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Abstract. Platelet‑rich fibrin (PRF) is a platelet concentrate 
derived from complete autologous blood rich in growth factors 
in the fibrin matrix. Although PRF has been used during oral 
surgery to optimize wound healing in soft and hard tissue, 
the precise role of PRF in bone healing remains unclear. The 
present study assessed the role of PRF in bone remodeling. 
PRF was prepared from whole blood by low speed centrifuga-
tion without any anti‑coagulants. Culture of MC3T3‑E1 cells 
with PRF induced the expression of osteoprotegerin (OPG), but 
had no effect on the expression of receptor activator of nuclear 
factor‑κB ligand (RANKL), increasing the OPG/RANKL 
ratio. Expression of other osteoblastic differentiation makers, 
including BMP‑2 and ‑4 and RUNX2, was not affected. 
PRF filling of a hole defect in the mental foramen bone of 
rats increased OPG positivity and decreased tartrate‑resistant 
acid phosphatase positivity compared with unfilled control. 
In conclusion, PRF increased the OPG/RANKL ratio by 
inducing OPG expression, suggesting that PRF enhances early 
stage osteogenesis by optimizing osteoblastic differentiation. 
The present study provides a scientific basis for clinical find-
ings showing that PRF can enhance bone regeneration such as 
sinus lift.

Introduction

Tissue engineering techniques are important for maxillofacial 
surgery. Current techniques involve combinations of cellular 
components, carrier/scaffold, and bioactive components. 
Platelets contain high intracellular concentrations of cytokines 
and growth factors, including platelet‑derived growth factors 
(PDGF‑AA, PDGF‑BB and PDGF‑AB), transforming growth 

factor‑β (TGF‑β1 and TGF‑β2) and vascular endothelial growth 
factors (VEGFs), all of which can stimulate cell proliferation, 
matrix remodeling and angiogenesis (1). Following platelet 
aggregation, these molecules are released from intracellular 
pools and act to repair injured tissue. Platelets not only secrete 
cytokines from their cytoplasm but continue to synthesize cyto-
kines using their mRNA reserves for at least another 7 days (2). 
Therefore, platelet concentrates, which are regarded as autolo-
gous alternatives to fibrin glue without anti‑coagulants, contain 
fibrin glue rich in cytokines and are widely utilized for tissue 
regeneration following surgical treatment.

Platelet concentrates were originally utilized to treat 
haemorrhage‑based severe thrombocytopenia, which is caused 
by medullar aplasia or acute leukaemia. Platelet concentrates, 
called platelet‑rich plasma (PRP), have been used success-
fully for bone grafting in patients undergoing maxillofacial 
surgery (3) and for regeneration of periodontal tissue (4‑6). 
PRP preparations are needed by subjects administered 
thrombin as an anti‑coagulant. Some alternative preparations 
without anti‑coagulant have been described, including platelet 
rich fibrin (PRF) (7) and concentrated growth factors (CGF) 
using a centrifuge (Medifuge) designated only for these prepa-
rations (8,9). Regardless of their methods of preparation, the 
resulting platelet concentrates are rich in the above‑mentioned 
growth factors (10). Therefore, platelet concentrates, which act 
as a source of growth factors as well as containing a cellular 
scaffold, are thought to promote tissue regeneration.

Bone remodeling is maintained through a balance between 
bone formation and resorption (11). TGF‑β and bone morpho-
genetic protein‑2 (BMP‑2) promote bone forming activity, 
by activating Smad1/2 and by increasing the production of 
type I collagen, alkaline phosphatase (ALP), and osteocalcin. 
The Wnt protein family also contributes to bone forma-
tion, either alone or combined with TGF‑β/BMP‑2 receptor 
signalling (12‑15). Wnt signaling is initiated by its binding 
to its receptor, Frizzled. To date, two types of Wnt signaling 
pathways have been identified, the β‑catenin‑dependent 
‘canonical’ pathway, involving, for example, Wnt3a; and the 
β‑catenin‑independent, ‘non‑canonical’ pathway, involving, 
for example, Wnt5a (16‑18). Phosphorylation of β‑catenin 
by glycogen synthase kinase (GSK)‑3β causes the former to 
become unstable, leading to its degradation under non‑stim-
ulating conditions. Inactivation of GSK‑3β by Wnt signaling, 
however, stabilizes β‑catenin and induces its binding to 
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the transcription factor Lef1/Tcf, leading to osteoblastic 
differentiation (19).

