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Abstract. Guilt by association (GBA) algorithm has been 
widely used to predict gene functions statistically, and a 
network-based approach may increase the confidence and 
veracity of identifying molecular signatures for diseases. 
The aim of the present study was to suggest a gene ontology 
(GO)-based method by integrating the GBA algorithm and 
network, to identify key gene functions for spinal muscular 
atrophy (SMA). The inference of predicting key gene func-
tions was comprised of four steps, preparing gene lists and 
sets; extracting differentially expressed genes (DEGs) using 
microarray data [linear models for microarray data (limma)] 
package; constructing a co-expression matrix on gene lists 
using the Spearman correlation coefficient method; and 
predicting gene functions by GBA algorithm. Ultimately, key 
gene functions were predicted according to the area under 
the curve (AUC) index for GO terms and the GO terms with 
AUC >0.7 were determined as the optimal gene functions 
for SMA. A total of 484 DEGs and 466 background GO 
terms were regarded as gene lists and sets for the subsequent 
analyses, respectively. The predicted results obtained from 
the network-based GBA approach showed 141 gene sets had 
a good classified performance with AUC >0.5. Most signifi-
cantly, 3 gene sets with AUC >0.7 were denoted as seed gene 
functions for SMA, including cell morphogenesis, which is 
involved in differentiation and ossification. In conclusion, 
we have predicted 3 key gene functions for SMA compared 
with control utilizing network-based GBA algorithm. The 
findings may provide great insights to reveal pathological and 
molecular mechanism underlying SMA.

Introduction

As a major genetic cause of infant mortality, spinal muscular 
atrophy (SMA) is a destructive and inherited neurodegenera-
tive disorder characterised by the loss of motor neurons in the 
anterior horn of the spinal cord, resulting in muscle wasting 
and weakness (1,2). It is currently an incurable neuromuscular 
disorder. Survival motor neuron 1 (SMN1) gene encodes 
SMN, which is widely expressed in all the eukaryotic cells. 
Approximately 95% of SMA cases are related to deletions or 
mutations of the SMN1 (3). Gene therapy research has made 
significant progress over the past decade, and one of the rapidly 
emerging neurological fields is the delivery of genes to the 
central nervous system (CNS) through in vivo or in vitro tech-
niques (4). In addition, a good understanding of pathological 
and molecular mechanism underlying SMA may offer great 
help to explore effective therapy of this complicated disease.

Particularly, the difference of gene expression levels 
could reflect the propensity of many diseases, and thus 
identifying gene functions has been an effective way to 
reveal the pathological mechanism of a disease at molecular 
level (5). Zeng et al used a novel correlation measure known 
as HeteSim in order to focus on candidate disease genes (6). 
Establishing a network-based approach to identify new 
genes that may be related to infertility is imperative (7). 
Furthermore, it has been demonstrated that gene function 
predictions can be performed with very high statistical confi-
dence using variants based on guilt by association (GBA) 
algorithm, with the hypothesis that the association in genetic 
data is necessary to establishing guilt (8). Although various 
techniques have been proposed for the purpose of extending 
GBA to indirect connections, only slight effectiveness was 
identified (9-11). Consequently, treatments targeting only one 
gene are not always effective, because genes usually do not 
work alone, but co-operate with others.

Therefore, in the present study, a new method was proposed 
to predict key gene functions for progressive SMA patients, by 
integrating the GBA algorithm and network-based method. To 
achieve this aim, firstly, gene expression data and gene ontology 
(GO) annotations were collected from the public databases, 
respectively. Secondly, differentially expressed genes (DEGs) 
were identified as gene lists and background GO terms were 
extracted as gene sets. Thirdly, the co-expression matrix 
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(CEM) was constructed on gene lists by Spearman correla-
tion coefficient (SCC) method. Ultimately, gene functions 
were predicted by integrating the CEM and GBA algorithm, 
of which the area under the receiver operating characteristics 
curve (AUC) was applied to select the key gene functions in 
SMA patients.

