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Abstract. The aim of the present study was to evaluate the 
expression and specific role of microRNA (miR)‑142‑5p in 
the progression of intrahepatic cholangiocarcinoma (ICC). 
Reverse transcription‑quantitative polymerase chain reaction 
was performed to evaluate miR‑142‑5p expression in patients 
with ICC and healthy control subjects. The results revealed 
that plasma miR‑142‑5p was significantly increased in patients 
with ICC compared with the control group. Furthermore, 
miR‑142‑5p was also increased in ICC tissues compared with 
adjacent non‑neoplastic tissues. Compared with patients with 
Ta‑T1 stage ICC, miR‑142‑5p was significantly elevated in 
patients with ICC ≥T2 stage. Patients with ICC at G3 stage 
had much higher plasma miR‑142‑5p levels compared with 
those at G1/2 stage. Receiver operating characteristic analysis 
indicated that miR‑142‑5p could be used as a biomarker 
to differentiate patients with ICC from healthy controls. 
Kaplan‑Meier analysis demonstrated that plasma miR‑142‑5p 
was negatively correlated with survival in patients with ICC. 
A dual luciferase reporter assay indicated that miR‑142‑5p 
significantly suppressed the relative luciferase activity of 
pmirGLO‑PTEN‑3' untranslated region compared with the 
control group. In summary, the results of the present study 
provide novel data indicating that plasma miR‑142‑5p is 
significantly upregulated in patients with ICC. miR‑142‑5p 
may therefore have potential as a biomarker for screening 
patients with ICC from healthy controls.

Introduction

Intrahepatic cholangiocarcinoma (ICC) is one of the most 
common hepatic malignancies worldwide (1), the incidence 

and mortality of which has increased in recent years  (2). 
Previous studies have suggested that multiple signaling path-
ways are involved in the progression of ICC (3,4); however, 
the specific mechanisms underlying ICC etiology remain 
unknown. As cystoscopy is invasive and expensive, there is 
a need to identify potential diagnostic biomarkers for ICC in 
order to improve the early detection of ICC (5,6).

MicroRNAs (miRs) are small non‑coding RNAs 
~22 nucleotides in length that are associated with multiple 
biologic processes including cell proliferation, differentia-
tion and apoptosis (7). Abnormal expression of miRNAs has 
been widely identified in different diseases (8,9). For instance, 
miR‑590‑3p inhibits epithelial‑mesenchymal transition in ICC 
via suppressing Smad interacting protein 1 expression  (9). 
Additionally, several differentially expressed miRNAs have 
been reported as potential diagnostic biomarkers for patients 
with ICC; for instance, high miR‑146a expression in the plasma 
and tumor tissues is reportedly associated with prolonged 
overall survival in surgical patients with ICC (7).

Abnormal miR‑142‑5p expression has been widely reported 
in different tumors  (10‑12). miR‑142‑5p acts as a tumor 
suppressor via targeting phosphatidylinositol‑4,5‑bispho-
sphate 3‑kinase catalytic subunit α in non‑small cell lung 
cancer (10). High miR‑142‑5p expression is also associated 
with the biological aggressiveness of colorectal cancer (11) 
and has been reported as a potential predictive biomarker for 
recurrence risk in patients with gastric cancer (12). The focus 
of the present study was miR‑142‑5p and its specific role in 
the progression of ICC. The aim was to evaluate the expres-
sion of miR‑142‑5p in ICC tissues and elucidate the potential 
underlying mechanism.

Materials and methods

Cell culture. Two hundred and ninety-three cells were obtained 
from the American Type Culture Collection (Manassas, VA, 
USA) and cultured in DMEM (Invitrogen; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) supplemented with 10% 
heat‑inactivated fetal calf serum (Thermo Fisher Scientific, 
Inc.), 100 U/ml penicillin and streptomycin in 25‑cm2 culture 
flasks at 37˚C in a humidified atmosphere containing 5% CO2.

Patients and specimens. Human clinical samples were 
obtained from 100 patients with ICC between December 2016 
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and November 2017 at The First People's Hospital of 
Tongxiang (Tongxiang, China). Corresponding adjacent, 
non‑neoplastic tissues from the macroscopic tumor margin 
were isolated and used as controls. ICC diagnosis was based 
on criteria outlined by the World Health Organization (13) 
and tumor differentiation was based on the classification 
proposed by Edmondson and Steiner (13). The clinical clas-
sification of tumors was performed according to the 7th 
edition of the tumor‑node‑metastasis classification system 
of the International Union Against Cancer  (14). Patient 
characteristics are presented in Table I.