In contrast, the differentiation and activation of osteo-
clasts are physiologically stimulated by osteoblasts through 
receptor activator of nuclear factor‑κB (RANK) and its ligand 
RANKL (20). Because RANKL, a type II homotrimeric 
transmembrane protein, is expressed on the outer membrane 
of osteoblasts, osteoblasts play a central role in both the 
osteogenic and osteolytic activities of bone. Bone resorp-
tion is an important process, not only for bone remodeling 
but for calcium release from bone, which acts as a calcium 
store to maintain blood calcium concentrations. Calcium 
release is controlled by the RANK‑RANKL system, which 
can be activated by an external signaling molecule such as 
parathyroid hormone (PTH) or 1α,25(OH)2D3, a stimulation 
that down‑regulates the expression of osteoprotegerin (OPG). 
OPG is a decoy receptor for RANKL, inhibiting osteoclast 
differentiation and preventing excess bone resorption. Both 
Wnt/β‑catenin and BMP‑2 signaling activate Lef1/Tcf for 
transcription of Tnfrsf11b, the gene that encodes OPG (21). 
Treatment of human osteogenic sarcoma U2OS cells with PRF 
induced the production of OPG protein within one day, with 
production maintained for five 5 days, but rapidly decreasing 
at day 7 (22). The OPG/RANKL ratio has been reported 
to reflect osteoblastic differentiation status, with a high 
OPG/RANKL ratio resulting in a switch to osteoblast matura-
tion (23). To date, however, the effect of PRF on OPG/RANKL 
ratio has not been widely accepted as a standard effect of PRF. 
The present study was designed to confirm that a PRF‑induced 
increase in OPG/RANKL ratio resulted in osteoblastic differ-
entiation of the mouse osteoblast MC3T3‑E1 cell line and that 
PRF was involved in the healing process in a rat bone defect 
model. These findings confirm that PRF may play a role in 
bone defect/fracture healing.

Materials and methods

Cells and cell culture. The MC3T3‑E1 cell line, a clonal 
pre‑osteoblastic cell line derived from newborn mouse calvaria, 
was grown in α‑minimum essential medium (α‑MEM; ICN 
Pharmaceuticals, Inc.) supplemented with 10% fetal bovine 
serum (FBS; Thermo Fisher Scientific), 50 µg/ml ascorbate 
2‑phosphate, 10 mM β‑glycerophosphate, and 40 mM HEPES 
(pH 7.4), as described (24). Mouse NIH3T3 fibroblasts were 
purchased from Riken (Tsukuba) and maintained in Dulbecco's 
modified Eagle's medium (DMEM; Thermo Fisher Scientific) 
supplemented with FBS. All cells were cultured at 37˚C in a 
humidified atmosphere containing 5% CO2 and 95% air.

Animals. Male Wistar rats, aged 8‑10 weeks and weighing 
400‑450 g, were obtained from Clea Japan Inc., Tokyo, Japan). 
The rats were housed individually in a barrier facility for labo-
ratory animals with a 12 h light‑dark cycle and allowed food 
and water ad libitum. All surgical procedures were performed 
under general anesthesia with sevoflurane (Mylan; 4% for the 
induction and 3% for the maintenance), with local anaesthesia 
provided by 2% lidocaine (250 µg/kg) if necessary. Rats were 
sacrificed by intraperitoneal injection of over dose (120 mg/kg) 
of sodium pentobarbital (Kyoritsu) under general anaesthesia 
with sevoflurane.

All animal experiments were approved by the animal 
ethics committee of Ohu University (Koriyama, Japan) and 
done in the Animal Facility where animals were cared by the 
Animal Care Staff according to compliance by the ARRIVE 
guidelines (no. 2017‑14). Number of rats used for preparation 
of PRF were as follows: One donor rat for a set of in vitro 
experiment and one donor rat for two recipient rats to treat 
defect. One in vivo experiment used eight rats as the recipient, 
which were divided into two groups: One group was used as 
PRF‑grafted group and the other one was as the control. Thus, 
we minimized number of rats and used total 23 rats including 
repetition.

