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Abstract. New thoughts are warranted to develop efficient 
diagnosis and optimal therapeutics to combat unstable 
angina (UA)/myocardial infarction (MI). Therefore, the gene 
data of patients with UA or MI were used in this study to 
identify the optimal pathways which can provide compre-
hensive information for UA/MI development. Differentially 
expressed genes (DEGs) between UA and MI were detected 
using LIMMA package, and pathway enrichment analysis 
was conducted for the DEGs, based on the DAVID tool, 
to detect the significant pathways. Then, differential 
co‑expression network (DCN) and sub‑DCN for the DEGs 
were constructed. Subsequently, informative pathways were 
extracted using guilt‑by‑association (GBA) principle relying 
on the area under the curve (AUC), and the pathway catego-
ries with AUC >0.8 were defined as the informative pathways. 
Finally, we selected the optimal pathways based on the 
traditional pathway analysis and the sub‑DCN‑based‑GBA 
pathway prediction method. A total of 203 and 266 DEGs 
were identified from the expression profile of blood of 
MI samples comparing with UAs in the time‑point 1 and 
time‑point 2 groups. Moreover, 7 and 10 informative pathway 
terms were identified based on AUC>0.8. Significantly, 
cytokine‑cytokine receptor interaction, as well as MAPK 
signaling pathway were the common optimal pathways in the 
two groups. Calcium signaling pathway was unique to the 
whole blood of patients with acute coronary syndrome (ACS) 
taken at 30 days post‑ACS. In conclusion, the optimal path-
ways (MAPK signaling pathway, cytokine‑cytokine receptor 
interaction, and calcium signaling pathway) might play 
important roles in the progression of UA/MI.

Introduction

Cardiovascular disease (CVD) causes ~17.3 million deaths 
per year globally and remains the main cause of mortality in 
the world (1). Acute coronary syndromes (ACSs) range from 
unstable angina (UA) to myocardial infarction (MI). UA is a 
common clinical symptom of atherosclerosis without myocar-
dial necrosis, is related to the increased risk of cardiac death, 
and leads to MI (2). However, the diagnostic accuracy for UA 
is unsatisfactory in clinical practice. The mortality of MI in 
the USA has decreased, partly because of the earlier diagnosis 
and the reliable revascularization therapy (3). For instance, 
troponin, a biomarker of myocardial damage, maximizes the 
benefits of revascularization therapy. Nevertheless, because 
of the relative ῾delayed᾿ release  time of troponin, earlier 
biochemical signatures having high sensitivity as  well  as 
specificity are urgently needed to reduce the MI mortality (4). 
Thus, new thoughts are warranted to develop efficient diag-
nosis and optimal therapeutics for UA/MI.

Traditionally, one method is the identification of differen-
tially expressed genes (DEGs). However, this approach only 
offers limited information on the progression of the disease. 
There is little concordance among different microarray studies, 
due to the heterogeneity of the tissue samples or insufficient 
power (5). Significantly, a gene can be connected to other 
genes which share similar expression profiles. Systems biology 
concentrates on complicated interactions in biological systems 
by means of a holistic approach to biological research (6,7). 
Network biology, a branch of the systems biology, is a new 
way of analyzing biological processing, which regards life 
as a network. Differential co‑expression network (DCN) has 
been demonstrated to be a new holistic approach for analyzing 
microarrays (8,9). For instance, Stuart et al (10) established 
a gene co‑expression network which linked to genes whose 
microarray data were similar among different organisms. 
Lee et al (8) analyzed a human network based on functional 
grouping as well as cluster analysis.

Importantly, pathway‑based analysis plays key roles 
in capturing the biological interaction among genes, and 
improving power and robustness (11,12). Thus, exploring the 
biological pathways relying on systems biology techniques can 
provide extensive insights into the components of pathways, 
thereby aiding in developing novel targets for diseases. However, 
previous studies have mainly focused on the single dysregulated 
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pathways based on the pre‑defined threshold (13,14). Pathways 
having significant P‑values did not have biological meaning, but 
several pathways possessing non‑significant P‑values are statis-
tically significant and biological meaningful (15). Based on the 
variants of g̔uilt‑by‑association (GBA)̓, gene pathway predic-
tions can be made with very high statistical confidence (16,17).

