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Abstract. Risk metabolites of postmenopausal osteoporosis 
(PO) were explored to offer a theoretical basis for future therapy. 
The data E-GEOD-7429 were downloaded from ArrayExpress 
database. In total 20 samples deprived from postmenopausal 
women having low or high bone mineral density (BMD) were 
covered in this expression profile. After screening of diffe- 
rentially expressed genes  (DEGs), gene-gene network was 
constructed taking the intersection between the DEGs and 
genes in the seed protein-protein interaction network. Then, 
the other five networks were established, including metabolite, 
phenotype, gene-metabolite, phenotype-gene, and phenotype-
metabolite networks. Next, these 6 networks were integrated 
into one weighted multi-omics network to further identify the 
candidate metabolites using random walk with restart based 
on the PO-related seed genes, seed metabolites and pheno-
type. Using the score among nodes of the weighted composite 
network, the top 50 metabolites, and the top 100 co-expressed 
genes interacting with the top 50 metabolites were detected. 
A set of 601  DEGs between low BMD and high BMD 
samples were selected. Significantly, the top 5 metabolites 
were respectively glucosylgalactosyl hydroxylysine, all-trans-
5,6-epoxyretinoic acid, tretinoin, colecalciferol, and rocaltrol. 
Moreover, 3 metabolites (estraderm, triphosadenine, and treti-
noin) had a degree >50 in the co-expression network. Tretinoin 
was the member of the top 5 metabolites, and estraderm was 
a metabolite with the seventh interaction score. A series of 
metabolites, tretinoin and estraderm might be closely associa- 
ted with the onset and progression of PO.

Introduction

Postmenopausal osteoporosis (PO), one type of osteoporosis, 
is believed to result directly from the decreased endogenous 
estrogen in menopausal women (1,2). The measurement of 
bone mineral density (BMD) has been regarded as the ‘gold 
standard’ in osteoporosis diagnosis (3). Therefore, extraction 
of genes predisposing to BMD will be beneficial for the under-
standing of genetic mechanisms and aid in developing novel 
treatment of PO and PO-related fractures.

An increasing number of genes has been identified to have 
independent effects on BMD in osteoporosis in recent years. 
For example, POSTN, a regulator of osteoblast differentiation 
and bone formation, has been demonstrated to influence the 
susceptibility to low BMD and osteoporosis (4). Moreover, 
genes VDR, ESR1, NRIP1 in B cells have been reported to be 
closely associated with BMD in patients with osteoporosis (5). 
Furthermore, Jemtland  et  al  (6) measured the changes in 
84 bone biopsies related to BMD variations in postmeno-
pausal women to extract osteoporosis-associated candidate 
genes and detected that SOX4, MMP13, and MEPE were all 
under-expressed. Nevertheless, these studies paid main atten-
tion on the gene levels related to the BMD, not an intensive 
analysis of the metabolites in PO.

In 2008, Xiao et al  (7) provided the gene profile data 
of E-GEOD-7429, analyzing the gene expression profile in 
B cells of PO patients and identified that downregulation of 
ESR1 and MAPK3 in B cells led to the increased osteoclas-
togenesis or decreased osteoblastogenesis. Moreover, in 2016, 
Ma et al (8) used this microarray data (E-GEOD-7429) to 
identify several crucial genes related to PO, and found that the 
interactions, for example, CSTA/TYROBP, CCNE1/REL and 
TUBA1B/ESR1 may play an important role in the develop-
ment of PO. However, these analyses are mainly focused on 
identifying altered genes between disease and control groups, 
and do not perform the corresponding analysis for identifying 
metabolites. Metabolites, the end products of biological regu-
latory process, are regarded as the final response of biological 
systems to the changes of environment or inheritance  (9). 
Significantly, detecting and prioritizing disease-associated 
metabolites is crucial for our understanding of metabolite 
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processes to improve medicine (10). As reported, metabolites 
rarely play an important role in isolation, but they exert a key 
function in the connection of phenotypes as well as genotypes, 
which are frequently influenced by genome and phenome (11). 
With the development of various ‘omics’ information, 
genomic, metabolic, as well as phenomic data, offer valuable 
information for disease risk candidate metabolites prioritiza-
tion. Fortunately, Yao et al have prioritized several candidate 
metabolites using multi-omics composite network  (12). 
Complementarily, we used multi-omics composite network to 
screen the metabolite in PO. Our efforts aimed to characterize 
new metabolite biomarkers as tools allowing for better diag-
nosis and preventing the progression of PO in the future.

