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Abstract. The present study aimed to investigate the effect 
of phosphoinositide-dependent protein kinase-1 (PDK1) on 
hypoxia-induced pulmonary arterial hypertension (PAH). 
A mouse model of hypoxia-induced PAH was generated using 
normal or PDK1-knockout mice. Histological analysis and 
hemodynamic evaluations were performed to identify the 
progression of PAH. The expression and phosphorylation of 
PDK1/protein kinase B (Akt) signaling pathway associated 
proteins were detected by western blot analysis. Increased 
lung vessel thickness, right ventricular (RV) systolic pres-
sure (RVSP), RV hypertrophy index (RVHI) values [the RV 
weight-to-left ventricular (LV) plus septum (S) weight ratio] 
and PDK1 expression were observed in the hypoxia-induced 
PAH model compared with the normal control. The phosphor-
ylation of AktT308, proline-rich Akt1 substrate 1 (PRAS40) 
and S6KT229 was also notably increased in the PAH model 
compared with the control. The changes of proteins were not 
observed in the hypoxia treated PDK1flox/+: Tie2-Cre mice. 
Similarly, the RVSP and RVHI values, and PDK1 expression 
were reduced in the hypoxia treated PDK1f lox/+: Tie2-Cre 

mice to a level comparable with those in the control, 
suggesting that PDK1 partial knockout significantly 
limited hypoxia-induced PAH. The results of the present 
study indicate that PDK1 is essential for hypoxia-induced 
PAH through the PDK1/Akt/S6K signaling cascades.

Introduction

Pulmonary arterial hypertension (PAH) is a progressive 
disease associated with the excessive proliferation of pulmo-
nary vascular smooth muscle cells (pVSMCs) and pulmonary 

vascular endothelial cells (pVECs), deposition of the extra-
cellular matrix (ECM) and ECM remodeling, which results 
in a persistent increase in pulmonary arterial pressure with 
vascular remodeling and organ fibrosis. 

It has been previously reported that the excessive prolifera-
tion of pVSMCs and pVECs is mediated by various signaling 
molecules, including protein kinase B (Akt) and transforming 
growth factor (TGF)β (1). The Akt/mechanistic target of 
rapamycin (mTOR) signaling pathway is associated with the 
differentiation of myofibroblasts and extracellular remod-
eling, which are critical for organ fibrosis. mTOR signaling 
promotes cell proliferation and is essential for hypoxia-medi-
ated pVSMC or pVEMC proliferation and angiogenesis (2). 
TGFβ may induce pulmonary fibrosis (3) and activate the 
phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, 
which enhances fibroblast proliferation and the production of 
collagen (4). Lu et al (4) previously demonstrated that the inhi-
bition of PI3K abrogated the effects of bleomycin, a fibrosis 
inducer that induces rapid lung fibrosis and activation of the 
PI3K/Akt signaling pathway, on fibroblast proliferation and 
collagen production.

Phosphoinositide-dependent protein kinase-1 (PDK1) 
serves a key role in the activation of the AGC subfamily of 
protein kinases, including Akt (5). A previous study revealed 
that PDK1-dependent AGC kinase activation is a requirement 
of Akt oncogenic activity (6). In addition, PDK1-dependent 
metabolic reprogramming dictates the metastatic potential 
of breast cancer cells (7). PDK1 is associated with the prolif-
eration of cancer and basilar artery smooth muscle cells by 
Akt-mediated signals (8-10). Yu et al (11) recently revealed 
that tanshinone IIA induced the inactivation of PDK1 as well 
as the development of hypertension. Previous studies indicated 
that PDK1 is a hypoxia-responsive protein, which serves an 
important role in stress responses (12,13). PDK1 deficiency 
results in heart failure and increased hypoxia sensitivity in 
cardiac muscle (14). However, to the best of our knowledge, 
the association between PDK1 and PAH has not yet been 
determined.

The present study aimed to investigate the effect of PDK1 on 
the development of PAH. A mouse model of hypoxia-induced 
PAH was generated using PDK1flox/+: Tie2-Cre mice or control 
mice. The activation of the PDK1/Akt signaling pathway 
was detected by western blot; histological and hemodynamic 
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analyses were also performed. The association between the 
PDK1-mediated Akt signaling pathway and hypoxia-induced 
PAH progression was evaluated. 

Materials and methods

Animals and treatment. A total of 25 C57/BL6 male mice 
(age, 8 weeks; weight, 20-30 g) were purchased from Model 
Animal Research Center, Nanjing University (Nanjing, China) 
and maintained under stress‑free conditions at 23±2˚C with a 
humidity of 70% and a 12-h light/dark cycle with food and water 
provided ad libitum. The PAH model was induced by hypoxia 
exposure in hypobaric chambers. The experimental animals 
(C57/BL6 mice, PDK1flox/+ mice and PDK1flox/+: Tie2-Cre mice; 
n=15, respectively) were exposed to chronic hypobaric hypoxia 
(0.5 atm, 10% O2, 50% humidity and 5% CO2 at 23±2˚C) in 
chambers for 21 days and were let out three times per week 
as previously described (15). The control animals (C57/BL6 
mice, PDK1flox/+ mice and PDK1flox/+: Tie2-Cre mice; n=10, 
respectively) were exposed to normobaric chambers (room 
air) over the same 21-day period. Mice were anesthetized 
and received surgery following 21 days hypoxia exposure 
and pulmonary artery tissues were obtained following eutha-
nasia by cervical dislocation and prepared for western blot or 
reverse transcription-quantitative polymerase chain reaction 
(RT-qPCR) analysis. The Institutional Animal Care and Use 
Committee of Shanghai Fifth People's Hospital approved the 
present study.