Materials and methods

Preparing gene expression data. In this study, gene expres-
sion data (GSE38417) for human SMA, deposited on 
Affymetrix Gene Chip Human Genome HGU133 Plus 2 
Array [HGU133_Plus_2], were obtained from the public-free 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). First, we combined multiple probes 
that corresponded to the same gene, and selected the average 
value of the plurality of probes as the expression value of the 
gene. Second, the annotation information was modified, the 
column name corresponding to the line, renamed ‘groups’, 
including control (6 samples) and SMA (16 samples). In order 
to control the quality of the data, standard pretreatments were 
performed (12,13).

Identifying DEGs. During this step, DEGs between control 
and SMA were detected utilizing the linear models for 
microarray data (limma) package. In detail, the lmFit function 
implemented in limma was utilized to perform linear fitting, 
empirical Bayes statistics and false discovery rate (FDR) cali-
bration of the P-values on the data. The thresholds for DEGs 
were set as P<0.95 and |log fold change (FC)| ≥0.5.

Constructing CEM. To further investigate the correlations or 
interactions among DEGs, a CEM for them was constructed 
based on the SCC algorithm. To the best of our knowledge, 
SCC is a main measure used to determine the correlation 
between two variables, and its value is between -1 and +1 
inclusive. If the SCC for a pair of genes was positive, it would 
indicate a positive linear correlation between the two genes. 
Similarly, a negative SCC refers to a negative relationship 
of the gene pair. The absolute SCC value of an interaction 
was denoted as its weight value. Furthermore, the higher the 
weight value across two genes, the stronger the interaction 
was, especially for 1. Otherwise, the 0 meant that there was 
no interaction between two genes. As a result, a CEM was 
constructed according to the weight. An assortativity coef-
ficient was calculated to assess degree assortative mixing 
pattern extent. Assortativity coefficient, which is obtained 
by using R-package igraph, is an intuitive inspection and 
measurement of the positive and negative correlation of 
node relationships in a network. In other words, according to 
the positive and negative values of the network node, it can 
be discriminated whether it is a homogeneous cluster or a 
heterogeneous cluster.

GO-term enrichment analysis. Human GO annotations were 
prepared from the Gene Ontology Consortium (http://geneon-
tology.org/), which is a community-based bioinformatics 
resource that supplies information on gene product function 
applying ontologies to represent biological knowledge (14). 
Subsequently, we propagated over the GO structure and 

filtered for GO terms on size so that each remaining term had 
between 20 and 1,000 related genes, while excluding those 
inferred from electronic annotation (15,16). For purpose of 
making these retained GO terms more correlated to SMA, 
we took the intersections between DEGs and GO terms. If 
the number of DEGs for a GO term was <20, it would be 
removed. In other words, only GO terms including ≥20 DEGs 
were reserved.

Network-based GBA algorithm. As mentioned above, we 
combined the GBA algorithm with network to predict signifi-
cant gene functions for progressors. The principle of GBA is to 
use relational information (e.g., interactions) to predict new gene 
members in the functional call of genes. Specifically, for a DEG 
in the CEM, we chose its adjacent genes to enrich to a GO term. 
Based on these GO functional annotations, a multi-functionality 
(MF) score was assigned to each gene i in the CEM (4):

Of which Numink
 represented the number of genes within GO 

group k, whose weighing had the impact of contributing to a 
GO group; and Numoutk

 was the number of genes outside the 
GO group k in the CEM, whose weighing provided a corre-
sponding weight to genes not within the GO group. It should 
be noted that weighing referred to the effect of calculating 
membership of a group based on the degree of gene contri-
bution to that GO group. Thus, 3-fold cross-validation was 
applied to evaluate the scoring genes ranked in the MF score to 
determine how well they belonged to the known gene set, and 
computed the AUC for evaluating classification performances 
between progressors and non-progressors. In the present study, 
to assess the predictive power of machine learners in support 
vector machines (SVM) model, AUC was considered a better 
measure than the accuracy of assessing clinical classification 
performance. Most importantly, an AUC of 0.5 represents 

Table I. The top 10 DEGs.