Materials and methods

The present analysis was comprised of the following steps: 
microarray data selection (E-GEOD-7429) and identification 
of differentially expressed genes (DEGs), construction of a 
weighted composite network through integrating six data 
sets, and prioritization of candidate metabolites. The detailed 
information of each step is described in Fig. 1.

Data set. With the goal of revealing the molecular mechanisms 
of PO, microarray analyses of monocytes were performed using 
microarray data (accession number: E-GEOD-7429) (7) which 
were downloaded from the ArrayExpress database. A total of 
20 samples were available. B cells were isolated from the whole 
blood of 20 unrelated postmenopausal women 54-60 years 
of age, including 10 with high BMD and 10 with low BMD. 
The platform of E-GEOD-7429 was A-AFFY-33-Affymetrix 
GeneChip Human Genome HG-U133A [HG-U133A].

Data pretreatment and DEGs identification. Probe IDs 
having concentrated expression level were transformed into 
human gene symbols. Duplicated genes of expression value 
in matrix were then eliminated. Overall, 12,437 genes were 
obtained. As known, the difference of gene expression levels 
reflected the disease characteristics. In our study, LIMMA 
package and t-test were used to identify DEGs between the 
two groups, following by the multiple correction test using 
Benjamini & Hochberg (13) method based on false discovery 
rate  (FDR). DEGs were subsequently extracted using the 
criteria of FDR <0.05. These identified DEGs were used to 
build a gene network.

Establishment of multi-omics composite network. Six data sets 
(denoted by six networks) were combined to build a composite 
network, and six networks were called gene, phenotype, 
phenotype-gene, metabolite, gene-metabolite, and phenotype-
metabolite networks.

Construction of gene network. In our study, all human 
protein-protein interactions (PPIs) having combine-scores 
(1,048,576  interactions) were obtained from STRING to 
establish the background PPI network. After we removed the 
duplicated PPIs, and transformed proteins into human gene 
symbols, 1,515,370 highly correlated gene-gene interactions 
covering 16,785 genes were extracted to construct a seed PPI 
network (combine-score not less than 0.8 was used herein). 

Next, we took the intersection between the 16,785 genes in 
the seed PPI network and DEGs to establish the informative 
gene-gene network.

Construction of metabolite network. To begin with, there were 
4,994 human metabolites obtained from the KEGG, HMDB, 
Reactome, MSEA (14), as well as SMPDB (15). Afterwards, 
the metabolite-metabolite interactions of human as well as 
their corresponding confidence scores were extracted from 
STITCH (16). At the end, overall 3,764 human metabolites as 
well as 74,667 human metabolite-metabolite interactions were 
acquired.

Establishment of phenotype network. A total of 5,080 pheno-
types as well as the scores exist in the phenotype-phenotype 
similarity associations (17). Relying on the phenotype-phenotype 
similarity associations, a phenotype network was constructed.

Construction of gene-metabolite association network. In 
order to obtain gene-metabolite interactions, the chemical and 
gene associations of human and the corresponding confidence 
scores were first extracted from the STITCH. After that, based 
on the 4,994 human metabolites, we gained human metabo-
lite and gene associations. When removing the metabolites 
not included in the metabolite network mentioned above 
and eliminating the genes not covered in the gene network 
described above, a total of 192,763 gene-metabolite interac-
tions involving in 12,342 genes as well as 3,278 metabolites 
were gained.

Construction of phenotype-gene association network. 
Phenotype-gene associations were picked out relying on 
the curated Morbid Map file of the OMIM database. After 
discarding the phenotypes that were not included in the 
phenotype network and the genes that were not involved in 
the gene network, there were 2,603 gene-phenotype associa-
tions (covering 1,715 genes as well as 1,886 phenotypes). The 
weighted score was determined as 1 for each phenotype-gene 
association.

Establishment of phenotype-metabolite association network. 
After filtration, there were 664 associations between 388 metabo- 
lites and 149 phenotypes. In addition, we defined the weighted 
value as 1 for each phenotype-metabolite interaction.