Patients were excluded from the current study if they 
exhibited: Failure of important organs, including the heart, 
lungs, kidneys and brain, intolerance to surgery, distant organ 
metastasis, lymph node involvement beyond the hepato-
duodenal ligament, hilar or caval lymph nodes, preoperative 
chemotherapy or radiotherapy and preoperative liver treat-
ment (arterial chemoembolization, radiofrequency ablation or 
percutaneous ethanol injection). All samples were immediately 
snap‑frozen in liquid nitrogen and stored at ‑80˚C. Whole blood 
samples were prospectively collected from patients with ICC 
and healthy controls without urologic malignancies. Whole 
blood (5‑8 ml) was collected in EDTA tubes and samples 
were centrifuged twice at 3,000 x g at 4˚C for 15 min. The 
plasma was then stored at ‑80˚C. All research protocols were 
approved by The First People's Hospital of Tongxiang and 
written informed consent was obtained from all participants.

Plasma RNA isolation. Total RNA was isolated from whole 
blood samples using RNAVzol LS or tissue samples using 
or RNAVzol (Vigorous Biotechnology Beijing Co., Ltd., 
Beijing, China) according to the manufacturer's protocol. The 
quality, quantity and integrity of RNA were monitored using a 
NanoDrop spectrophotometer (ND‑1000; Nanodrop; Thermo 
Fisher Scientific, Inc., Pittsburgh, PA, USA).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). A total of 1 µg RNA was reverse transcribed 
using Moloney Murine Leukemia Virus reverse transcrip-
tion enzyme (Applied Biosystems; Thermo Fisher Scientific, 
Inc.) with specific primers. The temperature protocol used 
for RT was as follows: 72˚C for 10 min; 42˚C for 60 min, 
72˚C for 5 min and 95˚C for 2 min. qPCR was performed 
using SYBR Green Supermix (Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA) in an iCycler iQ real‑time PCR detec-
tion system. The PCR amplifications were performed in a 
10 µl reaction system containing 5 µl SYBR Green Supermix, 
0.4 µl forward primer, 0.4 µl reverse primer, 2.2 µl double 
distilled H2O and 2  µl template cDNA. Thermocycling 
conditions were as follows: 95˚C for 10  min followed by 
50 cycles of 95˚C for 10 sec, 55˚C for 10 sec, 72˚C for 5 sec, 
99˚C for 1 sec, 59˚C for 15 sec and 95˚C for 1 sec, followed 
by cooling to 40˚C. Relative mRNA expression was normal-
ized to U6 using the 2‑∆∆Cq method (15). Primer sequences 
were as follows: miR‑142‑5p‑RT, 5'‑GTC​GTA​TCC​AGT​
GCA​GGG​TCC​GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACA​GTA 
​G‑3'; U6‑RT, 5'‑GTC​GTA​TCC​AGT​GCA​GGG​TCC​GAG​
GTA​TTC​GCA​CTG​GAT​ACG​ACA​AAA​TG‑3'; miR‑142‑5p, 
forward 5'‑CAT​AAA​GTA​GAA​AGC​ACT​ACT‑3'; U6, 
forward 5'‑GCG​CGT​CGT​GAA​GCG​TTC‑3'; and universal 

reverse primer, 5'‑GTG​CAG​GGT​CCG​AGG​T‑3'. The criteria 
for dividing low and high expression of miR‑142‑5p were deter-
mined as follows: Relative mRNA expression was normalized 
to U6 using the 2‑∆∆Cq method (15). Patients with below average 
2‑∆∆Cq were classed as low miR‑142‑5p expression, while those 
with above average 2‑∆∆Cq were classed as high miR‑142‑5p 
expression.

Transient transfection. A total of 6x105 293 cells were seeded 
in 6‑well plates with 2 ml DMEM supplemented with serum 
and antibiotics as above. miR‑142‑5p mimics, inhibitors, or 
miR negative controls (miR‑NC; Shanghai GenePharma Co., 
Ltd., Shanghai, China) were mixed with HiperFect transfection 
reagent (Qiagen GmbH, Hilden, Germany) and incubated at 
room temperature for 10 min. This mixture was then added to 
cultured 293 cells for 48 h. The interval between transfection 
and subsequent experimentation was 48 h.

