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Abstract. The present study aimed to elucidate the underlying 
mechanism of neuroepithelial cell transforming 1 (NET‑1), a 
member of the Ras homolog gene family, in hepatocellular 
carcinoma (HCC). To determine the association between the 
expression of NET‑1 and the proliferation and migration of 
MHCC97‑H cells, the cells were transfected with NET‑1 small 
interfering (si)RNA and si negative control. Following transfec-
tion with NET‑1 siRNA, the proliferation rate of MHCC97‑H 
cells decreased significantly and the percentage of apoptotic 
cells increased. The HCC cell line MHCC97‑H was used in 
the present study as it exhibited an increased expression level 
of NET‑1 compared with the MHCC97‑L cell line. Expression 
levels of apoptosis‑associated proteins including apoptosis 
regulator Bax (Bax), cyclinD1, apoptosis regulator Bcl‑2 
(Bcl‑2) and caspase‑3 were determined. Expression levels of 
phosphoinositide 3‑kinase (PI3K) and protein kinase B (AKT) 
and their phosphorylated forms were also measured by western 
blotting. Following NET‑1 knockdown, the expression of Bax 
and cyclinD1 decreased, the expression of Bcl‑2 and caspase‑3 
increased, and the PI3K/AKT signaling pathway was inhib-
ited. The results of the present study suggest that inhibition of 
NET‑1 can suppress the progression of HCC by targeting the 
PI3K/AKT signaling pathway. NET‑1 expression level in HCC 
cells increased compared with normal liver cells.

Introduction

Hepatocellular carcinoma (HCC) is one of the common malig-
nant tumors worldwide (1). Globally, there are more than 500,000 
new cases each year and about 1 million HCC‑associated cases 

of mortality (2‑6). Approximately 40‑50% of global HCC cases 
occur in China and HCC is the second most malignant tumor 
in China (7‑10). Although there are a number of methods of 
treatment for HCC, they are ineffective for achieving sustained 
remission (11). Invasion, metastasis and postoperative recur-
rence are the primary causes leading to the mortality of 
patients with HCC (12). The processes associated with inva-
sion and metastasis of HCC are complex and involve multiple 
molecular interactions and multiple‑level cross regulation of 
signal transduction pathways (13,14). Therefore, research on the 
mechanisms of invasion and metastasis of HCC is important to 
increase the clinical curative effects and improve the survival 
rate of patients.

Neuroepithelial cell transforming 1 (NET‑1), a member of Ras 
homolog gene family, was identified in 2000 by Serru et al (15) 
and reported to serve a role in signaling pathways, including 
ERK1/2 and PI3K/Akt1, which may be regulated by NET‑1 as 
well as cell adhesion, proliferation and differentiation (16,17). 
A study also demonstrated that the inhibition of NET‑1 could 
suppress the activation of ERK1/2 and PI3K/Akt1 signaling (18). 
Previous studies also indicated that the abnormal expression of 
NET‑1 is associated with numerous types of cancer, including 
lung, colorectal, gastric and breast cancer (19,20). Shen et al (21) 
reported that NET‑1 mRNA is expressed at very low levels in 
normal liver tissues and highly expressed in HCC tissues, 
suggesting that this protein may serve as a biomarker in the early 
diagnosis of liver cancer. Expression of NET‑1 is closely associ-
ated with the lymphatic and distant metastasis in non‑small cell 
lung cancer (22). One study revealed that inhibition of NET‑1 in 
HCC was associated with the tumor node metastasis stage (23). 
Therefore, the authors of the present study hypothesized that 
NET‑1 may serve an important role in HCC.