Preparation of PRF. PRF was prepared as described (7,25,26), 
with slight modifications. Briefly, rats were anaesthetized with 
sevoflurane. Whole blood (6 ml) was collected from the apex of 
the heart using a 23‑gauge needle and BD Vacutainer® Blood 
Collection Tubes (Becton‑Dickinson) without anti‑coagulants. 
Immediately after collection, the blood was centrifuged at 
890 x g at room temperature for 13 min. The intermediate 
layer was defined as PRF to be subjected to in vitro and in vivo 
experiments (27).

Osteoblastic differentiation and PRF treatment. We used 
preosteoblastic cell line MC3T3‑E1 cells, which was well 
established model for osteoblastic differentiation, to analyze 
the effects of PRF on osteoblastic differentiation according 
to Ogino et al (27) with slight modifications. MC3T3‑E1 
cells that reached 70% confluence in 6‑well culture plates 
were induced to undergo osteoblastic differentiation by the 
addition of 50 µg/ml ascorbate 2‑phosphate and 10 mM 
β‑glycerophosphate, as described (24), with the culture 
medium renewed every 2‑3 days. PRF (21 µg/cm2) was placed 
at the center of a cell monolayer sheet and the treatment was 
started at the same time.

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted from samples with 
acid guanidinium thiocyanate‑phenol‑chloroform (AGPC) 
and reverse‑transcribed to cDNA with a High‑Capacity 
cDNA Reverse Transcription Kit (Thermo Fisher Scientific). 
The resulting cDNA was PCR amplified using a GoTaq® 
Real‑Time qPCR Kit (Bio‑Rad) with specific primers (Table I) 
in a Thermal Cycler Dice Real Time System (TP‑870; Takara). 
Results were normalized relative to Actb (β‑actin) mRNA 
expression levels in the same samples.

TCF‑4 binding activity. The TCF‑4 binding motif was cloned 
by PCR and inserted into the pGL3‑OT vector (Addgene 
#16558). Following transfection of this vector into MC3T3‑E1 
cells using Xfect Transfection Reagent (Takara), the cells 
were stimulated with PRF (0.2 g/well; 21 µg/cm2) in 6‑well 
plates for 24 h. TCF‑4 binding activity was evaluated using 
Dual‑Luciferase Reporter Assay System (Promega). Cells 
were co‑transfected with the pGL4.75 [hRluc (Renilla reni‑
formis)/CMV] vector to control for transfection efficiency.

Alizarin red S (AR‑S). Mineralized matrix in culture plates 
was stained with AR‑S as described (24). Briefly, cells were 
fixed in 70% ethanol for 1 h at room temperature and stained 
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with 40 mM AR‑S at pH 4.2 for 10 min at room temperature. 
After washing with deionized water and Ca2+‑ and Mg2+-free 
phosphate buffered saline [PBS(‑)], AR‑S‑positivity was quan-
tified using Molecular Imager (Bio‑Rad).

Alkaline phosphatase (ALP) activity. Cells were washed 
twice with PBS(‑) and sonicated in ice‑cold 0.1 M Tris‑HCl 
(pH 7.2) containing 0.1% Triton X‑100. ALP activity was 
determined using a Lab Assay ALP kit (Wako), according to 
the Bessey‑Lowry method.

Western blotting. Proteins in cell lysates (20 µg), prepared in 
RIPA buffer, and those in conditioned medium (CM, 10 µg), 
which were concentrated by acetone precipitation, were sepa-
rated by sodium dodecyl sulfate (SDS)‑10% polyacrylamide 
gel electrophoresis (PAGE) and transferred onto polyvi-
nylidene difluoride (PVDF) membranes. The membranes were 
sequentially incubated with primary antibody, biotinylated 
anti‑rabbit IgG or anti‑mouse IgG (Jackson ImmunoResearch 

Laboratories) as secondary antibody, and horseradish peroxi-
dase (HRP)‑conjugated streptavidin (Bio‑Rad). Signals were 
detected using Luminate™ Forte Western HRP Substrate 
(Merck Millipore). The primary antibodies used in this study 
included anti‑RANKL antibody (BioLegend), anti‑M‑CSF 
antibody (Abcam), anti‑OPG antibodies, and anti‑β‑actin 
antibodies (both from GeneTex).