Thus, in our analysis, we downloaded the gene expression 
profile of the blood samples of patients with MI or UA to iden-
tify the optimal pathways which can provide comprehensive 
information for UA/MI development. DEGs between UA 
and MI were extracted using LIMMA package, and pathway 
enrichment analysis was conducted for the DEGs, based on the 
DAVID tool, to detect the significant pathways. Then, DCN 
and sub‑DCN for the DEGs were constructed. KEGG path-
ways were extracted based on the known pathway database 
and DEGs. Subsequently, we predicted informative path-
ways using the GBA principle, relying on the area under the 
curve (AUC), and the pathway categories with AUC>0.8 were 
defined as the informative pathways. Finally, we selected the 
optimal pathways based on the traditional pathway analysis 
and sub‑DCN‑based‑GBA pathway prediction method.

Materials and methods

Gene expression profile and data pretreatment. Gene expres- 
sion profiles of the whole blood of 26  patients with ACS, 
obtained at 7 and 30 days post‑ACS, were downloaded from 
Gene Expression Omnibus (GEO): GSE29111 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29111). GSE29111 
dataset includes the data of 8 patients with UA and 18 with 
MI. The samples in GSE29111 were taken at two different 
time‑points: time‑point 1 (7th day) and time‑point 2 (30th day).

Before the analysis, the microarray profiles of GSE29111 
data were first processed on the GPL570 platform of Affymetrix 
Human Genome U133 Plus 2.0 Array (Affymetrix; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA).

Next, the data were normalized based on the Robust 
Multi‑array Average (RMA) method (18), and then the data in 
the CEL files were converted into expression values. Probes 
were aligned to human genes, and finally, 20,514  genes 
remained for subsequent investigation.

Detection of DEGs. In our study, LIMMA package of R 
language (http://bioconductor.org/biocLite.R) as  well  as 
t‑test were utilized to compare the gene expression levels 
in time‑point 1 and time‑point 2 groups in order to further 
identify the DEGs in MI samples comparing with UAs. 
logFC was used for the differential expression degree. We 
processed the original data based on log2 transformation using 
SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). All expression scores 
were turned into fold‑changes (FC) with log2 base (logFC). 
The logFC for each gene was defined as log(MI)‑log(UA), 
and then the distribution of the logFC value for each gene 
was obtained. The original P‑values were adjusted using the 
method of Benjamini et  al  (19), which relies on the false 
discovery rate (FDR) concept. Genes were considered statisti-
cally significantly expressed when FDR<0.01 and |logFC| >1.

Pathway analysis of DEGs using DAVID. To investigate the 
potential biological functions of DEGs, we used DAVID 

(http://david.abcc.ncifcrf.gov/) (20) to implement the tradi-
tional pathway analysis based on KEGG pathway database 
(https://www.kegg.jp/) by means of the Expression Analysis 
Systematic Explorer (EASE) test (21). The threshold of identi-
fying significant pathways was FDR=0.001.

Construction of DCN. The co‑expression network approach, 
proposed by Ruan et al (22), was utilized to construct DCN 
by investigating the pairwise expression similarity between 
DEGs. The co‑expression network with 0 refers to no link 
between two DEGs, and 1 corresponds to a connection 
between the DEGs. Nodes in the DCN are genes and the edges 
stand for expression similarities between any two genes. In 
our study, Spearman correlation coefficient (SCC) was used 
to measure the similarity, and to assess the co‑expressed 
strength of each edge in the DCN. We defined the SCC 
absolute value of an edge as the weight of the corresponding 
interaction. If the correlation coefficient of the two DEGs 
is >0.3, these two DEGs are regarded to be co‑expressed. 
In the present study, we only selected the edges with weight 
value >0.8 to construct the sub‑DCN, which was visual-
ized using Cytoscape tool (https://www.softpedia.com/get/
Science-CAD/Cytoscape.shtml).

