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Abstract. Autism spectrum disorder (ASD) is a neuro-
developmental and network-level disorder mainly diagnosed 
in children. The aim of the current study was to develop a 
computer-aided diagnosis method with high accuracy to 
distinguish school-aged children (5-12 years) with ASD from 
those typically developing (TD). The current study used 
multi-institutional functional magnetic resonance imaging 
(fMRI) datasets of 198 school-aged participants from the 
Autism Brain Imaging Data Exchange II database and employed 
enhanced stacked auto-encoders to distinguish between 
school-aged children with ASD from those TD. In the current 
study, the average diagnostic accuracy was 96.26% (average 
sensitivity=98.03%; average specificity=93.62%); these results 
of classification were higher than that observed in previous 
studies using single or two frequency bands. The current study 
demonstrated that the proposed computer-aided diagnosis 
method may be used to distinguish between school-aged children 
with ASD from those TD. Attempts to use full frequency bands, 
deep learning based algorithm and multi-institutional fMRI 
datasets to distinguish between school-aged children with ASD 
from TD may be a key step towards clinical auxiliary diagnosis 
independent of sex, handedness, intellectual level or scanning 
parameters of fMRI data.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental 
and network-level disorder characterized by impaired 
development of social interaction, communication skills and 
a restricted repertoire of activities and interests (1). In 2014, 

the Centers for Disease Control and Prevention (CDCP) 
estimated that 1 in 68 children were identified with ASD 
in the United States, an increase of ~30% compared with 
previous estimates of 1 in 88 children identified with ASD 
in 2012 (2,3). In 2014, China's Health and Family Planning 
Commission reported that an estimated 41,000 children 
aged 0‑6 years were identified with ASD (4). ASD mostly 
affects language, social communication, motor behaviors 
and sensory systems (5). Therefore, parents/guardians of 
children with ASD should consult with pediatric specialists 
as early as possible, to begin rehabilitation and avoid abuse 
of diagnosis (6). Currently, the diagnosis of children with 
ASD is based mostly on behavioral phenotypes (7), which 
include Autism Diagnostic Interview-Revised (ADI-R) (8), 
Autism Diagnostic Observation Schedule (ADOS) (9) and the 
Diagnostic and Statistical Manual of Mental Disorders, Fourth 
Edition-Text Revision (10). In the United States, only 8% of 
pediatric specialists capable of conducting ASD screening and 
diagnosis routinely evaluate toddlers for autism (11). In 2014, 
China's Health and Family Planning Commission reported 
that there were ≤100 doctors nationwide trained in diagnosing 
autism (4). Additionally, the majority of ASD diagnostic tools 
are not available for use in school-age children. Thus, there is 
an urgent need for auxiliary diagnosis tools, which may aid to 
distinguish children with ASD from those typically developing 
(TD), in particular school-aged children.

Currently, there are several commonly used diagnostic 
methods and auxiliary diagnostic tools, which include diag-
nostic methods based on language, behavior, genes, animal 
models and/or functional magnetic resonance imaging 
(fMRI) data (12). With the development of interdisciplinary 
technology, a diagnostic method based on multi-modulus 
data and machine learning has become popular in recent 
years (13-16). One of the most effective methods is based 
on brain frequency and machine learning (14,15,17-19). 
Zuo et al (20) proposed a concept of brain frequency band 
and divided the brain frequency band into four frequency 
sub-bands Slow-2 (0.198-0.25 Hz), Slow-3 (0.073-0.198 Hz), 
Slow-4 (0.027-0.073 Hz) and Slow-5 (0.01-0.027 Hz). Other 
studies also demonstrated that the method of diagnosing 
autism based on brain frequency was possible (21-24). These 
studies also demonstrated that different brain frequency bands 
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revealed different properties and physiological functions and 
they hypothesized that these could be the ‘fingerprints’ of 
neuronal activity (25). However, these investigations based 
on brain frequencies demonstrated limited use for the clas-
sification of children with ASD and those TD. In addition, the 
accuracy of classification decreased when the fMRI data was 
obtained from a single institution (19). Chen et al (19) used 
fMRI data from multiple institutions to distinguish ASD from 
TD and demonstrated a 74% diagnostic accuracy when using 
two frequency bands compared with a 69% diagnostic accu-
racy when using only one frequency band. The heterogeneity 
and complexity of ASD has impaired the research of ASD 
in children (26). Therefore, methods based on one frequency 
band and traditional machine learning cannot be used for 
the auxiliary diagnosis of ASD. Full brain frequency bands 
contain more information, however they also have some noise, 
such as physiological noise (20). The stacked auto-encoders 
(SAE) deep learning framework is a neural network consisting 
of multiple layers and it can extract important features 
from input data (27). In the current study, an advanced 
deep learning method based on SAE, full frequency bands 
and multi-institutional fMRI data was used to distinguish 
school-aged children with ASD from those TD. The current 
study examined large fMRI datasets of 198 school-aged 
children from three different institutions obtained from the 
Autism Brain Imaging Data Exchange (ABIDE) II database 
(fcon_1000.projects.nitrc.org/indi/abide/index.html) (28) and 
demonstrated relatively high classification accuracy compared 
with previous studies (16,19,29-31).