The present study aimed to determine the association 
between the expression of NET‑1 and HCC. The mRNA 
expression levels of NET‑1 in HCC cell lines and a normal 
liver cell line were compared and the cell line with the highest 
expression level of NET‑1 was selected. The selected cells 
were transfected with NET‑1 small interfering (si)RNA and si 
negative control (NC), and the proliferation rate and apoptosis 
of cells were determined. The expression of apoptosis‑associ-
ated proteins was also determined to elucidate the molecular 
mechanism of NET‑1 in HCC.
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Materials and methods

Cell culture. Human HCC cell lines MHCC97‑L and 
MHCC97‑H, and a normal liver cell line L‑02 were obtained 
from the Cell Bank of Type Culture Collection of Chinese 
Academy of Sciences (Shanghai, China). The cell lines stored 
in ‑80˚C liquid nitrogen was recovered, inoculated, cultured 
and digested to obtain single cell suspension. Cells were 
routinely cultured in RPMI‑1640 supplemented with 10% 
heat‑inactivated fetal bovine serum (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA), 100 U/ml penicillin and 100 µg/ml 
streptomycin in a humidified cell incubator with an atmosphere 
of 5% CO2 at 37˚C.

RNA isolation and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA was 
extracted from cell lines using TRIzol reagent (Thermo 
Fisher Scientific, Inc.) according to the manufacturer's 
protocol. Briefly, 1 ml of TRIzol was added and each sample 
was homogenized at 4˚C for 10  min. Subsequently, the 
lysates were transferred into 1.5 ml Eppendorf (EP) tubes 
(Eppendorf, Hamburg, Germany). Following shaking for 
15 min, the EP tubes were centrifuged at 12,000 x g and 
4˚C for 15 min. The supernatant was transferred into new 
EP tubes and mixed with isopycnic isopropanol for 15 sec. 
Subsequently, the mixture was centrifuged at 12,000 x g 
and 4˚C for 10  min, and the supernatant was discarded. 
The precipitate was washed with 75% ethanol twice and 
dried. Then, the dried precipitate was dissolved in 30 µl 
DEPC‑treated (0.1%) water (Thermo Fisher Scientific, Inc.) 
and quantified by a NanoDrop 1000 spectrophotometer 
(NanoDrop; Thermo Fisher Scientific, Inc., Wilmington, 
Delaware, USA) and the RNA solution was stored at ‑80˚C 
for further use. Genes were amplified using specific oligo-
nucleotide primers for NET‑1 and GAPDH, which was used 
as the internal control. The forward and reverse primers are 
listed in Table I. The first strand of cDNA was synthesized 
by RevertAid First strand cDNA Synthesis kit (Thermo 
Fisher Scientific, Inc.) at 42˚C for 10 min. SYBR® Green 
Real‑Time PCR Master mixes (Takara Bio, Inc., Otsu, Japan) 
and a LightCycler® 480 System (Roche Diagnostics, Basel, 
Switzerland) were utilized to perform a qPCR analysis. The 
following thermocycling conditions were used for the PCR: 
55˚C for 30 min, initial denaturation for 15 min at 95˚C; 
40 cycles of 94˚C for 15 sec, 55˚C for 30 sec, 72˚C for 30 sec. 
The expression level was normalized using GAPDH small 
nuclear RNA and expression levels were quantified using the 
2‑ΔΔCq method (23).

Western blotting. Cells were seeded into a six‑well plate at 
a density of 5x105 cells/well. A total of 24 h after seeding, 
the medium was discarded and cells were rinsed 3  times 
with ice‑cold PBS. Subsequently, cells were lysed with 
radioimmunoprecipitation assay buffer at 4˚C for 15 min and 
centrifuged at 12,000 x g at 4˚C for 10 min. The precipita-
tion was discarded and the protein extract in the supernatant 
was quantified by a BCA kit (Thermo Fisher Scientific, Inc.). 
The supernatants were collected and boiled at 95˚C with an 
equal volume of loading buffer for 10 min. Subsequently, a 
total of 12 µg of protein was loaded into 4% spacer and 12% 