KEGG annotation for DEGs. KEGG is a reference knowl-
edge database which can provide better understanding of 
the biological processes. To begin with, we downloaded a 
total of 300 background pathways (6,919 genes) from KEGG 
database. Next, the above identified DEGs were mapped to 
300 pathway terms to extract the DEG‑related pathways. In 
the end, the pathway set was obtained in time‑point 1 and 
time‑point 2 groups, consisting of 203 DEGs and 81 pathways 
in time‑point 1 group, and 266 DEGs as well as 47 pathways 
in time‑point 2 group.

Informative pathways prediction using the GBA principle. 
Subsequently, we used GBA principle for the sub‑DCN to 
further extract significant biological pathways in these two 
time‑point groups. For each gene within the sub‑DCN, all 
neighbored genes of this specific gene were aligned to each 
pathway category, and the multifunctionality (MF) value for 
each gene involved in the given pathway term was computed.

The AUC value for each pathway category was measured 
using the Support Vector Machine (SVM), and then the mean 
AUC across all pathway terms was obtained. Afterwards, we 
ranked all the pathway terms based on the AUC values. In 
literature, AUC>0.7 is good for gene function prediction (23). 
In the present study, we predicted the informative pathway 
terms when AUC was set as >0.8.

Identifying the optimal pathways. The final optimal pathways 
were identified based on the traditional pathway analysis and 
sub‑DCN‑based‑GBA pathway prediction method.

Results

Time‑point  2 group influences more DEGs compared to 
time‑point 1 group. Our analyses were focused on the compa
rison of two matched sets of blood samples (UA  vs.  MI) 
obtained at two different time‑points. Therefore, a total of 
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20,514 genes remained to be used for the following compari-
sons after quality control.

Based on the filtering criteria of FDR<0.01 and |logFC| >1, 
there were 203 and 266 DEGs in the expression profile of 
blood of MI samples comparing with UAs in time‑point 1 and 
time‑point 2 groups, respectively. Also, there were 34 common 
genes in these two groups (Fig. 1).

Pathway enrichment analysis of DEGs using DAVID. When 
FDR was set as <0.001, a total of 6 significant pathways were 
identified in the time‑point 1 group, and there were 8 signifi-
cant pathways in the time‑point 2 group. The differential 
pathways in the two groups are shown in Table I. We found 
that there were 3 common significant pathways in these two 
time groups, including neuroactive ligand‑receptor interac-
tion, cytokine‑cytokine receptor interaction, and MAPK 
signaling pathway.

Construction of DCN and sub‑DCN. Two DCNs were estab-
lished for time‑point 1 and time‑point 2 groups by means of 
the DEGs identified above. In the DCN of time‑point 1 group, 
there were 153 nodes, and in the DCN of the time‑point 2 group 
there were 197 nodes. In the circumstance of network, the 
degree can explain the network structure. Consequently, the 
topological degree characteristics for each node in the DCN 
was investigated, and the degree distribution of all genes is 
shown in Fig. 2. It is obvious that the degrees for the DCN in the 
time‑point 2 group were greater than those in the time‑point 1 
group. Aside from the degree connectivity, another significant 
parameter was the interaction strength which could be used to 

measure the interactions in the DCN. Consequently, SCC was 
utilized to assign a weight value to every edge of the DCN, 
and the interactions having weight values >0.8 were extracted 
to build the sub‑DCN. The composition of the sub‑DCNs is 
demonstrated in Fig. 3. Within the sub‑DCNs, 80 nodes and 
705 interactions were involved in the time‑group 1, and there 
were 135 nodes and 2,836 interactions in the time‑group 2.

Informative pathways using GBA prediction. Fig. 4 shows the 
AUC distribution for the pathway categories. There were 23 
and 13 pathway terms in the time‑point 1 and time‑point 2 
groups, respectively, based on AUC>0.7. Among these pathway 
terms, there were 7 and 10 pathway terms, respectively, with 
AUC>0.8, and these pathways were determined as the infor-
mative pathways (Table II).