Bone defect‑healing model. A bone defect‑healing model in 
calvaria was adapted to the mental foramen bone to assess 
the effects of PRF on bone regeneration (1,28‑31). Briefly, 
following anesthetisation with 4% sevoflurane, both sides 
of the mental foramen bone were treated with 100 µg of 
lidocaine and each side was surgically drilled to make holes 
2.0 mm in diameter while avoiding injury to the roots of the 
teeth. The bone defect was filled with PRF (doses equivalent 
to 0.3 g/defect area) on one side (PRF‑grafted group, n=4) and 
without PRF on the other side (non‑grafted or control group, 
n=4). Four days after surgery, rats were sacrificed by over dose 
of pentobarbital subject to histological analysis.

Histological analysis. Samples of mandibular tissue were 
obtained from rats under sodium pentobarbital anaesthesia and 
fixed in phosphate‑buffered 4% paraformaldehyde (pH 7.2) at 
4˚C for 24 h. The samples were decalcified with 10% EDTA 
(pH 7.0), which was changed every 2‑3 days, at 4˚C for 4 weeks. 
The tissue samples were embedded in paraffin and sectioned. 
The sections were stained with haematoxylin and eosin (H&E) 
and then tartrate‑resistant acid phosphatase (TRAP) using a 
commercial TRAP staining kit (Wako), according to the 
manufacturer's protocol.

OPG was detected by immunohistochemistry, as previ-
ously described (32‑34). Specimens were blocked with 
5% skim milk and incubated sequentially with anti‑OPG 
antibodies (GeneTex), biotinylated anti‑rabbit IgG (Jackson 
ImmunoResearch Laboratories, West Grove, PA, USA), and 
fluorescein isothiocyanate (FITC)‑conjugated streptavidin. 
Signals were observed with a fluorescence microscope (Axio 
Observer, Carl Zeiss Microscopy GmbH).

Protein assay. Protein concentration was determined by the 
Bradford method, using a Bio‑Rad protein assay kit, with 
bovine serum albumin (BSA) as the standard.

Statistical analysis. Representative results from three inde-
pendent experiments (unless otherwise noted) were shown 
and statistical significance between two groups was evaluated 
by Student's t‑tests. Simple regression analysis was used to 
compare two slopes obtained by the least squares method. A 
P‑value <0.05 was considered statistically significant.

Results

PRF induced expression of OPG‑encoding mRNA in osteo‑
blastic cells. MC3T3‑E1 cells were treated with PRF to 
evaluate OPG production during osteoblastic differentiation. 
PRF treatment gradually but significantly increased expression 
of Tnfrsf11b mRNA, encoding OPG, for 12 days (Fig. 1A‑C). 
In contrast, Tnfsf11 mRNA, encoding RANKL, was constitu-
tively expressed but not affected by treatment of cells with PRF. 

Table I. Primer sets.

Genes (products) Primer sequences (5'‑3')

Alpl (ALP)
  Forward GCAGTATGAATTGAATCGGAACAAC
  Reverse ATGGCCTGGTCCATCTCCAC

Runx2 (Cbfa1/Runx2)
  Forward ACTCCAGGCATACTGTACAACT
  Reverse AGGCTGTTTGACGCCATAGT