separation gel for SDS‑PAGE, and transferred to polyvinyli-
dene difluoride membranes (Hybond, Inc., Escondido, CA, 
USA). The membranes were blocked with 5% skimmed milk 
dissolved in Tris‑buffered saline Tween‑20 (TBST) for 1 h at 
room temperature. Subsequently, the membranes were rinsed 
with TBST twice and incubated with primary antibodies, 
including NET‑1 (cat. no. ab5914), Bax (cat. no. ab32503), 
Cyclin D1 (cat. no.  ab134175), Bcl‑2 (cat. no.  ab32124), 
Caspase‑3 (cat. no.  ab13585), PI3K (cat. no.  ab86714), 
p‑PI3K (cat. no. ab182651), AKT (cat. no. ab8805), p‑AKT 
(cat. no. ab81283) and GAPDH (cat. no. ab9485; all 1:1,000; 
Abcam, Cambridge, MA, USA) dissolved in 5% bovine serum 
albumin (Abcam) at room temperature for 1 h. Membranes 
were then incubated with the horseradish peroxidase‑conju-
gated secondary antibodies (cat. no. ab6721; 1:10,000, Abcam) 
at room temperature for 1 h. Protein bands were visualized 
using the EZ‑ECL Chemiluminescence Detection kit for 
horseradish peroxidase (Biological Industries, Kibbutz Beit 
Haemek, Israel).

Cell transfection. A total of 1x103‑1x104  cells/well were 
seeded in 96‑well plates. NET‑1 overexpression or control 
vector plasmids (0.2 µg; both Genentech USA, Inc., South 
San Francisco, CA, USA) were transfected into cells using 
Lipofectamine® 2000 transfection reagent (Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) according 
to the manufacturer's protocol. The NET‑1 siRNA or scramble 
control siNC (10 pmol) was synthesized and modified chemi-
cally by Invitrogen (Thermo Fisher Scientific, Inc.) using 
Lipofectamine™ RNAiMAX (Thermo Fisher Scientific, Inc.). 
Following 72 h of transfection, cells were harvested for prolif-
eration and apoptosis assays.

Flow cytometry assay. Apoptosis and cell cycle of 
MHCC97‑H cells were detected using flow cytometry kit (cat. 
no. Apobrdu‑1KT; Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany). Brief ly, MHCC97‑H cells at a logarithmic 
growth phase were seeded in a 96‑well plate at a density of 
2x103  cells/well and maintained in RPMI 1640 medium 
(cat. no. SH30809.01; Invitrogen; Thermo Fisher Scientific, 
Inc.) with 10% fetal bovine serum (cat. no. AD17321268; 
Invitrogen; Thermo Fisher Scientific, Inc.) for 16 h at 37˚C. 
Following cell transfection with control plasmids, control 
siRNA or NET‑1‑siRNA for 72 h, the cells were rinsed twice 
with PBS and counted. A total of 5‑10x104 cells were collected 
and centrifuged at 2,000 x g for 5 min at 4˚C. Subsequently, 
cells were resuspended with and incubated for additional 
10 min at 37˚C. Centrifugation at 2,000 x g for 5 min at 
4˚C was performed and the cells were resuspended in PBS 
containing 10 µl propidium iodide in the dark for 30 min at 
room temperature. Finally, apoptosis was measured using 
a flow cytometer and CellQuest software (version 3.3; BD 
Biosciences, San Jose, CA, USA).

Cell proliferation assay. Cells were seeded into 96‑well plates 
at a density of 5x104 cells/well the day prior to transfection. 
Following transfection, cells were seeded in a 96‑well plate 
at a density of 2x103  cells/well. Proliferation of cells was 
determined using Cell Counting kit‑8 (CCK‑8; Dojindo 
Molecular Technologies, Inc., Kumamoto, Japan) according to 
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the manufacturer's protocol at 12, 24 and 48 h of culture. The 
optical density (OD) was measured at a wavelength of 450 nm.