Identifying the optimal pathways. The ultimate optimal 
pathways were screened out based on the traditional pathway 
analysis and sub‑DCN‑based‑GBA pathway prediction 
method. A total of 2 optimal pathways were identified in the 
time‑point  1 group, including cytokine‑cytokine receptor 
interaction, and MAPK signaling pathway. Also, there were 
3  optimal pathways in the time‑point  2 group, including 
MAPK signaling pathway, calcium signaling pathway, and 

Figure 1. Venn diagram exhibiting the number of DEGs between time‑point 1 
and time‑point 2 groups. DEGs, differentially expressed genes.

Table I. Significant pathways identified based on traditional pathway analysis.

Time‑point 1 group	 Time‑point 2 group

Fructose and mannose metabolism	 Metabolic pathways
Transcriptional misregulation in cancer	 Cytosolic DNA‑sensing pathway
MAPK signaling pathway	 Cytokine‑cytokine receptor interaction
Alanine, aspartate and glutamate metabolism	 Neuroactive ligand‑receptor interaction
Neuroactive ligand‑receptor interaction	 Toll‑like receptor signaling pathway
Cytokine‑cytokine receptor interaction	 MAPK signaling pathway
	 Chemokine signaling pathway
	 Calcium signaling pathway

Figure 2. Degree distribution of all nodes in the differentially co‑expressed 
network between the two groups.
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Table II. Pathway list based on AUC>0.8.

Time‑point 1 group	 Time‑point 2 group

Phosphatidylinositol signaling system (AUC=0.941)	 Arginine and proline metabolism (AUC=0.972)
Cytosolic DNA‑sensing pathway (AUC=0.930)	 MAPK signaling pathway (AUC=0.924)
Cytokine‑cytokine receptor interaction (AUC=0.929)	 Olfactory transduction (AUC=0.900)
Adrenergic signaling in cardiomyocytes (AUC=0.900)	 Pancreatic secretion (AUC=0.879)
MAPK signaling pathway (AUC=0.885)	 Purine metabolism (AUC=0.860)
Regulation of actin cytoskeleton (AUC=0.860)	 Fructose and mannose metabolism ‑ Homo sapiens (AUC=0.854)
Wnt signaling pathway (AUC=0.821)	 Amino sugar and nucleotide sugar metabolism (AUC=0.854)
	 Cytokine‑cytokine receptor interaction (AUC=0.853)
	 Phagosome (AUC=0.823)
	 Calcium signaling pathway (AUC=0.815)

AUC, area under the curve.

Figure 3. Sub‑DCN construction for two groups. Sub‑DCN construction for (A) time‑group 1 and (B) time‑group 2. DCN, differential co‑expression network.

Figure 4. Informative pathways predicted by guilt‑by‑association. Guilt-by-association AUCs for (A) time‑group 1 and (B) time‑group 2.
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cytokine‑cytokine receptor interaction. Based on these 
results, we found that cytokine‑cytokine receptor interac-
tion, as well as MAPK signaling pathway were the common 
optimal ones in these two groups. Calcium signaling pathway 
was unique to the whole blood of patients with ACS obtained 
at 30 days post‑ACS.

Discussion

In the present study, microarray data of whole blood samples 
from ACS patients were analyzed using the integrated strategy. 
A total of 203 and 266 DEGs were identified from the expres-
sion profile of blood of MI samples comparing with UAs in 
the time‑point 1 and time‑point 2 groups. Moreover, 7 and 
10 informative pathway terms, respectively, were identified 
based on AUC>0.8. Finally, cytokine‑cytokine receptor inter-
action, as well as MAPK signaling pathway were the common 
optimal pathways in these two groups. Calcium signaling 
pathway was unique to the whole blood of patients with ACS 
taken at 30 days post‑ACS, and none was unique to the whole 
blood of patients with ACS obtained at 7 days post‑ACS.