Materials and methods

Data collection. Original fMRI datasets of 198 school-aged 
children (5-12 years) were downloaded from the ABIDE II 
database, which was released in June 2016 and enables 
unrestricted use for non-commercial purposes. The current 
study was approved by the Ethics Committee of Nanchang 
University (Nanchang, China).

Patient charts. The current study used original fMRI datasets 
of school-aged children obtained from the New York University 
Langone Medical Center (New York, NY, USA), Georgetown 
University (Washington, DC, USA) and the Kennedy Krieger 
Institute (Baltimore, MD, USA). For each participant, a 
high-resolution structural MRI sequence was acquired using 
different MRI scanners with different parameters, as well as 
a resting-state fMRI sequence using different MRI scanners 
with different parameters. The names of the three different 
institutions and the different fMRI scanning parameters are 
summarized in Table I.

All participants were diagnosed according to the score 
obtained in both the ADI-R and the ADOS. The TD partici-
pants were screened during clinical interviews conducted by 
child psychiatrists and details of the diagnostic procedures 
and questionnaires are listed in the ABIDE II database (28). 
According to age, sex and full-scale intelligence quotient 
(FIQ), 117 participants with ASD (minimum age, 5.22 years; 
maximum age, 11.99 years; mean age [standard deviation 
(SD)], 9.32 [5.62] years; FIQ [SD], 107.87 [15.26]) and 81 age- 
and FIQ-matched TD participants [minimum age, 5.88 years; 

maximum age, 11.95 years; mean age (SD), 9.67 (5.31); mean 
FIQ (SD), 109.40 (15.12)] were selected from the datasets 
obtained from New York University Langone Medical 
Center, Georgetown University and the Kennedy Krieger 
Institute. Demographic data for the selected participants are 
summarized in Table II.

Resting‑state fMRI data preprocessing. Resting-state fMRI 
preprocessing was performed using the multivariate exploratory 
linear optimized decomposition into independent components 
(MELODIC; version 3.14), a tool of FMRIB Software Library 
(FSL) software packages (32). Data preprocessing included 
head motion correction slice timing correction, removal of 
non-brain tissues, and spatial normalization into MNI152 
space using nonlinear registration and spatial smoothing using 
6 mm full width half maximum Gaussian kernel. Currently, 
the prediction of autism using brain networks involves 
examining functional connectivity in 10 functional networks 
using independent component analysis (33). A previous study 
identified 30 independent components (ICs) corresponding to 
10 previously described functional networks (34). By contrast, 
several studies revealed that the number of ICs increases to 50, 
additionally the time of fMRI data decomposition increases 
exponentially and the dimension of obtaining brain frequency 
signals also increases (26,35). High-dimensional brain signals 
will directly make the neural node of the deep learning algo-
rithm increase, which will also increase the training time of the 
system. Therefore, each participant's data were decomposed 
into 30 ICs using MELODIC (36).