    Adjusted
Genes |log (FC)| t value P-value P-value

TYRP1 -1.80647 -51.642 2.65x10-23 5.43x10-19

ETNPPL -1.5344 -28.2636 5.60x10-18 5.46x10-14

LGI1 -1.53461 -27.5554 9.33x10-18 5.46x10-14

CFAP46 -0.6102 -27.3737 1.07x10-17 5.46x10-14

FZD10 1.417835 26.67597 1.79x10-17 7.34x10-14

CRISPLD1 1.174577 26.21701 2.54x10-17 7.43x10-14

FAM179A -1.39983 -25.5108 4.38x10-17 1.02x10-13

COL3A1 0.503541 25.48533 4.47x10-17 1.02x10-13

ERBB3 0.787361 24.45334 1.02x10-16 2.10x10-13

SCGB1D2 -1.48211 -23.5802 2.11x10-16 3.94x10-13

Based on 20,514 genes in GSE38417, we identified 484 DEGs 
between control and DMN by limma package when setting the 
thresholds as P<0.05 and |logFC| ≥0.5. DEGs, differentially expressed 
genes; FC, fold change; limma, linear models for microarray data.
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classification of the level of opportunity, while an AUC of 1.0 
represents the perfect classification (17). Thus, we defined GO 
terms of AUC >0.7 as key gene functions for SMA patients in 
the present study.

Results

Gene lists and gene sets. In the present study, differential 
co-expression network and GO annotations were the two main 
necessary objects for network-based function inference in 
SMA. To achieve this, we first obtained the accessible expres-
sion data of SMA to identify the DEGs and generate the gene 
co-expression. Based on 20,514 genes in GSE38417, we identi-
fied 484 DEGs between control and DMN by limma package 
when setting the thresholds as P<0.05 and |logFC| ≥0.5. The 
top 10 DEGs are shown in Table I. Then based on these 
DEGs, the SCC values among gene pairs were calculated, 
and the SCC absolute values were defined as the weight 
values. We constructed the co-expression adjacency matrix 
of 484 DEGs (covering 116,886 interactions), where the entry 
indicated the connection between two genes (Fig. 1A). Only 
gene sets containing intersected DEGs of >20 were left in the 
subsequent analysis. Thereafter, we defined the amount of 
intersected DEGs as the count value of this term. As a result, 
a total of 466 GO terms were determined. Subsequently, these 
GO terms were represented as a binary vector, where each 
entry corresponded to a differentially expressed gene, with a 1 
indicating that the differentially expressed gene was a member 
of this GO term, and 0 if it was not (Fig. 1B).

CEM. To investigate biological correlations among DEGs, a 
CEM with 484 nodes and 116,886 interactions was constructed 
based on the SCC, of which each interaction possessed a 
weight value to reveal the interacted strength between two 
genes. The weight distribution for interactions in this CEM 

showed the characteristic of good adjacent matrix that weighs 
on its diagonal was nearly equal to 1, which suggested that 
the CEM had a good network scale property. The greater the 
weight value, the more likely the interaction was related to the 
occurrence of disease. In particular, an edge between RASSF2 
and LHFPL2 had the highest weight of 0.998, which indicated 
that the edge or the two genes may be associated with SMA. In 
addition, to further evaluate the activities of genes in interac-
tions of high weights, topological degree centrality analysis 
was conducted on all the nodes in the CEM. The assortativity 

Figure 1. Two necessary objects for the network-based function inference by extending the ‘guilt by association’ method. (A) Differential co-expression network 
matrix. Heatmap clarified clustering of microarray data for 484 DEGs. The darker the blue, the stronger the relationship between the genes. The weaker the 
blue or the white, the less the relationship between the genes or even no relationship between them. (B) Gene set annotation vectors. The horizontal axis shows 
the clustering of 466 GO terms, and the vertical axis represents the clustering of the 484 DEGs. The deeper the red, the closer the association between the gene 
and the GO term in the sample channel. By contrast, yellow indicates that the correlation is small between the gene and the GO term in the reference channel. 
DEGs, differentially expressed genes; GO, gene ontology.