The pathway of MAPK signaling was common in the two 
groups, which is associated with immune responses. The func-
tions of inflammation in ACS patients have been implicated 
previously (24). Inflammation is able to cause biochemical 
responses (25) and then trigger MAPK, which plays impor-
tant roles through phosphorylating intracellular substrates, 
thereby mediating signal transduction, as well  as specific 
genetic responses to extracellular stimuli (26). MAPK activa-
tion in UA to a complete MAPK activation in MI, has been 
proved effective as a diagnostic test to discern the difference 
between ACS conditions (27). Accordingly, MAPK is a valu-
able molecular biomarker serving as specific signature for the 
diagnosis of UA/MI.

The pathway of cytokine‑cytokine receptor interaction 
was common in the two groups of our study. Cytokines are 
extracellular molecules that transmit intercellular signals, and 
they are broadly reported in cell differentiation, as well as 
inflammatory response through binding to specific receptors 
on the cell surface (28). Various cytokines associated with 
inflammation, for example, tumor necrosis factor, inter-
leukin‑8, adhesion molecules, and nuclear factor‑κB play 
crucial roles in the development process of ACS (29). Elevated 
level of interleukin‑8 has been demonstrated to be linked to 
an increased risk of coronary artery disease (30). Accordingly, 
the role of the pathway of cytokine‑cytokine receptor interac-
tion is confirmed in the progression of ACS, partially through 
regulating inflammatory response.

Interestingly, calcium signaling pathway appeared in 
the whole blood of patients with ACS collected at 30 days 
post‑ACS. Calcium, a universal intracellular second messenger, 
participates in regulating diverse functions including fertil-
ization, secretion, gene transcription, and cardiac myocytes. 
Several studies have implicated that calcium rises during 
MI  (31,32). Nevertheless, decreased cell coupling would 
result in arrhythmias  (33). Garcia‑Dorado  et  al  (34) have 
demonstrated that developing available and reliable treatments 
to restrain Ca2+‑mediated cardiomyocyte death in patients 
with MI, through regulating the Ca2+ influx, or intracel-
lular Ca2+ handling, is an important therapeutic implication. 

Demonstrated here, our result suggests that calcium signaling 
pathway is related to the development of ACS.

There were several limitations in this study. Limited number 
of samples might lead to biased estimates. In addition, only a 
bioinformatics strategy was utilized, and yet we have not proven 
our conclusions using any lab experiments. Despite these short-
comings, our analysis could provide key implications for the 
molecular mechanisms of ACS, but further research is neces-
sary to validate our findings on the basis of lab techniques.

In conclusion, the identified optimal pathways might be 
important for revealing the development progress of ACS. 
Further research is needed to explore the underlying mecha-
nisms for the ACS progression using animal models.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the present study are 
available from the corresponding author on reasonable request.

Authors' contributions

SZG drafted the manuscript and analyzed the data; WJL 
conceived the study and revised the manuscript. Both authors 
read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

  1.	Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, 
Cushman M, de Ferranti SD, Després JP, Fullerton HJ, 
Howard  VJ,  et  al; American Heart Association Statistics 
Committee and Stroke Statistics Subcommittee: Heart disease 
and stroke statistics ‑ 2015 update: A report from the American 
Heart Association. Circulation 131: e29‑322, 2015.

  2.	Wright RS, Anderson JL, Adams CD, Br idges CR, 
Casey DE Jr, Ettinger SM, Fesmire FM, Ganiats TG, Jneid H, 
Lincoff  AM,  et  al: 2011 ACCF/AHA focused update of the 
Guidelines for the Management of Patients with Unstable 
Angina/Non‑ST‑Elevation Myocardial Infarction (updating the 
2007 guideline): A report of the American College of Cardiology 
Foundation/American Heart Association Task Force on Practice 
Guidelines developed in collaboration with the American 
College of Emergency Physicians, Society for Cardiovascular 
Angiography and Interventions, and Society of Thoracic 
Surgeons. J Am Coll Cardiol 57: 1920‑1959, 2011.