Establishment of a weighted composite network. To extract the 
potential metabolites, we merged the six networks mentioned 
above into a weighted composite network. Specific steps were 
described in Yao et al (12).

Prioritizing candidate metabolites on the basis of the weighted 
multi-omics composite network. The known PO-related 
metabolites (CID: 5460164, and 123986) were extracted 
from the Human Metabolome Database (HMDB) (18) which 
gathers specific information of small-molecule metabolites 
of human as well as the disease phenotype data. The known 
PO-related genes were collected from the Morbid Map file 
of Online Mendelian Inheritance in Man (OMIM) (19). The 
corresponding seed genes of PO were CALCR, LRP5, VDR, 
COL1A1, ESR1, NPPB, CNR1, CNR2, COL1A2, which were 
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deposited in the database of OMIM. The phenotype of PO 
was 166710 in OMIN. Next, we mapped these seed genes, 
the phenotype, and the known metabolites to the weighted 
multi-omics composite network.

In an attempt to obtain the candidate metabolite prioritiza-
tion from the weighted composite network involved in the seed 
genes, the phenotype, and the known metabolites, RWR method 
was expanded to the multi-omics composite network (20). 
Based on the distance proximity of every candidate metabo-
lite, candidate metabolites were scored and ranked. According 
to the interaction score, the top 50 metabolites were identified 
which were determined as the PO-prioritized metabolites.

Subsequently, co-expressed genes interacting with the 
top 50 metabolites were identified, and then, we ranked these 
co-expressed genes relying on the score distribution. Finally, 
we extracted the top 100 co-expressed genes.

The subnetwork of the top 50 metabolites obtained from 
the composite network, and the co-expressed network between 
the top 100 co-expressed genes and the top 50 metabolites were 
constructed. Significantly, degree analyses were performed 
for these two networks to further identify several important 
AF-related metabolites.

Results

Identification of DEGs and establishment of multi-omics 
composite network. In the present study, we applied DEGs 
to construct the gene network, hence, DEGs between the 
two groups were first extracted. Using the criteria of the 
FDR <0.05, overall 601 genes were extracted as differential 
expression. The top 40 DEGs are listed in Table I. In this study, 
the PO-related metabolites were identified and prioritized by 
combining multi-omics data. Thus, in our study, a multi-omics 
composite network was first established through combining 
the information of genome, metabolome, and phenome. A total 
of 6 kinds of interactions were included in the multi-omics 
composite network. In this network, there were 9,360 nodes 
and 10,224,741 edges (Table II).

Prioritization of the PO-related metabolites. A total of 
10  disease-related genes of PO are deposited in OMIM 
database, including CALCR, LRP5, VDR, COL1A1, ESR1, 
NPPB, CNR1, CNR2, and COL1A2, which were downloaded 
and determined as seed genes. There were 2 known disease 
metabolites (5460164, and 123986) data on PO in HMDB, 
which were defined as the seed metabolites. In our analysis, 
the 2 seed metabolites, and the 10 seed genes were utilized 
as seeds to identify the candidate metabolites of PO. To 
illustrate the intrinsic mode of this computational approach, 
the metabolites of the composite network were ranked in 
descending order on the basis of the interaction scores. The 
top 50 metabolites were dissected, and shown in Table III. 
The top 5 metabolites were respectively glucosylgalactosyl 
hydroxylysine (score = 0.027662), all-trans-5,6-Epoxyretinoic 
acid (score = 0.008912), tretinoin (TN) (score = 0.004934), 
colecalciferol (INN) (score = 0.000686), and rocaltrol (TN) 
(score = 0.000675). A subnetwork of the top 50 metabolites 
was extracted from the whole composite network, as shown 
in Fig. 2.

Afterwards, the co-expressed genes were extracted, which 
had interactions with the top 50 metabolites according to 
the score ranking. On the basis of the pre-defined criteria, 
the top  100 co-expressed genes were identified, and the 
co-expressed network of the top  100 genes are shown 
in  Fig.  3. Following degree analysis for the co-expressed 
network, 3 metabolites had a degree >50, including estraderm 
(degree = 64), triphosadenine (DCF) (degree = 57), and treti-
noin (TN) (degree = 55). Significantly, tretinoin (TN) was the 
member of the top 5 metabolites, and estraderm was a metabo-
lite with the seventh interaction score.

