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Abstract. Guilt by association (GBA) algorithm has been 
widely used to statistically predict gene functions, and 
network‑based approach increases the confidence and veracity 
of identifying molecular signatures for diseases. This work 
proposed a network-based GBA method by integrating the 
GBA algorithm and network, to identify seed gene functions 
for progressive diabetic neuropathy (PDN). The inference 
of predicting seed gene functions comprised of three steps: 
i) Preparing gene lists and sets; ii) constructing a co-expres-
sion matrix (CEM) on gene lists by Spearman correlation 
coefficient (SCC) method and iii) predicting gene functions by 
GBA algorithm. Ultimately, seed gene functions were selected 
according to the area under the receiver operating characteris-
tics curve (AUC) index. A total of 79 differentially expressed 
genes (DEGs) and 40 background gene ontology (GO) terms 
were regarded as gene lists and sets for the subsequent 
analyses, respectively. The predicted results obtained from 
the network-based GBA approach showed that 27.5% of all 
gene sets had a good classified performance with AUC >0.5. 
Most significantly, 3 gene sets with AUC >0.6 were denoted 
as seed gene functions for PDN, including binding, molecular 
function and regulation of the metabolic process. In summary, 
we predicted 3 seed gene functions for PDN compared with 
non-progressors utilizing network-based GBA algorithm. The 
findings provide insights to reveal pathological and molecular 
mechanism underlying PDN.

Introduction

Diabetic neuropathy (DN) is the most common and troublesome 
complication of diabetes, characterized by the gradual loss of 
peripheral axons, resulting in diminished sensation, pain, and 
eventual complete loss of sensation (1). Pathologically, it is 
the culprit of a series of interrelated metabolic abnormalities 
with insulin deficiency and hyperglycemia (2). Importantly, 
DN affects up to 60-70% of diabetics, leading to the highest 
morbidity and mortality rates and to a huge economic burden 
of diabetes care (3,4). However, in addition to controlling 
blood glucose levels, no effective treatment options have been 
found to prevent, slow or reverse the progression of DN and 
are not always achievable even in alert patients (5). Besides, a 
good understanding of pathological and molecular mechanism 
underlying DN might give help to explore effective therapy of 
this complicated disease.

The difference of gene expression levels could reflect 
the propensity of many diseases, and thus identifying gene 
functions has been an effective way to reveal the pathological 
mechanism of a disease at molecular level (6). ELAVL3, as 
a member of the Elavl family, is known as a neuronal Elavl 
because it is expressed in peripheral and central neurons 
throughout development (7). Ogawa et al hold the view 
that ELAVL3 is essential for maintaining Purkinje neuron 
axons (8). It has been reported that ELAVL3 regulates 
neuronal polarity via alternative splicing of embryo‑specific 
exon in AnkyrinG (9). There is some evidence to suggest that 
Molecule Interacting with CasL‑Like1 (MICALL1), involved 
in pre‑cytokinetic events, acts as a membrane hub on tubular 
recycling endosomes (10). According to recent reports, 
tubular recirculating endosome biogenesis was regulated 
through p53‑MICALL1 pathway (11). HEY2, as a member 
of hairy-related basic helix-loop-helix transcription factor 
subfamily, is involved in boundary formation and cell fate 
determination (12). Recent research has indicated that miR-98 
activated the Notch signaling pathway by binding to HEY2 in 
Alzheimer's disease mice to improve mitochondrial dysfunc-
tion and oxidative stress (13). Our research results agree 
with previous studies, suggesting that ELAVL3, MICALL1, 
HEY2 genes have effects on neurological diseases. It has 
been demonstrated that by using variants based on the guilty 
susceptibility (GBA) algorithm, gene function prediction can 
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be performed with very high statistical confidence assuming 
that the associations in the genetic data is necessary to 
establish culpability (14). Although various of techniques 
have been proposed for purpose of extending the GBA to 
indirect connections, only slight effectiveness has been 
discovered (15‑18).

