigated, 
the fecal microbiota from diarrhea rats was compared with 
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that in the control rats, and the characteristic bacterial diver-
sity and compositions were identified. In addition, the current 
study provided an insight into the pathology of E. coli O101 and 
provided evidence for identifying bacteria for the diagnosis 
and treatment of diarrhea.

Materials and methods

Animals and ethics statement. Specific pathogen‑free male 
Sprague-Dawley rats (n=22; 190-210 g; 6 weeks old) were 
obtained from Vital River Laboratory Animal Technology 
Co., Ltd. (Beijing, China). The animals were maintained at a 
temperature of 22˚C and a 12‑h light/dark cycle environment 
for at least one week prior to use in the experiments. The 
animals were fed the same batch of standard laboratory diet to 
minimize the variation of environmental factors. The present 
study was approved by the Institutional Animal Care and Use 
Committee of the Academy of Military Medical Sciences 
(Beijing, China). All animal care and experimental procedures 
were conducted according to the Chinese Laboratory Animals' 
Welfare and Ethics guidelines (24).

E. coli O101 treatment. The E. coli O101 strain was purchased 
from the China Institute of Veterinary Drug Control (Beijing, 
China) and used to establish a diarrhea model in the rats. A 
total of 22 rats were divided into two groups, including the 
diarrhea (n=11) and control (n=11) groups. The diarrhea 
group received intraperitoneal (ip) injections with E. coli O101 
(1x1011 colony-forming units/kg) for three consecutive days. 
The normal group received ip injection with an equivalent 
volume of sterile physiological saline for three consecutive 
days. The animals were sacrifices after 3 days.

Fecal sample collection. The fecal score was recorded two 
times per day using a four-grade system, with a score of 0 indi-
cating firm, dry and normal consistency of feces, 1 indicating 
pasty feces, 2 indicating thick and fluid feces, and 3 indicating 
watery feces (25). Diarrhea was defined as the daily sum score 
of ≥2. The diarrhea incidence and diarrhea index (diarrhea 
index=rate of loose stools per day * the degree of diarrhea) 
were used to assess the establishment of an E. coli O101-induced 
diarrhea rat model (26). Fresh fecal samples of rats were 
collected individually on the third day, immediately frozen in 
liquid nitrogen and stored at ‑80˚C for further analysis.

Histopathological analysis. Partial intestinal tissues were 
dissected, fixed in 4% paraformaldehyde for 24 h, dehydrated 
and embedded in paraffin. Next, 4‑µm sections were cut and 
stained with hematoxylin and eosin. Histopathological changes 
were observed and scored under an Olympus microscope 
(Olympus Corporation, Tokyo, Japan). The criteria for grading 
the intestinal histopathological changes were as follows (27): 
Score 0, no evident pathological changes; score 1-3, mild 
injury characterized by slight edema and a decrease in the 
number of mucous epithelial cells; score 4-5, moderate injury 
characterized by inflammatory cell infiltration, congestion, cell 
apoptosis and necrosis; score 6-10, severe injury characterized 
by massive inflammatory cell infiltration, severe hemorrhage 
and congestion, evident edema, coagulation necrosis and focal 
necrosis.

DNA extraction and pyrosequencing. Microbial DNA was 
extracted from fecal samples using the E.Z.N.A.® Soil DNA 
kit (Omega Bio-tek, Inc., Norcross, GA, USA) according to 
the manufacturer's protocol. The V3-V4 region of the bacterial 
16S ribosomal RNA (rRNA) was amplified by polymerase 
chain reaction (PCR), conducted under the following condi-
tions: 95˚C for 3 min, followed by 25 cycles at 95˚C for 30 sec, 
55˚C for 30 sec and 72˚C for 45 sec, a final extension at 72˚C 
for 10 min, and maintained at 10˚C. The primers used in PCR 
were as follows: 338F, 5'-ACT CCT ACG GGA GGC AGC AG-3', 
and 806R, 5'-GGA CTA CHV GGG TWT CTA AT-3'. The PCR 
reactions were performed in triplicate in a mixture with a total 
volume of 20 µl, which contained 0.4 µl FastPfu Polymerase, 
4 µl 5X FastPfu buffer (both Beijing Transgen Biotech Co., 
Ltd., Beijing, China), 2 µl of 2.5 mM dNTPs (Vazyme, 
Piscataway, NJ, USA), 0.8 µl of each primer (5 µM) and 10 ng 
template DNA. PCR products were purified on agarose gels 
using an AxyPrep DNA Gel Extraction kit (Axygen; Corning 
Incorporated, Corning, NY, USA) according to the manufac-
turer's protocol. Equimolar concentrations of purified PCR 
products were pooled and paired-end sequenced (2x300 bp) 
on an Illumina MiSeq platform (Illumina, Inc., San Diego, 
CA, USA) according to the manufacturer's recommendations.