Statistical analysis. Data were analyzed using SPSS software 
(version 19.0; IBM Corp., Armonk, NY, USA). All data are 
presented as the mean ± standard deviation. All experiments 
were performed in triplicate. Groups were compared using 
one‑way analysis of variance followed by Tukey's post hoc test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Screening for HCC cells with high expression of NET‑1. To 
study the effect of NET‑1 on HCC, the present study deter-
mined the relative mRNA and protein expression levels of 
NET‑1 in HCC cell lines MHCC97‑L and MHCC97‑H and in 
a normal liver cell line L‑02 using RT‑qPCR and western blot-
ting, respectively. The results of the RT‑qPCR assay indicated 
that the expression levels of NET‑1 were significantly elevated 
in MHCC97‑L and MHCC97‑H cells compared with the L‑02 
cell line. Specifically, the MHCC97‑H cell line exhibited the 
highest expression of NET‑1 among these cell lines (Fig. 1A). 
Furthermore, western blotting indicated that protein expres-
sion of NET‑1 increased in MHCC97‑L and MHCC97‑H cells 
compared with the L‑02 cell line, and MHCC97‑H exhibited 
the highest expression level among these cell lines (Fig. 1B). 
Therefore, MHCC97‑H cells were selected for further analysis.

Table I. Primer sequences for reverse transcription‑quantitative polymerase chain reaction.

	 Primer sequences (5'‑3')
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene name	 Forward	 Reverse

Neuroepithelial cell transforming 1	 GAGCCAAGCAATAAAAGAGTTCG	 TGGGACTGTTGACCTGCTAGA
GAPDH	 GGAGCGAGATCCCTCCAAAAT	 GGCTGTTGTCATACTTCTCATGG

Figure 2. Verification of transfection efficiency and cell proliferation assays. 
(A) Protein and (B) mRNA expression of NET‑1 in differentially treated 
cells. (C) The OD 490 value of MHCC97‑H cells following transfection with 
NET‑1 siRNA or siNC. *P<0.05, ***P<0.001 vs. control; #P<0.05 vs. si‑NC. 

NET‑1, neuroepithelial cell transforming 1; si, small interfering RNA; si‑NC, 
small interfering RNA negative control.

Figure 1. NET‑1 expression in HCC cell lines and normal liver cells. (A) Relative mRNA expression levels of NET‑1 in HCC cell lines MHCC97‑L and 
MHCC97‑H, and normal liver cell line L‑02 were determined by reverse transcription‑quantitative polymerase chain reaction. *P<0.05 and **P<0.01 vs. the 
L‑02 cells. (B) Protein expression levels of NET‑1 in HCC cell lines MHCC97‑L and MHCC97‑H, and normal liver cell line L‑02 were determined by western 
blotting. NET‑1, neuroepithelial cell transforming 1; HCC, hepatocellular carcinoma.
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Knockdown of NET‑1 inhibited the proliferation of HCC cells. 
Following transfection with si‑NET‑1, the mRNA and protein 
expression of NET‑1 was successfully downregulated in cells 
compared with the control (Fig. 2A and B). The OD value of 
MHCC97‑H cells was determined by CCK‑8. The viability 
of MHCC97‑H cells in the si‑NET‑1 group was significantly 
decreased after 12, 24 and 48 h compared with the control 
groups (Fig. 2C), suggesting the inhibition of NET‑1 could 
inhibit the proliferation of HCC.

Knockdown of NET‑1 promotes HCC cell apoptosis. To study 
the effect of NET‑1 on HCC, the apoptotic rate and cell cycle of 
MHCC97‑H cells were determined using flow cytometry. The 
apoptotic percent of MHCC97‑H cells increased following the 
knockdown of NET‑1 compared with the control and si‑NC 
groups (Fig. 3A). Furthermore, cell cycle of MHCC97‑H cells 
was arrested at the G1/S phase following transfection with 
NET‑1 siRNA (Fig. 3B).