In the present study, a new method was proposed to predict 
seed gene functions for progressive DN (PDN) patients, by 
integrating the GBA algorithm and network-based method. To 
achieve this goal, gene expression data and gene ontology (GO) 
annotations were collected from the public databases. 
Differentially expressed genes (DEGs) were identified as gene 
lists and background GO terms were extracted as gene sets. 
The co-expression matrix (CEM) was constructed on gene 
lists by Spearman correlation coefficient (SCC) method.

Materials and methods

Preparing gene expression data. Gene expression data 
[GSE24290 (19)] for human DN were recruited from the 
public-free Gene Expression Omnibus (GEO). In brief, 
based on the density of myelinated fibers, GSE24290 divided 
the DN patient samples into two groups, progressors and 
non‑progressors. In short, the patients in the progressive group 
lost ≥500 fibres/mm2, and the patients in the non‑progressive 
group lost ≤100 fibres/mm2 over 52 weeks (20). By mapping 
these preprocessed probes to gene structures, a total of 
10,570 genes were identified for PDN for subsequent analysis.

Collecting gene sets. All human GO annotations were prepared 
from the Gene Ontology Consortium (21,22). For purpose of 
making these retained GO terms more correlated to progres-
sors, we took the intersections between DEGs and GO terms. 
If the number of DEGs for a GO term was smaller than 20, it 
was removed. Only GO terms including equal or more than 
20 DEGs were reserved.

Identif ying DEGs. DEGs between progressors and 
non‑progressors were detected (23). The lmFit function 
implemented in Limma was utilized to perform linear fitting, 
empirical Bayes statistics and false discovery rate (FDR) cali-
bration of the P‑values on the data (24,25). The thresholds for 
DEGs were set as P<0.05 and |log2

 fold‑change| >2.

Constructing CEM. To further investigate the correlations or 
interactions among DEGs, a CEM for them was constructed 
based on the SCC algorithm (26). If the SCC for a pair of genes 
was positive, it would indicate a positive linear correlation 
between the two genes. Similarly, a negative SCC refers to a 
negative relationship of the gene pair. In addition, the absolute 
SCC value of an interaction was denoted as its weight value. 
Furthermore, the higher the weight value across two genes, the 
stronger the interaction was, especially for 1. Otherwise, the 0 
meant that there was no interaction between two genes. As a 
result, a CEN was constructed according to weight.

Network‑based GBA algorithm. The GBA algorithm was 
combined with network to predict significant gene functions 
for progressors. Specifically, for a DEG in the CEM, we chose 
its adjacent genes to enrich to a GO term. Based on these GO 

functional annotations, a multi-functionality (MF) score was 
assigned to each gene i in the CEM (14),

of which Numink
 represented the number of genes within 

GO group k, whose weighting had the effect of giving contri-
bution to a GO group; and Numoutk

 was the number of genes 
outside GO group k in the CEM, whose weighting provided a 
corresponding weighting to genes not within the GO group. 
Note that we computed the AUC for evaluating classification 
performances between progressors and non-progressors. Here, 
for assessing the predictive power of machine learners in the 
support vector machine (SVM) model, AUC is an assessment 
of the accuracy of clinical classification performance (27). 
Most importantly, an AUC of 0.5 represents classification at 
chance levels, while an AUC of 1.0 represents a perfect clas-
sification. Thus we defined GO terms of AUC >0.6 as seed 
gene functions for PDN patients in the present report.

Results

Gene lists. In this report, based on 10,570 genes in GSE24290, 
we identified 79 DEGs between progressors and non‑progres-
sors by Limma package when setting the thresholds as P<0.05 
and |log2 fold‑change| >2. All DEGs were ranked in ascending 
order of their P‑values (Table I). We found that the most 
significant DEGs were ELAVL3 (P=1.87E-02), MICALL1 
(P=2.51E-02), HEY2 (P=3.42E‑02), PCDHB1 (P=3.69E‑02) 
and OR2S2 (P=4.81E-02). Importantly, the 79 DEGs were 
regarded as gene lists for further exploitation.