Sequencing analysis. Raw Fastq files were demultiplexed 
and quality‑filtered using the QIIME bioinformatics pipeline 
(version 1.17; http://qiime.org/). The criteria used were as 
follows: i) 300 bp reads were truncated at any site receiving 
an average quality score of <20 over a 50 bp sliding window, 
discarding any truncated reads that were <50 bp; ii) exact 
barcode matching, mismatch of 2 nucleotides in primer 
matching and reads containing ambiguous characters were 
removed; and iii) only sequences that overlapped by >10 bp 
were assembled according to their overlap sequence. Reads 
were discarded if they could not be assembled.

Bioinformatics analysis. The operational taxonomic unit 
(OTU) is a classified operation unit that is set up for a 
specific unit (such as strain, species, genus and grouping) 
for the convenience of analysis in phylogenetic or population 
genetics research (28). In the analysis of microbial diver-
sity, OTU is divided for all sequences based on different 
similarity levels (29). Thus, an OTU is defined by a simi-
larity of >97% (taxonomic rank) between sequences, and 
each OTU represents a species (30). In the present study, 
the OTUs were clustered with a similarity cutoff value of 
97% using UPARSE software (version 7.1; http://drive5.
com/uparse/) with a novel ‘greedy’ algorithm that performs 
chimera filtering and OTU clustering simultaneously, 
as previously described (31). The taxonomy of each 16S 
rRNA gene sequence was analyzed using the Ribosomal 
Database Program (RDP) classifier (http://rdp.cme.msu.
edu/) against the SILVA (SSU 115) 16S rRNA database 
(https://www.arb-silva.de/), with a confidence threshold of 
70%. Subsequently, the sequences were classified taxonomi-
cally to different levels (including phylum, class, order, family, 
genus and species) using the RDP classifier. The α-diversity 
indices, including Ace, Chao1, Shannon and Simpson, were 
then calculated using QIIME from rarefied samples for 
richness and diversity indices of the bacterial community. 
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OTUs that reached 97% similarity were used for diversity 
(Shannon and Simpson), richness (Chao1 and Ace), Good's 
coverage, rarefaction curve and Shannon-Wiener curve 
analyses (32). The community structure was compared using 
principal component analysis (PCA) based on the weighted 
UniFrac distance. A hierarchical cluster, rank-abundance 
and heatmap were constructed and analyzed using R soft-
ware package (http://www.r-project.org) (33).

Statist ical analysis. Data are represented as the 
mean ± standard deviation. Statistical analyses were 
performed with Student's t-test using GraphPad Prism software 
(version 6.0; GraphPad Software Inc., La Jolla, CA, USA). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Following an intraperitoneal injection of E. coli O101, the 
histopathological changes in the intestinal tissues of the 

rats that received bacteria injection were investigated. The 
intestinal tissues of healthy rats exhibited a normal mucosal 
structure and intact epithelium (Fig. 1A). By contrast, the 
jejunal tissues obtained from rats injected with E. coli O101 
demonstrated congestion and inflammatory cellular infil-
trates in the mucosal lamina propria (Fig. 1B). The mucosal 
lamina propria did not exhibit a normal tissue structure, 
but coagulation necrosis and focal necrosis with inflamma-
tory cell infiltration were observed (Fig. 1C). In addition, 
a disrupted surface epithelium and inflammatory cellular 
infiltrate in the villous lamina propria were observed in 
the intestinal mucosa (Fig. 1D). The severity scores for the 
intestinal lesions are listed in Fig. 1E, which indicates that 
the histological scores of the diarrhea group were signifi-
cantly increased as compared with those of the control group 
(P<0.01). In addition, the incidence rate of liquid stools in 
rats was 100%, while the control group did not produce 
any liquid stools. In addition, the diarrhea rats had a higher 
diarrhea index as compared with that of the control group 
(P<0.01) (Fig. 1F).