MiRNA target prediction and dual‑luciferase reporter assay. 
TargetScan (https://www.targetscan.org) was used to predict 
potential target genes of miR‑142‑5p. The 3'‑untranslated region 
(3'UTR) of phosphate and tensin homolog (PTEN) was cloned 
into the pmirGLO plasmid. After 293 cells were cultured for 
24 h at 37˚C in DMEM medium, miR‑142‑5p or scramble were 
cotransfected with blank pmirGLO or pmirGLO‑PTEN‑3'UTR 
using Vigofect (Vigorous Biotechnology Beijing Co., Ltd.) 
according to the manufacturer's protocol. Luciferase activity 
was analyzed using a Dual‑Luciferase Reporter Assay System 
(E1910; Promega Corp., Madison, WI, USA).

Statistical analysis. Data are presented as the mean ± standard 
error of the mean. Two‑tailed unpaired Student's t‑tests were 
used to compare two groups. Multiple group comparisons 
were made using one‑way analysis of variance followed by 

Table I. Clinicopathological features of patients with ICC and 
healthy controls.

Variables	 Patients with ICC	 Healthy controls

Sex ratio (male/female)	 75/25	 39/11
Age		
  ≥60 years	 64	 35
  <60 years	 36	 15
Stage		
  Ta	 33	 ‑
  T1	 27	‑
  T2	 17	‑
  T3	 13	 ‑
  T4	 10	‑
Grade		
  1	 32	 ‑
  2	 38	 ‑
  3	 30	 ‑

ICC, intrahepatic cholangiocarcinoma.
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Tukey's multiple comparison test. Receiver operating charac-
teristic curve (ROC) analysis was used to assess the efficacy 
of miR‑142‑5p as a biomarker. Kaplan‑Meier survival analysis 
was also performed and survival differences were assessed 
using a log‑rank test. Cox regression assay was performed to 
evaluate the prognostic value of miR‑142‑5p in patients with 
ICC. SPSS (version 20.0, SPSS, Inc., Chicago, IL, USA) was 
used for all statistical analysis. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Plasma and tissue miR‑142‑5p levels are upregulated in 
patients with ICC. Compared with healthy controls (1±0.87), 
plasma miR‑142‑5p was significantly upregulated in patients 
with ICC (33.7±13.5; Fig.  1A). Furthermore, miR‑142‑5p 
expression was significantly higher in tumor tissues (7.45±1.23) 
compared with adjacent non‑neoplastic tissues (1±0.45; 
Fig. 1B). ROC analysis indicated that plasma miR‑142‑5p could 

be used to screen patients with ICC from healthy controls, with 
an area under the curve of 0.844, (95% confidence interval: 
0.730‑0.959; Fig. 1C). Furthermore, the prognostic value of 
miR‑142‑5p was assessed using Cox analysis. The results 
revealed that miR‑142‑5p overexpression was an independent 
prognostic factor for patients with ICC (hazard ratio 3.508, 
95% confidence interval 1.783‑6.968; Table II).

miR‑142‑5p expression is positively correlated with ICC 
metastasis and invasion. Compared with patients with Ta‑T1 
stage ICC, (1±0.68), plasma miR‑142‑5p was significantly 
elevated in patients with ICC with ≥T2 staging (21.5±5.93; 
Fig. 2A). Furthermore, patients with ICC at G3 stage had 
significantly higher plasma miR‑142‑5p levels (17.8±4.56) 
compared with those at G1/2 stage (1±0.67; Fig. 2B).

Plasma miR‑142‑5p is negatively correlated with survival in 
ICC cancer patients. The results of Kaplan‑Meier analysis 
revealed that patients with high plasma miR‑142‑5p had a 

Figure 1. miR‑142‑5p expression in plasma and tissue samples. (A) Plasma miR‑142‑5p in healthy controls and patients with ICC. (B) miR‑142‑5p expression 
in tumor and adjacent non‑neoplastic tissues. (C) Receiver operating characteristic analysis indicated that plasma miR‑142‑5p could screen patients with ICC 
from healthy controls. ***P<0.001 vs. control and ##P<0.01 vs. adjacent non‑neoplastic tissues. miR, microRNA; ICC, intrahepatic cholangiocarcinoma.