Knockdown of NET‑1 influences the expression of apoptosis‑asso‑
ciated proteins and the activity of the PI3K/AKT signaling 
pathway. To further reveal the underlying mechanism of NET‑1 
in HCC, expression levels apoptosis‑associated proteins were 
determined by western blotting. The expression levels of Bax and 
cyclinD1 in MHCC97‑H cells decreased following the knock-
down of NET‑1, while the expression of Bcl‑2 and caspase‑3 
increased (Fig. 4A). The activity of the PI3K/AKT signaling 
pathway was also determined when PI3K expression was reduced 
by the NET‑1 siRNA. There was no apparent difference identi-
fied in the activity of PI3K, however, the expression of p‑AKT 
decreased following transfection with si‑NET‑1 (Fig. 4B).

Discussion

HCC is the most common type of primary liver cancer and 
has been reported to be the fifth most common cancer world-
wide (10). The incidence of HCC has increased worldwide 
and this disease is characterized by geographic risk factor and 
diagnosis differences (24). There remains no standard effec-
tive therapy for patients with HCC. This type of carcinoma is 
associated with a high degree of vascular invasion and metas-
tasis, and poor prognosis (25). Numerous factors contribute to 
the invasion and metastasis of HCC. Twist‑related protein 1 is 
a regulator of EMT‑mediated invasion and metastasis, which 
affects the expression of E‑cadherin (26). As a pro‑inflam-
matory cytokine, interleukin (IL)‑17A is frequently involved 
in the pathology of inflammatory diseases and regulation of 
tumor microenvironment (27‑29). A previous study reported 
that IL‑17A promoted the metastasis of HCC (30). As a tumor 
suppressor, microRNA‑122 was reported to regulate the intra-
hepatic metastasis of HCC (31). It has also been demonstrated 
that NET‑1 exhibits higher expression levels in HCC cells 
compared with normal liver cells, suggesting that NET‑1 may 
serve a role in HCC (21).

In the present study, the mechanism of NET‑1 in the inva-
sion and metastasis of HCC was investigated in vitro. Relative 
mRNA expression of NET‑1 was determined using RT‑qPCR 
in MHCC97‑H and MHCC97‑L cells with different metastasis 
potentials (32,33) and normal liver cell line L‑02. The results 
indicated that the expression of NET‑1 was upregulated in 
HCC cell lines compared with the normal liver cell line, which 
may contribute to the metastasis and invasion of HCC. The 
MHCC97‑H cell line exhibited the highest expression level 

Figure 3. Knockdown of NET‑1 promotes hepatocellular carcinoma cell apoptosis. (A) Apoptotic percent of MHCC97‑H cells in the (a) control, (b) siNC and 
(c) NET‑1 siRNA groups. (B) Cell cycle distribution of MHCC97‑H cells in the (a) control, (b) siNC and (c) NET‑1 siRNA. siRNA, small interfering RNA; 
siNC, small interfering RNA negative control; NET‑1, neuroepithelial cell transforming 1.
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of NET‑1 and was therefore selected for subsequent experi-
ments. NET‑1 was knocked down in MHCC97‑H cells and 
proliferation, cell cycle progression and apoptosis were deter-
mined. The results indicated that si‑NET‑1 could decrease the 
proliferation of MHCC97‑H cells. Furthermore, the apoptotic 
percent of MHCC97‑H cells was elevated following the 
knockdown of NET‑1. In addition, cell cycle was arrested at 
the G1/S phase in the si‑NET‑1 group of MHCC97‑H cells. 
Shen et al (21) demonstrated that the expression of NET‑1 was 
associated with the proliferation, metastasis and clinical stages 
of HCC. Chen et al (34) reported a strong correlation between 
the expression level of NET‑1 and HCC pathological grading. 
Therefore, in the present study it was hypothesized that NET‑1 
may serve a role in promoting proliferation and suppressing 
apoptosis of HCC.