Figure 1. Histological analysis of rat intestinal tissues. Rat intestinal tissues were fixed, embedded in paraffin and stained with hematoxylin and eosin. 
(A) Normal intestinal tissue, demonstrating a normal mucosal structure and intact epithelium. (B) Mildly infected intestinal tissue, demonstrating mucosal 
lamina propria with congestion (black arrow) and inflammatory cellular infiltrates (empty arrow). (C) Moderately infected intestinal tissue, exhibiting mucosal 
lamina propria with coagulation necrosis (black arrow) and focal necrosis with inflammatory cell infiltrates (empty arrow). (D) Severely infected intestinal 
tissue, demonstrating the mucosa with disrupted surface epithelium (black arrow) and villous lamina propria with inflammatory cellular infiltrates (empty 
arrow). (E) Pathological scores of the intestine, indicating the severity of pathological intestine lesions. (F) Diarrhea index of the control and diarrhea rats. 
Statistical comparisons were performed by a Student's t-test. **P<0.01 vs. the control group.
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To characterize the bacterial diversity and abundance 
in the fecal microbiota of the control and diarrhea rats, 
high throughput sequencing was performed on the V3-V4 
hypervariable region of bacterial 16S rRNA gene using the 
Illumina MiSeq system. Following denoising and filtering 
steps, a total of 712,814 valid reads were obtained from the 
22 samples, with a mean of 32,400 reads/sample. A dataset 
consisting of 32,810±1,315 reads from the control group 
(n=11) and 31,990±1,372 from the diarrhea group (n=11), with 
an average length of 442 bp, was used in the final analysis. 
The Good's coverage of all samples was 0.9977±0.0007%, 
indicating that the 16S rRNA sequences represented the 
majority of the bacteria in the samples. Based on a sequence 
similarity of >97%, an average of 376 and 267 OTUs were 
defined for the control and diarrhea groups, respectively. The 
rarefaction curves indicated that the diversity of the bacteria 
was addressed, while the rank abundance curves presented 
the abundance and evenness of the two groups (Fig. 2A). The 
levels of the indicators of community abundance (Ace and 
Chao1) in the diarrhea group were significantly decreased as 
compared with those in the control group (P<0.05) (Fig. 2B). 
Furthermore, the Simpson and Shannon indices indicated that 
the diversity of the microbial community of the control group 
was higher than that of the diarrhea group (Fig. 2C).

The differences and similarity between the microbial 
communities in the diarrhea and control groups were revealed 
by determination of the weighted Unifrac PCA and hierarchical 
cluster analysis, respectively (Fig. 2D). Weighted UniFrac 
PCA demonstrated a high degree of variation between indi-
vidual rats. Nevertheless, the first principal component (PC1), 
which explained 63.51% of the variance in the data, distinctly 
separated the diarrhea group from the control group. Further 
hierarchical cluster analysis revealed that the control and 
diarrhea groups were distinguished into two major clusters, 
indicating robust differences in the microbial communities of 
the two groups.