Table II. Multivariate Cox regression analysis for miR‑142‑5p in patients with intrahepatic cholangiocarcinoma.

Parameter	 Hazard ratio	 95% confidence interval	 P‑value

miR‑142‑5p	 3.508	 1.783‑6.968	 <0.001
Sex	 0.843	 0.532‑1.467	 0.486
Age	 1.513	 0.879‑1.987	 0.114
Tumor size	 1.021	 0.621‑1.831	 0.876
Lymph node metastasis	 1.032	 0.653‑1.902	 0.821
Clinical stage	 0.926	 0.602‑1.623	 0.821
Histological type	 1.024	 0.597‑1.821	 0.921
Differentiation	 1.067	 0.672‑1.906	 0.798

miR, microRNA.
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poorer survival rate compared with those with low plasma 
miR‑142‑5p, with 5‑year overall survival rates of 27.86 and 
51.46%, respectively (Fig. 3). In addition, to analyze whether 
clinical factors, including sex, age, tumor diameter and 
tumor differentiation affect ICC prognosis, Kaplan‑Meier 
survival curves were plotted and compared using a log‑rank 
test (Table  III). Log‑rank analysis demonstrated that 
increased miR‑142‑5p was significantly correlated with tumor 
differentiation and malignancy (Table III).

PTEN is a target gene of miR‑142‑5p. Based on the results of 
TargetScan analysis, a conserved binding site of miR‑142‑5p 
in the 3'UTR of PTEN was identified (Fig.  4A). Dual 
luciferase reporter assay results indicated that miR‑142‑5p 
significantly suppressed the relative luciferase activity of 
pmirGLO‑PTEN‑3'UTR compared with the control (Fig. 4B). 

Figure 2. miR‑142‑5p is positively correlated with ICC metastasis and inva-
sion. (A) Plasma miR‑142‑5p expression in patients with Ta‑T1 and ≥T2 
stage ICC. (B) Plasma miR‑142‑5p expression in patients with TG1/2 and G3 
stage ICC. ***P<0.001 vs. Ta‑T1 and ###P<0.001 vs. G1/2. miR, microRNA; 
ICC, intrahepatic cholangiocarcinoma.

Figure 3. Kaplan‑Meier analysis for plasma miR‑142‑5p expression and the 
survival of patients with intrahepatic cholangiocarcinoma. miR, microRNA.

Table III. Clinicopathological features of patients with intrahepatic cholangiocarcinoma and healthy control subjects.

	 miR‑142‑5p	 Overall survival, months
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 N	 Low	 High	 P‑value	 Mean	 95% CI	 P‑value

Sex							     
  Male	 75	 37	 38	 0.985	 44.67	 39.05‑51.94	 0.435
  Female	 25	 13	 12		  38.25	 32.56‑43.15	
Age							     
  ≥60	 64	 34	 30	 0.936	 40.87	 36.87‑47.35	 0.098
  <60	 36	 18	 18		  42.86	 31.45‑50.87	
Stage							     
  Ta	 33	 15	 18	 0.016	 52.56	 46.87‑57.67	 0.012
  T1	 27	 13	 14		  46.53	 39.75‑53.12	
  T2	 17	 9	 8		  36.54	 30.57‑43.22	
  T3	 13	 6	 7		  29.35	 27.01‑34.52	
  T4	 10	 4	 6		  20.91	 5.78‑32.87	
Grade							     
  1	 32	 17	 15	 0.032	 46.08	 40.35‑50.76	 0.009
  2	 38	 19	 19		  36.45	 30.23‑43.12	
  3	 30	 16	 14		  21.34	 6.56‑35.96	

CI, confidence interval.
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Western blotting also revealed that miR‑142‑5p overexpression 
downregulated PTEN (Fig. 4C), while miR‑142‑5p knock-
down resulted in PTEN upregulation (Fig. 4D). These results 
confirm PTEN as a target gene of miR‑142‑5p.