To further elucidate the molecular mechanisms of NET‑1, 
the expressions levels of Bax, cyclinD1, Bcl‑2 and caspase‑3 
were determined. The expression levels of Bax and cyclinD1 
decreased in the si‑NET‑1 MHCC97‑H cells, while the expres-
sion levels of Bcl‑2 and caspase‑3 increased compared with 
the controls. As a pro‑apoptotic member of the Bcl‑2 family, 
Bax shares highly conserved domains with Bcl‑2 and serves a 
role in regulating programmed cell death (35). Dysfunction of 
the p53/Bax/caspase‑3 apoptosis signaling pathway promotes 
carcinogenesis (36). Furthermore, a balance between Bax and 
Bcl‑2 is also involved in cancer therapeutic resistance (37), 
as well as proliferation, invasion, adhesion and metastasis of 
cancer cells (38). In a human breast cancer line, overexpression 
of Bcl‑2 enhanced the metastatic ability (39). Cyclin D1 is a 
proto‑oncogene abnormally overexpressed in several cancers, 

including breast and prostate cancers, which promotes cell 
proliferation via activation of cyclin‑dependent kinases (40). 
Cyclin D1 may act as a subunit of a holoenzyme to phosphory-
late and inactivate the retinoblastoma protein, and promote 
cell cycle progression to the G2 phase of the cell cycle (41). 
Apoptosis is an important mechanism of cell death regulation 
which serves a role in eliminating infected, damaged and other 
undesirable cells from tissues (42,43). Caspase‑3 is the main 
executor of apoptosis in cells (44). During programmed cell 
death, activation of caspase‑3 leads to proteolysis of DNA repair 
proteins and cytoskeletal proteins to alter the morphology and 
DNA of cells (45). Dysregulation of caspase‑3 was reported 
in several malignancies (46‑48) and overexpression of this 
protein was reported in HCC (49).

To further explore the molecular mechanism of NET‑1 in 
HCC, the activity of the PI3K/AKT signaling pathway was 
determined. The results indicated that there was no apparent 
difference identified in the expression of PI3K, however, the 
expression of AKT was downregulated following knockdown 
of NET‑1. The PI3K/AKT signaling pathway serves an impor-
tant role in mediating survival signals in a number of neuronal 
cell types (50). AKT and AKT‑dependent signaling pathways, 
including glycogen synthase kinase‑3β (51), PI3K (52) and 
mitogen‑activated protein kinase (53) signaling pathways serve 
critical roles in the pathogenesis of degenerative diseases and 
cancers (51), including apoptosis, metabolism, cell prolifera-
tion and cell growth (50). Epidemiological and experimental 
studies reported that abnormally activated PI3K/AKT pathway 
is involved in the initiation and maintenance of cancer (52‑55). 
In addition, the PI3K/AKT signaling pathway has also been 

Figure 4. Knockdown of NET‑1 influences the expression of apoptosis‑associated proteins and the activity of the PI3K/AKT signaling pathway. (A) Protein 
expression of Bax, cyclinD1, Bcl‑2 and caspase‑3. (B) Protein expression of p‑PI3K, PI3K, p‑AKT and AKT. (C) Quantification of the protein levels of Bax, 
cyclinD1, Bcl‑2 and caspase‑3. (D) Quantification of the protein levels of p‑PI3K and p‑AKT. *P<0.05 vs. control; #P<0.05 vs. siNC. Bax, apoptosis regulator 
Bax; Bcl‑2, apoptosis regulator Bcl‑2; PI3K, phosphoinositide 3‑kinase; AKT, protein kinase B; siNC, small interfering RNA negative control; siRNA, small 
interfering RNA targeting neuroepithelial cell transforming 1.
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confirmed to participate in leptin‑mediated promotion of 
invasion and migration of HCC (56). Therefore, these studies 
verified the reasons why NET‑1 promotes proliferation and 
inhibits apoptosis of HCC cells.

In conclusion, inhibition of NET‑1 can suppress prolif-
eration and promote apoptosis of HCC cells by activating the 
PI3K/AKT signaling pathway and increasing the expression 
levels of apoptosis‑associated proteins.
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