Frequency selection and normalization. Following IC decom-
position using MELODIC version 3.14, the time serial, the 
power spectrum and the spatial map are generated for each 
IC (Figs. 1-3). MELODIC can generate the ICs on one spatial 
map followed by the relevant time serial of the IC and the 
power spectrum of the time serial. The power spectrum is 
an expression of brain frequency power distribution. The full 
brain frequency was divided into 5 different bands: Slow-6 
(0-0.01 Hz), Slow-5 (0.01-0.027 Hz), Slow-4 (0.027-0.073 Hz), 
Slow-3 (0.073-0.198 Hz) and Slow-2 (>0.198 Hz). The power 
spectra of 30 ICs for each participant contain the informa-
tion of each sub-frequency band in the network. In order to 
get more information, all ICs were selected in a data-driven 
manner although some ICs may contain useless information 
such as noise. All ICs with full brain frequency were selected 
according to the frequency ranges, although some ICs may 
contain low frequency drifting and noise.

For each participant, a time-series of all ICs were reshaped 
into a feature array with the same dimension. The feature 
array was normalized in the range of (0,1) using Max-Min 
normalization before it was input into the SAE‑based classifier.

SAE‑based classification. In general, a sparse auto-encoder 
(AE) is used for feature extraction and dimensionality 
reduction. The sparse AE is a framework of unsupervised 
learning method, and SAE is a neural network consisting 
of multiple layers of sparse AE, where the output of each 
layer is connected to the input of each successive layer (35). 
A softmax classifier is used for phase classification, a super-
vised learning approach (37). SAE and softmax classifier 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  17:  4055-4063,  2019 4057

were integrated into the proposed computer-aided diagnosis 
method, as shown in Fig. 4. AE is a key substructure of the 
SAE, with a symmetrical architecture (Fig. 5). The outputs of 
each layer in SAE were wired to the inputs of the successive 
layer. As shown in Fig. 6, the structure of the enhanced SAE 
proposed in the current study contains 10 layers: An input 
layer, 8 hidden layers and an output layer. The 8 hidden layers 
were divided into 4 groups, each with 2 hidden layers. The 
numbers of nodes in each of the 4 groups were as follows: 
1,280, 320, 80 and 20.

The i-th activation unit a(l)
i of the l-th layer can be 

represented by the sl-1 units of (l-1)-th layer through the 
weight parameter set w, a bias term set b and an activation 
function f as shown below in Equations 1 and 2:

Figure 2. Power spectrum following IC analysis. Blue line represents the power spectrum of IC11. IC, independent component.

Figure 1. Time series decomposition following IC analysis. Red line represents the time course of IC11. IC, independent component.

Table I. fMRI scanning parameters and settings.

 MRI TR TE Voxel  Scan
Institution manufacturer (msec) (msec) (mm3) Slices time (min) Eyes

Georgetown University Siemens AG, Munich, Germany 2,000 30 3.00x3.00x2.50 43 5.23 Open
Kennedy Krieger Institute Philips Medical Systems, Inc.,  2,500 30 2.67x2.67x3.00 47 6.67 Open
 Bothell, WA, USA
New York University Siemens AG, Munich, Germany 2,000 30 3.00x3.00x3.00 34 6.00 Open
Langone Medical Center

fMRI, functional magnetic resonance imaging; MRI, magnetic resonance imaging; TR, repetition time; TE, echo time.

Table II. Demographic data of ASD and TD participants.

Participant  Male/female Minimum Maximum Mean age,  Mean
group Patients (n) ratio age, years age, years years (SD) FIQ (SD)

ASD 117 93/24 5.22 11.99 9.32 (5.62) 107.87 (15.26)
TD 81 57/24 5.88 11.95 9.67 (5.31) 109.40 (15.12)

ASD, autism spectrum disorder; TD, typically developing; FIQ, full-scale intelligence quotient; SD, standard deviation.
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[n=number of units in the (l‑1)-th layer, f(•) was chosen as the 
sigmoid function].