Bmp2 (Bmp‑2)
  Forward TGACTGGATCGTGGCACCTC
  Reverse CAGAGTCTGCACTATGGCATGGTTA

Bmp4 (Bmp‑4)
  Forward AGCCGAGCCAACACTGTGAG
  Reverse TCACTGGTCCCTGGGATGTTC

Csf1 (M‑CSF)
  Forward AGTGCTCTAGCCGAGATGTG
  Reverse CTGCTAGGGGTGGCTTTAGG

Tnfsf11 (RANKL)
  Forward AGCGCAGATGGATCCTAACA
  Reverse CCAGAGTCGAGTCCTGCAAAT

Tnfrsf11b (OPG)
  Forward AGTGTGAGGAAGGGCGTTAC
  Reverse AATGTGCTGCAGTTCGTGTG

Wnt3a (Wnt3a)
  Forward CTACCCGATCTGGTGGTCCT
  Reverse ACAGAGAATGGGCTGAGTGC

Wnt5a (Wnt5a)
  Forward AAAGGGAACGAATCCACGCT
  Reverse CAGCACGTCTTGAGGCTACA

Actb (β‑actin)
  Forward CATCCGTAAAGACCTCTATGCCAAC
  Reverse ATGGAGCCACCGATCCACA

ALP, alkaline phosphatase; RANKL, receptor activator of NF‑κB ligand; 
OPG, osteoprotegerin; BMP, bone morphogenetic protein.
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Expression of Csf1 mRNA, encoding M‑CSF was transiently 
lowered in PRF treated cells on day 4, with no significant 
differences at later times. Western blot analysis showed that 
PRF strongly upregulated the expression of OPG, but not of 
RANKL or M‑CSF, by these cells (Fig. 1D). PRF, however, did 
not induce expression of Tnfrsf11b mRNA in non‑osteoblastic 
NIH3T3 fibroblasts (Fig. 1E), although non‑osteoblastic cells, 
such as gingival fibroblasts (35), adipocytes (36), and endo-
thelial cells (37), can produce OPG. PRF also increased the 
ratio of OPG‑encoding mRNA to RANKL‑encoding mRNA 
in these cells (Fig. 2).

PRF did not affect the expression of other osteoblastic marker 
encoding genes and mineralization in vitro. Treatment of 
MC3T3‑E1 cells with PRF did not induce formation of nodules 
resulting from mineral deposition (Fig. 3A). PRF reduced ALP 
mRNA level on day 4, with low ALP mRNA level maintained 
through day 8, although ALP mRNA level was higher on day 8 
than on day 4 (Fig. 3B). ALP activity was also lower in the 
presence than in the absence of PRF on day 8 (Fig. 3C), ALP 
activity in PRF‑treated cells was higher on day 8 than on day 4, 
whereas ALP activity in control cells was higher on day 4 than 
on day 8, suggesting that PRF regulates bone regeneration by 
delaying the peak of osteoblast differentiation. The expression 
of other osteoblastic marker genes, encoding Runx2, BMP2, 
and BMP4, were not affected by PRF treatment (Fig. 3D‑F).

In assessing the effect of PRF on Wnt signaling which 
plays a role in OPG expression, we found that PRF had no 
effect on the expression of Wnt3a and Wnt5a (Fig. 4A and B). 

In addition, PRF did not significantly activate the transcrip-
tion of β‑catenin from a TCF‑4 binding motif containing a 
reporter vector (Fig. 4C). These findings suggested that the 
Wnt pathway is not involved in the induction of Tnfrsf11b 
mRNA in MC3T3‑E1 cells.

PRF increases the number of OPG producing cells but 
reduces the number of active osteoclasts. To determine 

Figure 1. PRF suppresses osteoclast‑differentiation factor expression in MC3T3‑E1 cells. MC3T3‑E1 cells were cultured in the absence or presence of PRF for 
6 days. Total RNA was extracted and the expression of (A) Tnfrsf11b, (B) Tnfsf11 and (C) Csf1 mRNAs was determined by reverse transcription‑quantitative 
PCR. (D) The amount of RANKL in whole‑cell lysates and of MCSF and OPG in concentrated CM was assayed by western blotting. (E) PRF did not affect 
Tnfrsf11b mRNA expression by NIH3T3 cells. Representative results were from three independent experiments. Data are presented as the mean ± standard 
error (n=3). *P<0.05, **P<0.01 and ***P<0.001 vs. samples incubated in the absence of PRF at each time point. PRF, platelet rich fibrin; CM, conditioned 
medium; OPG, osteoprotegerin; M‑CSF, macrophage colony‑stimulating factor; RANKL, receptor activator of NF‑κB ligand.