Gene sets. In the Gene Ontology Consortium database, there 
are 19,003 gene sets involved in 18,402 genes. To make these 
sets with a stable performance and more correlated to progres-
sors, we chose GO terms from 20 to 1,000 in size and then took 
intersections between the reserved terms with the gene lists. 
Only gene sets containing intersected DEGs >20 were left in 
the subsequent analysis. Hereinafter, we defined the amount of 
intersected DEGs as the count value of this term. As a result, 
a total of 40 GO terms were determined (Table II), termed 
with background GO terms. There were three terms with 
Count >60, cellular component (GO:0005575, Count = 71), 
biological process (GO:0008150, Count = 67), and molecular 
function (GO:0003674, Count = 66). Furthermore, we calcu-
lated the DEGs by expressing the spectral data. According 
to the GO enrichment analysis, the enrichment of 79 DEGs 
in background GO terms was obtained (28). DEG annotated 
to a GO term, and if the gene is present in the GO term, the 
value is 1 (red), otherwise 0 (yellow). Finally, the heatmap 
was obtained from the heatmap package in the R language to 
analyze the above enrichment situation (Fig. 1). The result of 
this heatmap was in accordance with Table II. Ultimately, the 
background GO terms were the gene sets used.

CEM. With an attempt to investigate biological correlations 
among DEGs, a CEM with 79 nodes and 3,081 interactions 
were constructed based on the SCC, of which each interac-
tion possessed a weight value to reveal the interacted strength 
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between two genes. The weight distribution for interactions in 
this CEM showed the characteristic of good adjacent matrix 
that weights on its diagonal nearly equaled to 1, which suggested 
that the CEM had a good network scale property. In particular, 
an edge between C6orf120 and PGAP3 had the highest weight 
of 0.994. Moreover, to further evaluate the activities of genes 
in interactions of high weights, topological degree centrality 
analysis was conducted on all nodes in the CEM. The results 
showed that C6orf120 connected with 56 adjacent genes and 
thus had the highest degree. Subsequently, an assortativity 

coefficient was calculated to assess degree assortative mixing 
pattern extent. Consequently, the assortativity coefficient for 
the CEM was 0.829, indicating that the network had perfect 
assortative mixing patterns.

A sub-network was extracted from the CEM by selecting 
those interactions with weight >0.8 and visualized it by 
Cytoscape software (Fig. 2). There were 48 nodes and 
330 edges in the sub‑network. Among these nodes, PGAP3, 
C6orf120 and RBM12B had higher degree than the others, 
which suggested their key roles in the PCN patients and 

Table I. Gene list for progressive diabetic neuropathy (PDN).