GUO  and  LIU:  OPTIMAL PATHWAYS FOR MYOCARDIAL INFARCTION3034

  3.	Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV and Go AS: 
Population trends in the incidence and outcomes of acute 
myocardial infarction. N Engl J Med 362: 2155‑2165, 2010.

  4.	Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, 
Fox KA, Julian D, Lengyel M, Neumann FJ, Ruzyllo W, et al; Task 
Force on the Management of Acute Myocardial Infarction of the 
European Society of Cardiology: Management of acute myocardial 
infarction in patients presenting with ST‑segment elevation. The 
Task Force on the Management of Acute Myocardial Infarction of 
the European Society of Cardiology. Eur Heart J 24: 28‑66, 2003.

  5.	Louwen F, Muschol‑Steinmetz C, Reinhard J, Reitter A and 
Yuan J: A lesson for cancer research: Placental microarray gene 
analysis in preeclampsia. Oncotarget 3: 759‑773, 2012.

  6.	Wang B, Huang DS and Jiang C: A new strategy for protein 
interface identification using manifold learning method. IEEE 
Trans Nanobioscience 13: 118‑123, 2014.

  7.	Xia JF, Zhao XM, Song J and Huang DS: APIS: Accurate prediction 
of hot spots in protein interfaces by combining protrusion index 
with solvent accessibility. BMC Bioinformatics 11: 174, 2010.

  8.	Lee HK, Hsu AK, Sajdak J, Qin J and Pavlidis P: Coexpression 
analysis of human genes across many microarray data sets. 
Genome Res 14: 1085‑1094, 2004.

  9.	van Noort V, Snel B and Huynen MA: The yeast coexpression 
network has a small‑world, scale‑free architecture and can be 
explained by a simple model. EMBO Rep 5: 280‑284, 2004.

10.	Stuart JM, Segal E, Koller D and Kim SK: A gene‑coexpression 
network for global discovery of conserved genetic modules. 
Science 302: 249‑255, 2003.

11.	Tilford CA and Siemers NO: Gene set enrichment analysis. 
Methods Mol Biol 563: 99‑121, 2009.

12.	Curtis RK, Oresic M and Vidal‑Puig A: Pathways to the analysis 
of microarray data. Trends Biotechnol 23: 429‑435, 2005.

13.	Zhang T, Zhao LL, Zhang ZR, Fu PD, Su ZD, Qi LC, Li XQ and 
Dong YM: Interaction network analysis revealed biomarkers in 
myocardial infarction. Mol Biol Rep 41: 4997‑5003, 2014.

14.	Bu X, Wang B, Wang Y, Wang Z, Gong C, Qi F and Zhang C: Path
way‑related modules involved in the application of sevoflurane or 
propofol in off‑pump coronary artery bypass graft surgery. Exp 
Ther Med 14: 97‑106, 2017.

15.	Donato M, Xu Z, Tomoiaga A, Granneman JG, Mackenzie RG, 
Bao R, Than NG, Westfall PH, Romero R and Draghici S: 
Analysis and correction of crosstalk effects in pathway analysis. 
Genome Res 23: 1885‑1893, 2013.

16.	Sharan R, Ulitsky I and Shamir R: Network‑based prediction of 
protein function. Mol Syst Biol 3: 88‑88, 2007.

17.	Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD 
and Morris Q: GeneMANIA prediction server 2013 update. 
Nucleic Acids Res 41: W115‑W122, 2013.

18.	Gautier L, Cope L, Bolstad BM and Irizarry RA: affy ‑ analysis of 
Affymetrix GeneChip data at the probe level. Bioinformatics 20: 
307‑315, 2004. 

19.	Benjamini Y, Drai D, Elmer G, Kafkafi N and Golani I: Control‑ 
ling the false discovery rate in behavior genetics research. Behav 
Brain Res 125: 279‑284, 2001.

20.	Huang W, Sherman BT and Lempicki RA: Systematic and inte-
grative analysis of large gene lists using DAVID bioinformatics 
resources. Nat Protoc 4: 44‑57, 2009.