Figure 2. Effect of PRF on OPG/RANKL ratio. MC3T3‑E1 cells were 
cultured in the absence or presence of PRF for 6 days. Total RNA was 
extracted and the expression of Tnfrsf11b and Tnfsf11 mRNAs was deter-
mined by reverse transcription‑quantitative PCR. Cq values of Tnfrsf11b 
and Tnfsf11 mRNAs were normalized relative to that of Actb mRNA in 
the same samples to calculate OPG/RANKL ratios. Representative results 
were from three independent experiments. *P<0.05. PRF, platelet rich fibrin; 
OPG, osteoprotegerin; RANKL, receptor activator of NF‑κB ligand.
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whether PRF mediates OPG induction and osteoclastogenesis 
in vivo, a bone defect‑healing model in calvaria was adapted 
for use in mental foramen bone. A bone defect area 2.7 mm in 
diameter treated with a low‑level laser was reported filled with 
calcium (~180 mg/g‑tissue) and phosphorus (~115 mg/g‑tissue) 
within 2 weeks (28). Both values were 1.4 times higher 
than in control, non‑laser treated, bone. After an additional 
2 weeks, these increases in calcium and phosphorus deposi-
tion were 1.3‑ and 1.2‑fold higher than in control, respectively, 
suggesting that early stage bone repair process, within 
2 weeks after surgery, was extremely important. Therefore, 
we created a small defect (2.0 mm in diameter) and observed 
early stage regeneration. After 4 days, OPG‑positive cells 
were 2.7‑fold more abundant in the PRF‑engrafted than in the 
control region (Fig. 5A). Conversely, PRF grafting decreased 
TRAP positivity to 41.7% of that observed in the control 
region (Fig. 5B). Taken together, these findings indicate that 
an elevation in OPG/RANKL ratio may be critical during 
early stage osteoblastic differentiation.

Discussion

Fibrin acts as a scaffold for cells during wound repair (38,39). 
Insertion of PRF as the sole filling material was found to 

promote bone regeneration and subsequent sinus elevation (40). 
Moreover, the combination of PRF and a demineralized 
freeze‑dried bone allograft (DFDBA) accelerated bone forma-
tion; although DFDBA‑induced maturation required about 
8 months, the addition of PRF shortened bone formation 
to 4 months (41). PRF has been reported to accelerate bone 
healing both in vivo and in vitro (8,42,43). The ability of 
platelet concentrate clots to gradually release PDGFs, TGF‑β, 
IGF‑1, and FGF‑2 (44) enables them to assist in bone healing 
in the defect/fracture region, similar to the activity of PRF.

More preclinical and clinical studies have evaluated PRP 
than PRF, with most studies of PRP showing its benefits 
for bone repair, although several have reported that PRP 
has low or limited impact on osteogenesis in bone defect 
repair (45,46). These discrepancies may be explained by 
differences among PRP preparations in components and/or 
their ratios, including differences not only in growth factors 
but platelets and leukocytes (47,48). Even studies reporting 
that PRP does not affect bone healing activity did not find that 
PRP had negative effects on bone healing. Using MC3T3‑E1 
cell line, which has been widely used as a model for osteo-
blastic differentiation (14,49,50), here we showed that ALP 
expression/activity was lower in PRF‑treated than in control 
cells, in which medium contained ascorbate 2‑phosphate and 

Figure 3. PRF does not affect in vitro mineralization or osteoblastic differentiation for mineralization. Cells were treated with (+) or without (‑) PRF for 24 days. 
(A) Calcification determined by AR‑S staining. (B) Total RNA was extracted, reverse‑transcribed and amplified by qPCR with primer sets for Alpl mRNA. 
(C) Samples from whole‑cell extracts were assayed using an ALP kit. Time course of the effect of PRF on expression of (D) Runx2, (E) Bmp2 and (F) Bmp4 
mRNAs, as determined by reverse transcription‑quantitative PCR. Cells were treated with or without PRF for the time periods indicated. Representative 
results were from two independent experiments. Data are presented as the mean ± standard error (n=3). **P<0.01 and ***P<0.001 vs. samples incubated in the 
absence of PRF at each time point. PRF, platelet rich fibrin; AR‑S, alizarin red S; ALP, alkaline phosphatase; CM, conditioned medium; OPG, osteoprotegerin; 
M‑CSF, macrophage colony‑stimulating factor; RANKL, receptor activator of NF‑κB ligand.
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β‑glycerophosphate, but no other osteogenic inducers. Because 
ALP activity is high in mature osteoblasts, PRF did not inhibit 
osteoblastic differentiation, but rather may have optimized 
osteoblastic differentiation. Thus, the low ALP mRNA/activity 
in response to PRF treatment suggests that PRF regulated ALP 
expression by delaying it, thereby optimizing bone remodeling 
to an osteogenic state during the early stages of osteoblastic 
differentiation in our culture system. Indeed, ALP expres-
sion/activity gradually increased during the time in culture.