The phylum-level distribution patterns of the control 
and diarrhea groups are shown in Fig. 3A. In the control 
group, the major bacterial communities included Firmicutes 
(70.05±4.59%), Bacteroidetes (24.41±3.39%), Proteobacteria 
(3.25±3.02%), Ver rucomicrobia (0.73±0.26%) and 
Actinobacteria (0.19±0.04%). In the diarrhea group, the order of 
the major bacterial communities was Firmicutes (39.91±7.02%), 
Proteobacteria (35.82±5.70%), Bacteroidetes (23.27±3.79%), 
Actinobacter ia (0.50±0.12%) and Verrucomicrobia 
(0.17±0.08%). Thus, the results suggested that the most 
abundant communities in the two groups are the three most 
populated bacterial phyla, namely Firmicutes, Bacteroidetes 
and Proteobacteria, followed by the low abundance phyla 
of Verrucomicrobia, Actinobacteria, Candidate division 
TM7, Cyanobacteria, Deferribacteres, Elusimicrobia and 
Spirochaetes. As shown in Fig. 3B, statistical analysis revealed 
that the relative abundance of Firmicutes and Verrucomicrobia 
in the diarrhea group was significantly lower in comparison 
with that in the control group (P<0.05). By contrast, the rela-
tive abundance of Proteobacteria and Actinobacteria in the 
diarrhea group was significantly higher compared with that 
in the control group (P<0.05). Bacteroidetes, one of the most 
dominant phyla, was not significantly altered in the diarrhea 
group.

The order-level distribution patterns of the two groups are 
shown in Fig. 4A. In the control group, the orders of the most 
dominant bacterial communities included Lactobacillales 
(42.95±7.47%), Clostridiales (24.62±5.27%), Bacteroidales 
(24.39±3.39%), Enterobacteriales (3.06±3.04%) and 
Verrucomicrobiales (0.76±0.25%), accounting for a total of 
95.77% of the overall bacteria presented in this group. In 
the diarrhea group, the orders of the most dominant bacte-
rial communities were Enterobacteriales (35.39±5.70%), 
Bacteroidales (23.26±3.79%), Lactobacillales (19.75±4.92%), 
Clost r idia (18.15±3.30%) and Ver rucomicrobia les 
(0.17±0.08%), accounting for a total of 96.72% of the overall 
bacteria presented in this group. Furthermore, statistical 
analysis demonstrated that the proportion of Lactobacillales 
belonging to the phylum Firmicutes and the proportion of 
Verrucomicrobiales of the phylum Verrucomicrobia were 
significantly decreased in the diarrhea group as compared 
with that in the control group (P<0.05). By contrast, the 
proportion of Enterobacteriales belonging to the phylum 
Proteobacteria was significantly increased in the diarrhea 
group (P<0.05). However, the levels of Bacteroidales and 
Clostridiales did not differ significantly between the two 
groups (P>0.05) (Fig. 4B).

Furthermore, the difference of the microbiota distribu-
tion at the genus level was compared between the control and 
diarrhea rats. The microbial distribution was significantly 
different at the genus level, suggesting that the composi-
tion of microbiota in the intestine of the rats was severely 
altered due to E. coli O101 infection. Among the 100 genera 
that are displayed in the heatmap in Fig. 5A, certain of 
these exhibited a significant difference between the control 
and diarrhea groups, including the genera Enterococcus, 
Prevotella, Akkermansia and Escherichia/Shigella (P<0.05) 
(Fig. 5B). In addition, the specific phylotype at the OTUs 
level was identified in response to E. coli O101 infection. A 
total of 18 OTUs of relative abundance presented in the two 
groups were selected for comparison. The proportion of 
Enterococcus (2 OTUs) belonging to the order Lactobacillales 
was significantly lower in the diarrhea group (mean, 1.74%) 
as compared with that in the control group (mean, 32.88%; 
P<0.001). The proportion of Prevotella (14 OTUs) belonging 
to the order Bacteroidales was also significantly lower in 
the diarrhea group (mean, 1.51%) in comparison with that 
in the control group (mean, 10.62%; P<0.01). Furthermore, 
the proportion of Akkermansia (1 OTU) belonging to the 
order Verrucomicrobia was significantly lower in the diar-
rhea group (mean, 0.17%) as compared with the control 
group (mean, 0.73%; P<0.001). Finally, the proportion 
of Escherichia/Shigella (1 OTU) belonging to the order 
Enterobacteriales was significantly higher in the diarrhea 
group (mean, 34.16%) as compared with that in the control 
group (mean, 3.05%; P<0.001) (Fig. 5B).