Rank  DEG P‑value Rank  DEG P‑value

  1 ELAVL3 0.018730149 41 FER1L4 0.237218317
  2 MICALL1 0.025064168 42 TAS2R13 0.254492341
  3 HEY2 0.034183011 43 SYN1 0.254519864
  4 PCDHB1 0.036938421 44 KCNMB4 0.257387331
  5 OR2S2 0.048112652 45 SLC35E1 0.258472445
  6 CNTD2 0.055977842 46 PRX 0.267184163
  7 DNAJB12 0.059213903 47 GIPC2 0.276805505
  8 GPR21 0.061091712 48 RBM12B 0.298659702
  9 PFN1 0.068351436 49 HACD1 0.302339336
10 ZMIZ2 0.073944462 50 NAALAD2 0.309726354
11 HSPA6 0.080467794 51 KLHL21 0.310864132
12 TRIM36 0.082922925 52 TMX2 0.316649651
13 MTHFD1 0.08313726 53 HEBP2 0.319262815
14 RPA4 0.091277628 54 RFC2 0.319345713
15 NIPAL2 0.101024558 55 CCDC134 0.327623954
16 HDDC2 0.106181304 56 MEPE 0.343481838
17 LIME1 0.107101383 57 TRAPPC9 0.374991751
18 MAPKAPK5‑AS1 0.108867691 58 TXNRD1 0.384530053
19 CCDC186 0.116573636 59 CTDNEP1 0.386873156
20 FCF1 0.117569875 60 SH2D4A 0.39096557
21 PSMD5 0.118641952 61 ZNF512B 0.390996512
22 YTHDF3 0.130853807 62 TAGLN2 0.400497742
23 CDHR5 0.135952991 63 C10orf76 0.401347031
24 C6orf120 0.1416115 64 PIK3IP1 0.409666004
25 VWA7 0.144178178 65 C5orf30 0.420802441
26 ASF1A 0.147208457 66 PKNOX1 0.449555958
27 NELL2 0.162233252 67 DNAJB2 0.465398033
28 SRM 0.167545586 68 NCR2 0.474076273
29 SH3KBP1 0.176459493 69 GALNT8 0.475841943
30 USE1 0.178993287 70 IKZF3 0.480703371
31 INSIG1 0.179397171 71 SENP5 0.492341515
32 SSH3 0.18328187 72 POMGNT2 0.510089318
33 FAM66D 0.185333874 73 CALHM2 0.515258516
34 PGAP3 0.190879424 74 ATP8B4 0.5305693
35 PER2 0.192655455 75 GALNT10 0.543825962
36 CCS 0.193106321 76 WIZ 0.550465591
37 E2F8 0.200074614 77 FER 0.594006462
38 HTR1F 0.221840324 78 PITPNA 0.597706177
39 ZNF142 0.232301069 79 MYO3A 0.599378182
40 PPP1R3B 0.236879137
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Figure 1. Heatmap for gene lists and sets. The ordinate, 79 differentially expressed genes (DEGs), the abscissa the 40 GO terms. Red, the association between 
the gene and the go term in sample channel. Yellow, no correlation between the gene and the go term in reference channel.

Figure 2. Sub‑network of co‑expression matrices (CEM). There were 48 nodes and 330 edges, of which the nodes were differentially expressed genes (DEGs) 
and the edges interactions between two DEGs with weight >0.8.
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inferred that gene functions participated by them might act as 
critical processes in progressors.

Seed gene functions. The AUC index was applied to evaluate 
the classified performance on MF scores between progressors 

and non‑progressors by the 3‑fold cross‑validation. Generally, 
if an AUC for a gene or process was >0.5, it could be used to 
classify the case group from controls. In this report, the AUC 
for the 40 gene sets are shown in Fig. 3. There were 11 GO 
terms with AUC >0.5 in total. Thus, 11 of 40 (27.5%) gene sets 

Table II. Gene sets for progressive diabetic neuropathy (PDN).

GO ID GO term Counts GO ID GO term Counts

GO:0005575 Cellular component 71 GO:0008152 Metabolic process 36
GO:0008150 Biological process 67 GO:0071704 Organic substance metabolic process 34
GO:0003674 Molecular function 66 GO:0016020 Membrane 33
GO:0005623 Cell 58 GO:0044237 Cellular metabolic process 33
GO:0044464 Cell part 58 GO:0044238 Primary metabolic process 33
GO:0009987 Cellular process 57 GO:0043170 Macromolecule metabolic process 28
GO:0005488 Binding 55 GO:0044425 Membrane part 27
GO:0044699 Single-organism process 52 GO:0044444 Cytoplasmic part 27
GO:0043226 Organelle 49 GO:0044260 Cellular macromolecule metabolic process 26
GO:0044763 Single‑organism cellular process 49 GO:0005634 Nucleus 25
GO:0005622 Intracellular 47 GO:0016021 Integral component of membrane 25
GO:0044424 Intracellular part 47 GO:0031224 Intrinsic component of membrane 25
GO:0043227 Membrane‑bounded organelle 46 GO:0043167 Ion binding 24
GO:0065007 Biological regulation 43 GO:0050896 Response to stimulus 24
GO:0043229 Intracellular organelle 42 GO:0044422 Organelle part 23
GO:0005515 Protein binding 41 GO:0097159 Organic cyclic compound binding 23
GO:0043231 Intracellular membrane‑bounded 40 GO:1901363 Heterocyclic compound binding 23
 organelle
GO:0050789 Regulation of biological process 39 GO:0044446 Intracellular organelle part 22
GO:0005737 Cytoplasm 38 GO:0019222 Regulation of metabolic process 21
GO:0050794 Regulation of cellular process 37 GO:0032502 Developmental process 21