Figure 2. Sub-network of CEM. There were 485 nodes and 1,146 edges, of 
which nodes were on behalf of DEGs and edges represented interactions 
between two DEGs with weight >0.8. CEM, co-expression matrices; DEGs, 
differentially expressed genes.
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coefficient for the CEM was 0.393, indicating that the network 
had perfect assortative mixing patterns.

Generally speaking, a network with too many interactions 
might be too generic and interactions with low weight are not 
as significant as high ones. Thus, we extracted a sub-network 
from the CEM by selecting those interactions with weight >0.8 
and visualized it by Cytoscape software (Fig. 2). There were 
485 nodes and 1,146 edges, of which nodes were on the behalf 
of DEGs and edges represented interactions between two 
DEGs with weight >0.8.

Gene function inference. Generally, genes with similar neigh-
bors may share common properties. Thus we performed the 
gene function inference for SMA based on the differential 
co-expression network. Firstly, neighbor voting algorithm 
was employed to perform the gene function prediction by 
integrating differential co-expression network and GO anno-
tations. The AUC value was implemented to determine the 
performance metric for each GO annotation, and GO terms 
with AUC >0.7 was regarded as candidate gene functions. 
The distribution of AUC scores from the neighbor voting 
algorithm is shown in Fig. 3. Among 466 GO terms, 141 terms 
were identified under AUC >0.5. By calculating the multi-
functionality score for each DEG, we generated a list of genes 
ranked by multifunctionality score, i.e., the optimal ranking 
gene list. Based on the optimal ranking gene list, GO terms 
with AUC >0.7 were defined as the optimal gene functions 
for SMA, including cell morphogenesis (AUC = 0.724), cell 

morphogenesis involved in differentiation (AUC = 0.724), 
ossification (AUC = 0.703). The details are shown in Table II.

Discussion

In the present study, we aimed to predict key gene functions 
in SMA patients by using a network-based GBA method, 
since the network-based approach could systematically inves-
tigate the molecular complexity of a particular disease and 
identify potential signatures through bio-molecular networks 
rather than individual genes (18). Simultaneously, network 
co-expressed analysis enhances the statistical confidence of 
individual connections, increases overlap with protein inter-
action, and take advantage of mathematical convenience. 
Moreover, previous studies have shown that GBA variants 
can ingrease statistical confidence in predicting gene func-
tion, assuming that the associations in the data of a gene are 
necessary in establishing guilt (19). Notably, an integration of 
co-expression network and the GBA algorithm would provide 
a new manner to predict significant gene functions and reveal 
molecular mechanism underlying SMA.

On the basis of SCC method, a CEM for progressors was 
constructed on DEGs, and further a sub-network of weight >0.8 
was extracted from the CEM. Of note, we found that TYRP1, 
ETNPPL and another top 10 genes had high degree both in 
CEM and its sub-network, which indicated their importance 
as progressors. The groups of Becker et al and Rousseau et al 
thought that the dys-regulation of TYRP1 may disturb the 
normal development of cells and tissues, resulting in brain 
damage and even nervous system injury (20,21). Veiga-da-
Cunha et al suggest that the ETNPPL-mediated degradation of 
ethanolaminephosphate could balance the concentration of that 
metabolite, which might contribute to mental disorders such as 
schizophrenia was in the CNS (22). LGI1 is mainly used for 
cognitive dysfunction and seizures, and is mostly expressed 
in neurons and serum LGI1 autoantibodies in patients with 
limbic encephalitis (LE) (23,24). In line with these findings, 
the expression of three genes was associated with nervous 
system injury, which play an important role in SMA.