G iven  a  t r a i n i ng  da t a se t  wit h  m  sa mples, 
{(x(1), y(1)),...,(x(m), y(m))} where y(i) was the category label of 
i-th sample, y(i) ϵ {1, 2,...,k} , for the first layer, the activation 
units were the input data (i.e. a(1)

i =xi). AE enabled the output 
values to gradually approach the input values by applying a 
back propagation algorithm. Therefore, the goal of AE was to 
minimize the distance between the inputs and outputs to learn 
w and b. So the cost function was computed as shown below 
in Equation 3:

[m was the number of training samples, nl (nl=3) was the 
number of layers, sl was the number of units in the l-th layer and 
λ was the weight decay parameter]. In equation 3, the first term 
was the mean square error between input and output values, 
representing the quality of learning, while the second term 
was a regularization term that tends to decrease the magnitude 
of the weights and to prevent the learning from overfitting.

To ensure that the outputs of the hidden layer are desirably 
sparse, a sparsity constraint must be introduced into the 
cost function to control the learning process. So the average 
activation of the j‑th hidden unit was defined as (with respect 
to input x) as shown below in Equation 4:

Figure 4. Proposed classification system. fMRI, functional magnetic resonance imaging; MELODIC, multivariate exploratory linear optimized decomposition 
into independent components; ICA, independent component analysis; SEA, stacked auto-encoders; TD, typically developing; ASD, autism spectrum disorder.

Figure 3. Spatial map of an independent component. Spatial map of IC11. IC, independent component.
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If ρ̂ j was small (close to 0.01), most of the units of the 
hidden layer should be inactive. To force ρ̂ j to be equal to a 
very small value ρ, the sparsity penalty term was designed 
based on the concept of Kullback-Leibler divergence, as shown 
below in Equation 5:

Subsequently, the sparsity penalty term was incorporated 
into the cost function, as shown below in Equation 6:

(β was the weight of sparsity penalty term). During the process 
of learning, the cost function Jsparse(W, b) was minimized by 
updating w and b. As presented in (31), limited-memory BFGS 
(L-BFGS) was a suitable optimization algorithm for updating w 
and b in the process of back propagation. In the current study, 
L-BFGS was adopted, and the softmax regression model was 
used to classify school-aged children with ASD and TD. After 
data preprocessing, the time serial matrix was input into the 
multi-layer SAE, and the output values from the SAE were input 
into the softmax classifier. The current study used MELODIC 
(version 3.14), an analysis tool used to decompose each partici-
pant's fMRI data into ICs. The time-series was extracted from 
each IC, and used to generate a vector time-series of each 
participant with 30 time-series. Similarly, the system was used 
to obtain 198 vector time-series, and all vector time-series were 
normalized to the same dimension in order to build a matrix. 
The matrix was divided into training matrix and test matrix 
according to the different fold cross-validation (CV). The 
training matrix was input into the SAE for optimization training. 

Finally, the trained multi‑layer SAE and softmax classifier were 
used to classify participants of the testing matrix. In this cycle, 
multiple test results can be obtained. In the current study, the 
classification accuracy of all subjects was computed using a 
CV. For example, in the 198-fold CV, the original samples are 
randomly partitioned into 198 groups, with each group including 
one participant. Of the 198 groups, 197 groups (197 participants) 
were chosen as the training set, and the remaining one partici-
pant was used as the test data. The validation was repeated 
198 times such that each participant was used exactly once as 
the test data. Averaging the 198 results during the validation 
produced the final estimation. The classification statistical 
indicators included true positive (TP), false negative (FN), true 
negative (TN) and false positive (FP) values. The parameters of 
accuracy, sensitivity, specificity, positive prediction value (PPV) 
and negative prediction value (NPV) were computed using the 
following formulae: Accuracy=(TP+TN)/(TP+TN+FP+FN) 
x100% (7);  sensit ivity=TP/(TP+FN) x100% (8); 
specificity=TN/(TN+FP) x100% (9); PPV=TP/(TP+FP) 
x100% (10); and NPV=TN/(TN+FN) x100% (11).

The sensitivity measured the proportion of positive results 
that were correctly identified. Specificity measured the 
proportion of negative results that were correctly identified, 
or the percentage of TD children who were correctly iden-
tified as TD. The whole process was performed using Dell 
Precision T5810 (CPU: Xeon (R), 3.5 GHz; MM: 128 GB; OS: 
64-bit Windows 10 professional edition) and Matlab R2012a 
(7.14.0.739, 64 bits) was used to run the multi-layer SAE and 
softmax regression algorithm. The specific algorithm settings 
including, the weight decay, sparsity penalty term, weight 
of sparsity term and the number of nodes, are summarized 
in Table III.