Figure 3. The area under the receiver operating characteristics curve (AUC) distribution for the gene sets.
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had a good classification performance between progressors 
and non‑progressors of DN. Among them, 3 with AUC >0.6 
were considered to be seed gene functions in progressors of 
DN. The seed gene functions were Binding (GO:0005488, 
AUC=0.668), Molecular function (GO:0003674, AUC=0.654), 
and Regulation of metabolic process (GO:0019222, 
AUC=0.636).

Discussion

In the present study, we predicted seed gene functions in 
PDN patients by using a network-based GBA method, since 
the network‑based approach systematically investigate the 
molecular complexity of a particular disease (29) and identify 
potential signatures through bio-molecular networks rather 
than individual genes (30,31). An integration of co‑expression 
network and the GBA algorithm provide a new manner 
to predict significant gene functions and reveal molecular 
mechanism underlying PDN.

On the basis of SCC method, a CEM for progressors was 
constructed on DEGs, and a sub‑network of weight >0.8 was 
extracted from the CEM. Interestingly, we found that PGAP3, 
C6orf120 and RBM12B had high degree both in CEM and its 
sub-network, which indicated their importance in progressors. 
Taking RBM12B as an example, RBM12B (RNA binding 
motif protein 12B) is a protein coding gene that relates to 
functions of RNA binding, nucleic acid binding and nucleo-
tide binding (32). It has been demonstrated that Rbm12b and 
Rbm3 are mainly down‑regulated and highly responsive to 
systemic hypoxia in mouse developing brain and placenta (33). 
This is the first time the key role of RBM12B in human PDN 
patients was uncovered. In addition, in our study, this gene was 
enriched in two seed gene functions, Binding and Molecular 
function. The possible inference was that the dys-regulation of 
RBM12B might disturb the normal functions of binding and 
lead to brain injury, even lesions of the nervous system.

Particularly, a total of 40 background GO terms were 
identified as gene sets for the current study. Subsequently, 
an MF score was assigned to each gene in the specific gene 
set, and then an AUC for each GO term was produced to 
assess the prediction performance between progressors and 
non-progressors. In consequence, 27.5% of all gene sets had 
a good classified performance with AUC >0.5. Most signifi-
cantly, 3 gene sets with AUC >0.6 were denoted as seed gene 
functions for PDN, including Binding, Molecular function and 
Regulation of metabolic process. It is a common phenomenon 
that a given gene is present in one or more molecular functions 
(such as RBM12B described above), and two or more genes 
exhibit the same function.

Cameron et al reviewed that poor metabolic control was 
one of microvascular complications correlated to DN (34). 
Thus, it was important to improve the metabolic conditions 
that led to the pathology underlying peripheral DN, and the 
metabolic correction modified symptom control and clinical 
results (35). Moreover, metabolic dysfunction in experimental 
DN due to energy homeostasis and/or oxidative stress is 
limited to the sciatic nerve (36). Above all, we might conclude 
various metabolic processes play crucial roles in DP, and thus 
the regulation of metabolic process has become informative in 
PDN patients.

In summary, we have predicted 3 seed gene functions for 
progressors of DP compared with non-progressors utilizing 
network‑based GBA algorithm. The findings provide insights 
to reveal pathological and molecular mechanism underlying 
PDN. However, the expression data used in this work was 
recruited from the open access database, and the 3 seed gene 
functions still need to be validated.
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