21.	Ford G, Xu Z, Gates A, Jiang J and Ford BD: Expression Analysis 
Systematic Explorer (EASE) analysis reveals differential gene 
expression in permanent and transient focal stroke rat models. 
Brain Res 1071: 226‑236, 2006.

22.	Ruan J, Dean AK and Zhang W: A general co‑expression network‑ 
based approach to gene expression analysis: Comparison and 
applications. BMC Syst Biol 4: 8, 2010.

23.	Gillis J and Pavlidis P: The role of indirect connections in gene 
networks in predicting function. Bioinformatics 27: 1860‑1866, 
2011.

24.	Mulvihill NT, Foley JB, Murphy R, Crean P and Walsh M: 
Evidence of prolonged inflammation in unstable angina and 
non‑Q wave myocardial infarction. J Am Coll Cardiol 36: 
1210‑1216, 2000.

25.	Wang Y: Mitogen‑activated protein kinases in heart development 
and diseases. Circulation 116: 1413‑1423, 2007.

26.	Indolfi C, Avvedimento EV, Di Lorenzo E, Esposito G, 
Rapacciuolo A, Giuliano P, Grieco D, Cavuto L, Stingone AM, 
Ciullo I, et al: Activation of cAMP‑PKA signaling in vivo inhibits 
smooth muscle cell proliferation induced by vascular injury. Nat 
Med 3: 775‑779, 1997.

27.	Indolfi C, Gasparri C, Vicinanza C, De Serio D, Boncompagni D, 
Mongiardo A, Spaccarotella C, Agosti V, Torella D and Curcio A: 
Mitogen‑activated protein kinases activation in T lymphocytes of 
patients with acute coronary syndromes. Basic Res Cardiol 106: 
667‑679, 2011.

28.	Ozaki K and Leonard WJ: Cytokine and cytokine receptor plei-
otropy and redundancy. J Biol Chem 277: 29355‑29358, 2002.

29.	Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, 
Lamy M, Legall JR, Morris A and Spragg R: Report of the 
American‑European Consensus conference on acute respiratory 
distress syndrome: definitions, mechanisms, relevant outcomes, 
and clinical trial coordination. Consensus Committee. J Crit 
Care 9: 72‑81, 1994.

30.	Boekholdt SM, Peters RJ, Hack CE, Day NE, Luben R, 
Bingham SA, Wareham NJ, Reitsma PH and Khaw KT: IL‑8 
plasma concentrations and the risk of future coronary artery 
disease in apparently healthy men and women: The EPIC‑Norfolk 
prospective population study. Arterioscler Thromb Vasc Biol 24: 
1503‑1508, 2004.

31.	Ruiz‑Meana M, Garcia‑Dorado D, Juliá M, Inserte J, Siegmund B, 
Ladilov Y, Piper M, Tritto FP, González MA and Soler‑Soler J: 
Protective effect of HOE642, a selective blocker of Na+‑H+ 
exchange, against the development of rigor contracture in rat 
ventricular myocytes. Exp Physiol 85: 17‑25, 2000.

32.	Siegmund B, Ladilov YV and Piper HM: Importance of sodium 
for recovery of calcium control in reoxygenated cardiomyocytes. 
Am J Physiol 267: H506‑H513, 1994.

33.	Sánchez JA, Rodríguez‑Sinovas A, Fernández‑Sanz C, 
Ruiz‑Meana M and García‑Dorado D: Effects of a reduction in 
the number of gap junction channels or in their conductance on 
ischemia‑reperfusion arrhythmias in isolated mouse hearts. Am 
J Physiol Heart Circ Physiol 301: H2442‑H2453, 2011.

34.	Garcia‑Dorado D, Ruiz‑Meana M, Inserte J, Rodriguez‑Sinovas A 
and Piper HM: Calcium‑mediated cell death during myocardial 
reperfusion. Cardiovasc Res 94: 168‑180, 2012.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