The present study found that OPG was the only molecule 
induced by PRF stimulation. Many studies have focused 

on OPG/RANKL ratio and bone resorption, but few have 
linked these findings to osteoblastic differentiation (51). 
OPG/RANKL ratio has been reported: Low in immature 
osteoblasts and high in mature osteoblasts (23,52), suggesting 
that the PRF‑induced increase in OPG/RANKL ratio is asso-
ciated with bone formation. Our results also showed that PRF 
affected OPG production, leading to a high OPG/RANKL 
ratio, suggesting that autologous platelet concentrates may be 
suitable to balance bone formation (53‑55). PRF‑induced OPG 
production by an osteosarcoma cell line was found to peak 
within 1 day, remaining high up to day 3 and decreasing to 
baseline level by day 5, while RANKL production remained 
steady (22). Although our OPG induction peak differed slightly, 
the two studies, taken together, indicate that PRF‑induced 
increases in OPG/RANKL ratio occur during early stage 
osteoblastic differentiation, similar to the effects of genestein 
on early stage osteoblastic differentiation (51).

Clinically, PRF, combined with other materials, has been 
used in surgical repairs (47,56). Because we found that PRF 
did not induce markers of osteogenic differentiation, such as 
Runx2, Bmp2, or Bmp4 mRNAs, in vitro, PRF may play a 
role during the early stages in vivo to optimize osteoblastic 
differentiation towards an osteogenic state by inducing OPG 
production. Similarly, the OPG/RANKL ratio in osteoblastic 
differentiation was reported to be associated with bone forma-
tion during the remodeling process (57).

This study could not determine which factors in PRF are 
responsible for the induction of OPG. Since OPG expression 
in osteoblasts was reported to be induced by BMP‑2, TGF‑β, 
and PDGF (57,58), it is reasonable to assume that these factors, 
either alone or in combination in PRF, induce OPG expres-
sion. Reverse signaling of RANKL stimulated by RANK was 
recently reported (59). Although osteoblasts in OPG‑deficient 
mice did not show reduced osteogenic activity (60), studies 
are needed to elucidate the role of OPG in RANKL‑induced 
reverse signaling during the bone healing process in bone 
defect/fracture models.

In conclusion, our results showed that PRF increased the 
OPG/RANKL ratio by inducing OPG production, suggesting 
that PRF assists in early stage osteogenesis by optimizing 
osteoblastic differentiation. Because PRF aids in earlier and 

Figure 5. PRF increases the number of OPG‑positive cells and 
reduces the number of TRAP‑positive in vivo in bone healing regions. 
Immunohistochemical staining for (A) OPG and (B) number of OPG positive 
cells. (C) TRAP staining and (D) number of TRAP‑positive cells. Arrows 
indicate TRAP positive cells; scale bars, 10 µm. Representative results were 
from two independent experiments. Data are presented as the mean ± stan-
dard error (n=4). *P<0.05 vs. no PRF treatment. PRF, platelet rich fibrin; 
OPG, osteoprotegerin; TRAP, tartrate‑resistant acid phosphatase.

Figure 4. PRF does not affect Wnt signaling. Total RNA was extracted and the levels of expression of (A) Wnt3a and (B) Wnt5a mRNAs were determined 
by reverse transcription‑quantitative PCR. (C) TCF‑4 activity in the presence of PRF was assessed by measuring luciferase activity after transfection of the 
luciferase vector linked to the TCF‑4 binding motif (pGL3‑OT) into MC3T3‑E1 cells. Data are presented as the mean ± standard error (n=3). Representative 
results were from two independent experiments. No significant differences were observed by Student's t‑tests. PRF, platelet rich fibrin; NS, not significant.
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better wound healing (61). PRF has advantages in patients 
undergoing oral surgery, such as sinus lift.
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