The rest of the genes do not appear to be related to SMA or 
nerves, for instance, FZD10 is the receptor for Wnt molecules 
and is extensively involved in various cell processes (25,26); 
Crispld1 acts in tissue culture models of osteoarthritis (27); 

Figure 3. Distributions of the area under the receiver operating characteristics curve (AUC) scores. (A) Distribution of AUC scores from the neighbor voting 
algorithm. (B) Distribution of AUC scores for node degree ranking. (C) Distribution of AUC scores from multifunctionality assessment. Red, median; grey, 
inter-quartile ranges. AUC, area under the curve.

Table II. Optimal gene functions for SMA.

ID Term Domain AUCs

GO:0000902 Cell morphogenesis Biological_process 0.724619
GO:0000904 Cell morphogenesis Biological_process 0.724619
 involved in
 differentiation
GO:0001503 Ossification Biological_process 0.703075

Among 466 GO terms, a total of 141 terms were identified under AUC >0.5. 
Based on the optimal ranking gene list, GO terms with AUC >0.7 were defined 
as the optimal gene functions for SMA. AUC, area under the curve; GO, gene 
ontology; SMA, spinal muscular atrophy.
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FAM179A plays a role in detecting ALK fusion of patients 
with non-small cell lung cancer (28); COL3A1 encodes the 
pro-α1 chains of type III collagen, which is found in exten-
sible connective tissues such as uterus, skin, lung, intestine 
and the vascular system (29); ERBB3 has a neuregulin binding 
domain (30). To the best of our knowledge, this is the first 
study to reveal the key role of these genes in human SMA 
patients, which could be useful in future research in treatment 
and prediction of SMA.

Particularly, 466 background GO terms were identified as 
gene sets for the present study. Most significantly, 3 gene sets 
with AUC >0.7 were denoted as key gene functions for SMA, 
including cell morphogenesis, cell morphogenesis involved in 
differentiation and ossification. In detail, as the development 
of shape or morphologies in cells or organisms, morphogenesis 
is a fundamental but poorly understood process throughout 
biology (31,32). SMA is a motor neuron disease that degener-
ates the spinal cord and muscle. Studis confirmed that there are 
some in vivo benefits of intrathecal injection of neural stem-
cell in severe SMA mice following differentiation of neural 
stem cells to alter cell morphogenesis from mouse spinal cord 
neurospheres (33,34). Therefore, our finding has important 
implications for the molecular mechanisms of SMA.

Besides, molecular function represents elemental activi-
ties, such as differentiation and ossification (35), describing the 
actions of a gene product at the molecular level. It is a common 
phenomenon that a given gene presents in one or more molec-
ular functions (such as TYRP1 described above), and two 
or more genes exhibit the same one function (36,37). Genes 
with similar functions observe similar annotation patterns 
in their neighborhood, regardless of the distance between 
them in the interaction network. Using single-stranded DNA 
oligonucleotides into the cells, Anderton and Mastaglia (34) 
induced a genome editing of SMN2 at the molecular level, 
thus modifying the SMA-iPSC-derived motor neurons. Upon 
direct transplantation into a severe SMA mouse model, muscle 
connections and ossification were all ameliorated (34,38).

In conclusion, we have predicted 3 seed gene functions for 
SMA compared with control utilizing network-based GBA 
algorithm. The findings might give great insights to reveal 
pathological and molecular mechanism underlying SMA. 
However, the expression data used in this work was recruited 
from the open access database, and the 3 seed gene functions 
are not validated. In future research, these validations should 
be performed. Of note, we are preparing the microarray data 
ourselves at present and further study should be conducted on 
the role these validations are to play.
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