Discussion

Postmenopausal women have a high incidence of osteoporosis 
because of simultaneous existence of many independent 
predisposing factors, including estrogen deficiency, calcium 
loss, as well as aging  (21). Osteoporosis is a main public 

Figure 1. Flow diagram of the method.
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health concern globally, particularly in countries with large 
aging populations, for example, China (22). Thus, it is urgently 
needed to seek for novel effective therapy strategy as well 
as etiologic explanations for PO. For a better understanding 
of the potential molecular mechanisms of PO, we used a 
computational method to extract metabolites signatures in PO 
by integrating the information among genes, metabolites, and 
phenotype related to pathogenesis. Our study identified several 
important metabolites between PO and normal samples, 
including tretinoin (TN) and estraderm.

Ahmed et al (23) demonstrated that tretinoin can suppress 
osteoblast proliferation, and inhibit the production of alkaline 
phosphatase, osteocalcin and IL-6 in normal human osteo-
blasts. In addition, suppression of IL-6 generation in normal 
osteoblasts might contribute to bone abnormalities. Moreover, 

in another study, tretinoin has been implicated to be able to 
activate the differentiation and proliferation of osteoclasts, 
thereby enhancing bone absorption (24). The imbalance in 

Table III. The top 50 metabolites.

Metabolite ID	 Metabolite name	 Score

122304	 Glucosylgalactosyl hydroxylysine	 0.027662
5363137	 All-trans-5,6-Epoxyretinoic acid	 0.008912
444795	 Tretinoin (TN)	 0.004934
5280795	 Colecalciferol (INN)	 0.000686
5280453	 Rocaltrol (TN)	 0.000675
445354	 Retinol-(cellular-retinol-binding-protein)	 0.000487
5757	 Estraderm (TN)	 0.000473
6076	 Cyclic AMP	 0.000439
5283731	 Calcifediol	 0.000407
5280360	 Cervidil (TN)	 0.0004
439260	 Nor adrenalin (TN)	 0.000369
774	 Histaminum (TN)	 0.000357
945	 Nitric oxide	 0.000347
5988	 sucrose	 0.000323
5839	 Aldosterone	 0.00032
6437063	 all-trans-4-oxoretinoic acid	 0.000311
9903	 Lithocholic acid	 0.000305
105071	 Deoxypyridinoline	 0.000304
5288826	 Substitol (TN)	 0.000299
2088	 Alendronic acid (INN)	 0.000298
172198	 Delivert (TN)	 0.000296
702	 Dehydrated ethanol	 0.000277
588	 Creatinine (NF)	 0.000257
888	 magnesium ion	 0.000256
6438629	 all-trans-4-hydroxyretinoic acid	 0.000255
5202	 serotonin	 0.000254
65064	 Epigallocatechin 3-gallate	 0.000252
681	 Dopamine (INN)	 0.00025
5281877	 Retinoyl glucuronide	 0.000246
969516	 curcumin	 0.00024
449171	 Panretin (TN)	 0.000232
5957	 Triphosadenine (DCF)	 0.000231
105068	 Pyridinoline	 0.000227
5881	 Prasterone (INN)	 0.000225
753	 Moctanin (TN)	 0.000224
445154	 resveratrol	 0.000222
14985	 α-Tocopherol	 0.000221
2733526	 Tamoxifen (TN)	 0.00022
5816	 Adrenalin (TN)	 0.000218
977	 Oxygen (JP16/USP)	 0.000213
60961	 Adenocard (TN)	 0.00021
89594	 Habitrol (TN)	 0.000209
23930	 Manganese	 0.000203
444899	 arachidonic acid	 0.000202
5997	 Cholesterol (TN)	 0.000201
77999	 Gaudil (TN)	 0.0002
1103	 spermine	 0.000198
6830	 guanosine 5’-triphosphate	 0.000195
6041	 Phenylephrine (INN)	 0.000195
5920	 Liothyronine (INN)	 0.000192

Table I. The top 40 (DEGs).