Results

In the current study, the classification accuracy was evaluated 
using CV. The classifier assigned a label (ASD=1, TD=2) to 
each participant, and the total accuracy was computed for each 
category. The accuracy, specificity, sensitivity, PPV and NPV 
for each CV are summarized in Table IV.

With the same 198 subject data and 198-fold CV, the 
SAE, probabilistic neural network (PNN) and support 
vector machine (SVM) algorithms achieved 96.97, 84.58 
and 83.69% accuracy, respectively (Table V). Therefore, the 
proposed SAE with 8 hidden layers of the current study was 
more accurate than other machine learning algorithms. These 
results demonstrated that the SAE algorithm was a more 
effective method for the analysis and processing of data in 
the current study. In addition, the 66-fold CV results revealed 
that the proposed SAE algorithm produced a better balance 
between the classification accuracy and computation time 
compared with SAE algorithms with different numbers of 
hidden layers (data not shown). The average accuracy obtained 
using the SAE algorithm with 6, 8 and 10 hidden layers 
was 93.69, 98.99 and 95.90%, respectively (data not shown). 
However, the computation time taken for SAE algorithms 
with 6, 8 and 10 numbers of hidden layers was 70,018, 68,588 
and 75,891 sec, respectively (data not shown). In conclusion, 
increasing the number of hidden layers did not improve the 
accuracy of the SAE algorithm, however the running time 

Figure 5. Structure of a sparse auto-encoder.
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increased. These results suggest that the SAE algorithm with 
8 hidden layers can balance the classification accuracy and 
running time.

The current study used a novel deep learning method with 
full brain frequency, to generate a higher diagnostic accuracy 
(96.26%), with increased sensitivity (98.03%) and specificity 
(93.62%). Furthermore, the accuracy classification analysis 
of the current study was compared with previously published 
studies (Table VI). The results demonstrated that the classifica-
tion accuracy was ~15% higher in the current study compared 
with previous studies, where only one or two frequency bands 
were used (19,33,38-40).

Discussion

In the current study, the proposed SAE algorithm-based clas-
sification system was generated using all frequency bands 
using multi-institutional fMRI datasets to produce high 
classification accuracy to distinguish school‑aged children 
(5-12 years) with ASD from those TD. The present study 
examined an auxiliary method to distinguish ASD with high 
sensitivity and specificity, which was considered as an entirely 
hypothesis-free and data-driven method. In a previous study, 
ASD (12-42 years) and TD (8-39 years) participants were 
classified with relatively low accuracy (38). As ASD is an 
early onset disorder with variable developmental trajectory, 
Uddin et al (33) used a network‑based classification method 

to predict children (7-13 years) with ASD and those TD. 
Although Uddin et al (33) examined 10 whole-brain func-
tional networks (salience, central executive, posterior default 
mode, ventral default mode, anterior default mode, dorsal 
attention, motor, visual association, primary visual and 
frontotemporal), the salience network was the only network, 
which demonstrated good classification accuracy. In the 
current study, several other brain networks were integrated, 
and the classification accuracy was increased compared 
with single brain network classification as demonstrated 
by Uddin et al (33). Another study classifying ASD and 
TD participants through a default network only achieved a 
relatively low accuracy compared with the current study (39). 
Although previous studies gained some success in mecha-
nism research, previous studies used relatively low numbers 
of participants and the results were based on single brain 
networks only. However, the data-driven method used in the 
current study used a bigger dataset, and attained a higher 
accuracy by not only integrating single brain networks, but 
also measuring the joint effect of several brain networks. 
In 2015, Iidaka (40) used a PNN approach on 640 partici-
pants to distinguish between ASD and TD, with relatively 
high accuracy.

Following a comparison with previously published studies 
using PNN and SVM methods, the current study revealed that 
the SAE algorithm achieved a higher classification accuracy 
compared with traditional machine learning algorithm. In 

Table III. Algorithm parameter values used in the 8 hidden layers.