Discussion

ICC is the second most common intrahepatic primary tumor 
after hepatocellular carcinoma and ICC is highly invasive by 
nature and frequently metastasizes (16). It has been reported 
that chromosomal anomalies, genetic polymorphisms and 
genetic or epigenetic alterations may contribute to the 
tumorigenesis and progression of ICC (17,18). It is important 
to detect ICC early in order to improve treatment outcomes. 
Increasing evidence has suggested that miRNAs may be used 
as potential diagnostic biomarkers for ICC and may also serve 
as therapeutic targets (19,20).

miRNAs are able to stably exist in bodily fluids, including 
serum, plasma, saliva, urine and tears (20,21). Furthermore, 
miRNAs can be easily detected in small amounts and are 
resistant to degradation (20,22). These characteristics make 
miRNAs attractive as potential biomarkers  (20). In the 
present study it was determined that data showed that plasma 
miR‑142‑5p was significantly increased in patients with ICC 
compared with healthy controls. Furthermore, miR‑142‑5p 
levels were increased in ICC tumor tissues compared with 

adjacent non‑neoplastic tissues. Further analysis revealed a 
positive correlation between miR‑142‑5p and clinical outcome. 
Compared with patients with ICC at Ta‑T1 stage, miR‑142‑5p 
was significantly upregulated in patients with ICC at ≥T2 stage. 
Additionally, patients with ICC at G3 stage had higher plasma 
miR‑142‑5p levels compared with those at G1/2 stage. These 
data indicate that miR‑142‑5p expression is positively corre-
lated with therapy and outcome. ROC analysis indicated that 
miR‑142‑5p could be used to differentiate patients with ICC 
from healthy controls. Additionally, Kaplan‑Meier analysis 
revealed that plasma miR‑142‑5p is negatively correlated with 
survival in patients with ICC. These data indicate that plasma 
miR‑142‑5p may be useful for the early detection of cancer and 
individualized therapies. The main focus of the present study 
was PTEN, which is an important tumor suppressor in the 
development of ICC (23). Mutation and genomic loss of PTEN 
have been widely reported in a number of cancers (24,25). It has 
been also demonstrated that liver‑specific deletion of PTEN in 
a mouse model results in the development of ICC (26,27). As an 
important tumor suppressor, PTEN mainly acts to dephosphor-
ylate phosphatidylinositol‑3,4,5‑trisphosphate [PtdIns(3,4,5)
P3], which potently activates 3‑phosphoinositide‑dependent 
kinase (PDK) and protein kinase B (AKT)  (28). However, 
PTEN loss leads to excessive recruitment of PtdIns(3,4,5)P3 at 
the plasma membrane, thereby activating a subset of proteins, 
including the AKT family and PDK1 (28). AKT signaling 

Figure 4. PTEN is a target gene of miR‑142‑5p. (A) A conserved binding site of miR‑142‑5p in the 3'UTR of PTEN was identified using TargetScan. (B) A 
dual luciferase reporter assay was performed to confirm the TargetScan prediction. Western blotting was performed to measure PTEN expression in cells 
transfected with (C) miR‑142‑5p mimics and (D) inhibitors. *P<0.05 vs. miR‑NC. ***P<0.001 vs. pmirGLO. RLU, relative luciferase unit; PTEN, phosphate and 
tensin homolog; miR, microRNA; 3'UTR, 3'‑untranslated region.
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induces cell survival, cell proliferation, angiogenesis and 
cellular metabolism via phosphorylating downstream signaling 
proteins  (29,30). The results of the present study revealed 
that PTEN was a target gene of miR‑142‑5p. PTEN is widely 
acknowledged as a tumor suppressor that is mutated in multiple 
tumors (31‑33). In the progression of ICC cancer, PTEN could 
negatively regulate the AKT/PKB signaling pathway, thereby 
increasing cancer cell growth and survival (34,35). The results 
of the present study indicate that miR‑142‑5p may suppress 
PTEN expression, thereby resulting in the malignant prolifera-
tion and increased viability of cancer cells.

In summary, this study presents novel data indicating 
that plasma miR‑142‑5p is significantly upregulated in 
patients with ICC. Further analysis demonstrated that plasma 
miR‑142‑5p could be used to screen patients with ICC from 
healthy controls by targeting PTEN. However, only limited 
samples were included in the current study. Thus, in further 
study, it may be necessary to include more patients to validate 
the application of miR‑142‑5p as a potential biomarker.
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