Gene symbols	 FDR	 Gene symbols	 FDR

MAPK3	 8.52E-09	 UBQLN4	 9.85E-05
HAO2	 8.21E-09	 KIRREL	 9.73E-05
TMEM8B	 7.38E-08	 POMT1	 9.04E-05
PSTPIP1	 5.52E-08	 SNAI2	 8.78E-05
HGD	 5.37E-08	 CYB5R4	 7.92E-05
STK11	 4.55E-08	 ODF2	 7.22E-05
ARMCX4	 1.61E-08	 LOC728392	 7.21E-05
SETD3	 7.71E-07	 ZNHIT3	 8.36E-04
NEO1	 7.39E-07	 XDH	 8.12E-04
ACKR1	 7.12E-07	 GALR1	 7.49E-04
PRG3	 6.53E-07	 PIGK	 7.12E-04
BEGAIN	 5.69E-07	 PRX	 7.05E-04
NRXN1	 4.27E-07	 PTOV1-AS2	 7.01E-04
ZNF446	 3.95E-07	 SULT1A2	 6.82E-04
C7	 3.20E-07	 ABT1	 7.31E-04
NBR2	 3.18E-07	 PAQR4	 7.19E-04
ISYNA1	 4.39E-06	 PAM16	 6.97E-04
RGSL1	 4.15E-06	 TMEM92-AS1	 6.02E-04
ODF1	 1.85E-06	 EVX1	 3.18E-04
SLC26A3	 1.56E-06	 CD1A	 1.71E-04

DEGs, differentially expressed genes; FDR, false discovery rate. 

Table II. Statistical information of the composite network.

Statistics of the composite network	 Nodes	 Edges

Gene-gene network	 516	 3325
Metabolite-metabolite network	 3764	 74,667
Phenotype-phenotype network	 5080	 10,140,046
Gene-metabolite association network	 516	 3023
Phenotype-gene association network 	 5080	 2510
Phenotype-metabolite	 537	 664
association network
Total	 9360	 10,224,741
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Figure 3. Co-expressed network. Blue nodes represent the top 100 co-expressed genes. Yellow nodes are the seed genes. Pink nodes are the metabolites. Red 
nodes stand for the members of the top 5 metabolites.

Figure 2. Multi-omics composite network involved in the top 50 metabolites and the seed genes. Yellow nodes are the seed genes. Pink nodes are the metabo-
lites. Red nodes stand for the top 5 metabolites.
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bone resorption and formation results in bone loss during 
aging and osteoporosis (25). Furthermore, many studies have 
used tretinoin to construct the model of osteoporosis (26-28). 
Thus, we infer that tretinoin is important for bone absorption 
and may be a target to suppress bone loss related to PO.

PO is believed to result directly from the decreased endoge- 
nous estrogen in menopausal women (2). Estraderm is a kind 
of steroid hormone that is mainly secreted by ovaries, placenta 
or testicles, and it is the most biologically active estrogen. Low 
concentration estraderm has been implicated to influence the 
proliferation and differentiation of osteoblast in a positive 
way (29). Estrogens may enhance fractional gastrointestinal 
calcium absorption, and an increased calcium intake might play 
a role in promoting bone mass (30). Recently, researchers have 
demonstrated that the combination of calcium and estrogen 
results in a significant increase in bone mass of the femoral neck, 
relative to estrogen alone (31). In addition, increased calcium 
intake decreases bone loss of premenopausal women (32,33).

In conclusion, we successfully extracted several impor-
tant metabolites in PO on the basis of the combination of 
multi-omics data. Significantly, our identified metabolites 
(tretinoin and estraderm) are available as biomarkers to diag-
nose PO, and our study has established available therapeutic 
options (tretinoin and estraderm) for the treatment of PO. 
However, we must take several limitations into consideration. 
Firstly, there are many gene expression profiles on PO, but we 
only used E-GEOD‑7429 dataset in our analysis. Hence, we 
will utilize other datasets on this disease to confirm our results. 
In addition, we used existing data to extract candidate metabo-
lite biomarkers based on the bioinformatics method. Yet, our 
results have not been verified by experiments and this remains 
the main weak point of the present study. Consequently, future 
investigations are required to reveal the changes of these 
metabolites in the understanding of the progression procedure 
in PO based on animal experiments or patient tissues. Despite 
these disadvantages, we are satisfied as our findings could 
offer some preliminary evidence to reveal the potential candi-
date therapeutic strategies for PO. The application of specific 
regulation-related metabolites in PO may provide new insights 
for preventive and therapeutic strategies.
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