Discussion

ETEC strains that produce multiple enterotoxins are 
major causes of severe dehydrating diarrhea in humans 
and animals (34,35). Several studies have reported that 
the diarrhea-associated diseases, such as cholera (36), 
diarrhea-predominant irritable bowel syndrome (37) and 
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Figure 2. Structural comparison of fecal microbiota between the control and Escherichia coli O101-induced diarrhea group. (A) Richness and diversity of the 
rat fecal microbiota between the two groups. Rarefaction curves were used to estimate the abundance (at a 97% similarity level) of the fecal microbiota, while 
the Rank abundance curve was used to estimate the abundance and evenness between the two groups. (B) Abundance of the two groups evaluated by the Ace 
and Chao1 indices, and (C) diversity of the two groups evaluated by the Shannon and Simpson indices, based on 16S rRNA gene sequences. (D) Difference and 
similarity of microbial communities between the diarrhea and control groups revealed by weighted Unifrac PCA and hierarchical cluster analysis. Statistical 
comparisons were performed by Student's t-test. *P<0.05 vs. the control group. PCA, principal component analysis.
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porcine epidemic diarrhea (38), can change the composition 
of the gut microbiota. This evidence indicated a potential 
association between gut microbiota and diarrhea. However, 
little is known regarding the status of gut microbiota and the 
histopathological changes in intestinal tissues following ETEC 
infection in animals. Therefore, elucidating the role of ETEC 
in altering the composition of gut microbiota and the intestinal 
tissue in a model of ETEC-induced diarrhea is essential.

Notably, the intestinal mucosa is a vital barrier for 
protecting the body against infection by pathogenic microor-
ganisms (39,40). Histological assessment is commonly used in 
the diagnosis of gastrointestinal diseases (41,42). In a previous 
study, the investigation of histological sections of intestinal 
tissue from diarrhea mice revealed damaged surface epithe-
lium with inflammatory infiltrates in the lamina propria (43). 
Similarly, the results of the present study also revealed that 
the intestinal mucosa of diarrhea rats was damaged, and the 
surface epithelium and villous lamina propria were disrupted 

by the inflammatory cellular infiltrates. According to the 
histopathological scores, the diarrhea rats exhibited severe 
injury in the intestinal tissues.

The gut microbiota in the intestinal mucosa serves a crucial 
role in the development and integrity of the mucosal epithe-
lium (44-46). As fecal microbial communities represented 
the highest bacterial diversity in the gut (47), fecal sample 
were used in the present study. Barcoded Illumina MiSeq 
sequencing of the V3-V4 hypervariable region of 16S rRNA 
was employed, in order to compare the composition of the 
fecal microbiota between the normal and E. coli O101-treated 
rats. Chao1 and Ace analysis revealed greater microbial diver-
sity in the control group compared with that in the diarrhea 
group, while the Shannon and Simpson indices also indicated 
that the bacterial community diversity of the control group 
was higher than that of the diarrhea group. Therefore, it is 
concluded that E. coli O101 infection reduced the diversity of 
the gut microbiota in rats.

Figure 3. Microbial composition of the control and diarrhea rats at the phylum level. (A) Distribution of bacterial taxa in the fecal samples and (B) comparison 
of the main phylum in the control and diarrhea groups. Sequences that could not be classified into any known group were designated as ‘unclassified’. Statistical 
comparisons were performed by Student's t-test. *P<0.05, **P<0.01 and ***P<0.001 vs. the control group.
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The phylum-level distribution of the bacterial communi-
ties in the control and diarrhea groups of the present study 
revealed that the two prevalent phyla, namely Bacteroidetes 
and Firmicutes, are dominant irrespective of E. coli O101 infec-
tion. This observation was in agreement with the findings of 
a previous study, which demonstrated that Bacteroidetes and 
Firmicutes are the main phyla in rats regardless of the age (48). 
In the present study, Bacteroidetes, Firmicutes, Proteobacteria, 
Verrucomicrobia and Actinobacteria were dominant in the 
groups, which was in agreement with previous findings (49). 
However, these dominant bacteria phyla displayed a different 
tendency subsequent to E. coli O101 infection. The proportion of 
Firmicutes and Verrucomicrobia was decreased, while that of 
Proteobacteria and Actinobacteria was significantly increased. 
As reported previously, the phylum Verrucomicrobia was absent 
in mice treated with cyclophosphamide, a potent immunosup-
pressive agent (50,51). Thus, it can be speculated that E. coli 
O101 infection decreased the abundance of Verrucomicrobia 