Hidden layer  Weight decay Sparsity penalty term Weight of sparsity penalty term Number of node

No. 1, 2 1x10-8 0.01 3 1,280
No. 3, 4 1x10-8 0.01 3 320
No. 5, 6 1x10-8 0.01 3 80
No. 7, 8 1x10-8 0.01 3 20

Figure 6. Schematic architecture of an enhanced stacked auto-encoder.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  17:  4055-4063,  2019 4061

2016, Chen et al (19) used SVM to distinguish between ASD 
and TD, and obtained relatively low classification accuracy. 
Although Chen et al (19) and Iidaka (40) used larger datasets, 
which were obtained from the same database, the 2 clas-
sification algorithms (SVM and PNN) demonstrated less 
accuracy compared with the current study. The differences 
in methodology between the SAE and SVM/PNN algorithms 
may account for the differences observed in classification 

accuracy of the above-mentioned studies and the current 
study.

In conclusion, a deep learning based approach was used 
to successfully distinguish 198 school-aged children with 
ASD from those TD, using a data-driven method with high 
accuracy of 96.30%. Taken together, these results demonstrate 
the potential clinical application of ASD diagnostic tools in 
school-aged children with ASD.

Table IV. Cross‑validation classification accuracy analysis.

Parameter 11-fold (%) 33-fold (%) 66-fold (%) 99-fold (%) 198-fold (%) Average, % (SD)

Accuracy 94.19 93.69 98.99a 97.47 96.97 96.26 (2.02)
Specificity 87.04 87.23 100a 96.30 97.53 93.62 (5.43)
Sensitivity 99.15a 97.86 98.29 98.29 96.58 98.03 (0.84)
PPV 91.70 91.97 100a 97.46 98.26 95.88 (3.40)
NPV 98.60a 96.60 97.59 97.50 95.18 97.09 (1.15)

aMaximum value for each parameter analyzed. PPV, positive prediction value; NPV, negative prediction value; SD, standard deviation.

Table V. Comparison of classification accuracy of three different algorithms.

 Stacked auto-encoders (%) Probabilistic neural network (%) Support vector machine (%)

Accuracy 96.97 84.58 83.69

Table VI. Comparison between the classification accuracy analysis obtained in the current study and previously published studies.

 Functional Accuracy  Sensitivity Specificity  PPV  NPV
Author, year networks (%) (%) (%) (%) (%) (Refs.)

Current study   96.26 98.03 93.62 95.88 97.09 -
Uddin et al, 2013 Salience 78.00 75.00 80.00 79.00 76.00 (33)
 Central executive 58.00 55.00 60.00 58.00 57.00 (33)
 Posterior default mode 63.00 65.00 60.00 62.00 63.00 (33)
 Ventral default mode 60.00 55.00 65.00 61.00 59.00 (33)
 Anterior default mode 63.00 50.00 75.00 67.00 60.00 (33)
 Motor 68.00 60.00 75.00 71.00 65.00 (33)
 Visual association 65.00 65.00 65.00 65.00 65.00 (33)
 Dorsal attention 73.00 75.00 70.00 71.00 74.00 (33)
 Primary visual 73.00 60.00 85.00 80.00 68.00 (33)
 Frontotemporal  68.00 60.00 75.00 71.00 65.00 (33)
Anderson et al, 2011 (subject <20 years)  89.00 83.00 95.00 - - (38)
Chen et al, 2016 (NYU dataset)  80.00 95.00 72.00 - - (19)
Chen et al, 2016 (UM dataset)  84.00 69.00 94.00 - - (19)
Chen et al, 2016 (USM dataset)  80.00 80.00 80.00 - - (19)
Iidaka, 2015 (50-fold CV)  90.30 92.30 88.40 88.30 92.40 (40)
Iidaka, 2015 (10-fold CV)  86.90 85.90 87.80 87.00 86.70 (40)
Iidaka, 2015 (2-fold CV)  77.20 75.00 79.30 77.50 76.90 (40)

PPV, positive prediction value; NPV, negative prediction value; Refs., references; NYU, New York University; UM, University of Michigan; 
USM, Universiti Sains Malaysia; CV, cross-validation.
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