and that it may suppress the immune function of the host. 
Furthermore, Proteobacteria is the main pathogenic bacterial 
phylum that is closely associated with the presence of diarrhea 
symptoms (52,53). As a consequence of E. coli O101 infection, 
the abundance of Proteobacteria was increased significantly.

The comparison at the order level was in agreement with 
that at the phylum level in the current study. For instance, 
the orders Lactobacillales and Verrucomicrobiales were 
significantly decreased in the diarrhea group, while the order 
Enterobacteriales was significantly increased in the diarrhea 
group. The phyla of these microbes, namely Firmicutes, 
Verrucomicrobia and Proteobacteria, respectively, exhibited 
the same tendency of decrease or increase. Thus, the alteration 
at the order level contributed to that at the phylum level.

Among the fully classified genera in the present study, 
several genera of specific interest were identified. For instance, 
Escherichia/Shigella, belonging to the order Enterobacteriales 
and the phylum Proteobacteria, exhibited a higher abundance 

Figure 4. Microbial composition of control and diarrhea rats at the order level. (A) Distribution of bacterial taxa in the fecal samples and (B) comparison 
of main order in the control and diarrhea groups. Sequences that could not be classified into any known group were designated as ‘unclassified’. Statistical 
comparisons were performed by Student's t-test. *P<0.05 and ***P<0.001 vs. the control group.
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(11.2-fold) in the diarrhea group as compared with that in the 
control group. Thus, it can be inferred that the increase in the 
abundance of Escherichia/Shigella caused the increase of the 
order Enterobacteriales and the phylum Proteobacteria in the 
diarrhea rats. In addition, the genus Prevotella exhibited the most 
significant difference in relative abundance between the diarrhea 
and control groups. The abundance of Prevotella was significantly 
lower (7.0-fold) in the diarrhea group in comparison with the 
control group. Similar to the current observations, Pop et al (54) 
reported that diarrhea in young children from low-income 
countries led to a low abundance of Prevotella. Kang et al (55) 

also found a significantly lower abundance of Prevotella in 
autistic children. De Filippo et al (56) further demonstrated 
that Prevotella suppresses the pathogenic Escherichia/Shigella, 
resulting in a low incidence of gastrointestinal disorders 
among African children. These observations suggested that 
Prevotella may exert a beneficial physiological role in human 
health, particularly in children. Furthermore, the proportion 
of Enterococcus, a large genus of lactic acid bacteria of 
the order Lactobacillales and the phylum Firmicutes, was 
markedly reduced (18.9-fold) in diarrhea rats as compared with 
normal rats. The most common species of Enterococcus spp. 
include Enterococcus faecium and Enterococcus faecalis, 
which can be isolated from the gastrointestinal tract, the oral 
cavity and the vagina of animals as normal commensals (57). 

Enterococcus faecium strains are frequently used in pig 
production to decrease the incidence of diarrhea and the 
count of E. coli in pigs, as well as improve the animals' 
performance and feed conversion. Hu et al (58) reported that 
Enterococcus faecalis LAB31 effectively reduced the incidence 
of diarrhea in weaned piglets by increasing the relative number 
of Lactobacilli. The abundance of Akkermansia, belonging to 
the order Verrucomicrobiales and phylum Verrucomicrobia, 
was also evidently reduced in the diarrhea group. Similarly, 
Liu et al (38) revealed that Akkermansia was highly abundant 
in the control group than in the porcine epidemic diarrhea 
group. Diarrhea patients with microscopic colitis also had a 
significantly lower amount of Akkermansia (59). Furthermore, 
several studies suggested that Akkermansia may be used as a 
beneficial bacterium to regulate the host immunity, as well as an 
indicator for its evaluation. Shin et al (60) previously reported 
that Akkermansia attenuated tissue inflammation by activating 
the Foxp3 regulatory T-cells. Akkermansia muciniphila, 
belonging to the genus Akkermansia, altered the mucosal gene 
expression profiles toward altering immune responses (61). 
Taken together, the present study revealed the E. coli O101 
infection decreased the proportion of the beneficial bacteria 
Prevotella, Enterococcus and Akkermansia, while increasing 
the proportion of the pathogenic bacteria Escherichia/Shigella. 
Therefore, the beneficial bacteria Prevotella, Enterococcus and 

Figure 5. Microbial composition of control and diarrhea rats at the genus level. (A) Heatmap of hierarchy cluster, indicating the abundance of the genus in the 
feces. Colors indicate the relative abundance from low (blue) to high (red). (B) Comparison of main genera in the control and diarrhea groups. Sequences that 
could not be classified into any known group were designated as ‘unclassified’. Statistical comparisons were performed by Student's t‑test. *P<0.05, **P<0.01 
and ***P<0.001 vs. the control group.
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Akkermansia protected rats against the pathogenic bacteria 
Escherichia/Shigella, while E. coli O101 infection altered the 
balance.

In an attempt to distinguish Escherichia/Shigella in feces 
from rats injected with E. coli O101, the current study also 
conducted a sequence comparison and found a 99% similarity 
(data not shown), which suggested that Escherichia/Shigella in 
feces were putatively of the same genus of E. coli O101 that were 
injected into the peritoneum of the rats. Thus, the present study 
hypothesized that injected E. coli O101 may colonize in the 
intestinal tract of rats and compete with the beneficial bacteria, 
leading to the decreased abundance of the beneficial bacteria 
and consequently resulting in an imbalance of gut microbiota.

The gut microbiome is hypothesized to serve a critical role 
in gastrointestinal diseases, such as diarrhea. By regulating the 
balance of intestinal flora, increasing the beneficial bacteria 
and reducing the harmful bacteria, the symptoms of diarrhea 
can be alleviated and diseases can be treated. Historically, 
antibiotics were primarily used to treat individuals with diar-
rhea. However, the blind use of antibiotics may eliminate the 
sensitive beneficial bacteria and aggravate the microbiota 
imbalance. Therefore, in order to prevent further aggravation 
of the microbiota disorder as identified in the current study, 
appropriate use of drugs should be considered for adjuvant 
therapy. The efficiency of specific probiotics for the treatment 
of infection-associated diarrhea in adults has been supported 
by clinical studies (62). Dietary fiber benefits human health 
and can also modulate gut microbiota for treating diarrhea 
infections (63). Furthermore, the Chinese herbal formula 
SLBZS has been demonstrated to have an effect in shifting 
the gut microbiome structure during the treatment of rats with 
antibiotic-associated diarrhea (64). Taken together, the current 
study may provide a theoretical basis for gut microbiota and 
potential novel targets for the control of the disease.

In conclusion, given the crucial role of gut microbiota 
in maintaining intestinal health, identifying the changes in 
systemic gut microbiota and specific microbes is essential. As 
a first step to achieve this long‑term goal, the present study 
established an E. coli O101-induced diarrheal rat model with 
increasing diarrhea index and injury in the intestinal tissues. 
Next, several key changes in fecal microbiota subsequent to 
treatment with E. coli O101 were identified. It was revealed 
that the diarrhea rats tended to have a less diverse gut micro-
biome, while a shifted distribution pattern of the bacterial 
communities was demonstrated at the phylum and order levels 
in diarrhea rats. Finally, several individual genera, primarily 
the beneficial Prevotella, Enterococcus and Akkermansia, 
exhibited significantly lower abundance, while the pathogenic 
Escherichia/Shigella had significantly higher abundance 
in diarrhea rats as compared with the control group. Taken 
together, the data of the present study provided crucial insights 
into E. coli O101-induced dysbiosis in gut microbiota in the 
fecal samples. Thus, further genomic studies are necessary 
to better characterize the indicative bacteria and assess the 
potential development of a microbiological intervention for 
treating diarrhea.
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