Generation of PDK1 partial knockout mice in endothelial 
cells. As the PDK1flox/flox: Tie2-Cre mice (complete PDK1 
knockout in endothelial cells) succumbed during the embry-
onic period, the PDK1flox/+: Tie2-Cre (PDK1 partial knockout 
in endothelial cells) mice were generated by hybridization 
of PDK1flox/flox mice and Tie2-Cre mice (with Cre-expressing 
endothelial cells), which were provided by Model Animal 
Research Center, Nanjing University. The PDK1 genotyping 
was performed by PCR using DNA extracted from the tails 
of mice 7 days after birth. Different groups of mice, including 
C57BL6 mice, PDK1flox/+ mice (n=25) and PDK1flox/+: Tie2-Cre 
mice (n=25) were selected for further study.

Semi‑quantitative PCR. Genomic DNA was extracted from 
individual samples (200 µl) using the DNeasy tissue kit 
(cat. no. 69506; Qiagen, Inc., Valencia, CA, USA) following the 
manufacturer's protocol and eluted in 100 µl. The percentage of 
agarose gel used in semi-quantitative PCR was 2% and samples 
were visualized using ethidium bromide. The primers of PDK1 
were as follows: Forward, 5'CTC TAC CTC CAC CAT GCC AAG 
T3' and reverse, 5'GCT GCG CTG ATA GAC ATC CA3'.

The protocol was as follows: For primary amplification 
(15 cycles of 10 sec at 95˚C; 20 sec at 60˚C and 20 sec at 72˚C), 
5 µl of genomic DNA representing each test-sample or 5 µl 
of water (negative control) were dispensed into 0.2 ml PCR 
strips and placed into a 24-well thermocycling block within 
the Gene-Plex robotic platform (Applied Biosystems™; 
Thermo Fisher Scientific, Inc.). Following the dispensing of 
each sample and the initiation of the assay, the following set-up 
process and analysis were executed by the program Assay 
Setup (cat. no. 9001550; Qiagen, Inc.), with the secondary 

amplification in PCR and the melting curve analysis being 
semi-automated.

Hemodynamic measurements. After 21 days following PAH 
induction the mice were anesthetized. Right ventricular (RV) 
pressures were measured using a high‑fidelity pressure sensor 
catheter inserted directly into the right ventricle. Pressure 
waveforms were recorded for 2 min for each mouse using the 
PowerLab Chart 5 version 5.3 data acquisition system and 
analysis software. RV systolic pressures (RVSPs) were calcu-
lated by averaging ≥20 cardiac cycles for each mouse. The RV 
weight-to left ventricular (LV) plus septum (S) weight ratio 
(RV/LV+S) was calculated as the right ventricle hypertrophy 
index (RVHI). 

Histology. The histology of PAH mice was detected using 
hematoxylin and eosin (H&E) staining as previously 
described (16,17). Briefly, the pulmonary artery tissues were 
perfused, inflated, separated and fixed with 4% formaldehyde 
at room temperature for 24 h, embedded in paraffin, hydrated 
and sectioned (thickness, 5 µm) using a Leica RM2255 rotary 
paraffin section machine (Leica Microsystems GmbH, Wetzlar, 
Germany) at room temperature with a humidity of 70%. Tissue 
sections were then dried at 60˚C, deparaffinizated by xylene 
and rehydrated by gradient of ethanol (100, 95, 85 and 70%) 
at room temperature for 5 min. Hematoxylin (Sigma-Aldrich; 
Merck KGaA) staining (100 µl) was performed for 5 min 
at room temperature after the section was rinsed using 
distilled water. The section was then rinsed with PBS. Eosin 
(Merck KGaA) staining was performed for 3-5 min at room 
temperature and then sections were rinsed using distilled 
water. Gradient alcohol (70, 85, 95 and 100%) was adopted 
for dehydration for 5 min at each gradient. H&E-staining was 
quantitatively evaluated by a point-counting technique in 10 
randomly selected microscopic fields, at a final magnification 
of x200 under a 100-point grid by light microscopy. Blind 
analysis was performed on all sections by the same observer. 

Western blot analysis. Pulmonary tissue was homogenized, 
lysed in a radioimmunoprecipitation buffer (Amyjet Scientific, 
Wuhan, China) and centrifuged to obtain the supernatant. 
Proteins were separated using 10% SDS-PAGE. Total protein 
(20 µg/lane) was then separated on 10% SDS polyacrylamide 
gel and blotted onto HyBond N membranes (EMD Millipore, 
Billerica, MA, USA). Blocking was then performed with 5% 
skimmed milk solution in TBS with 0.1% Tween-20 for 2 h 
at room temperature. The membranes were incubated with 
primary antibodies at 4˚C overnight against PDK1, phosphory-
lated (p)-AktT308, Akt, ribosomal protein S6 kinase (p70S6K; 
cat. no. ab8811; 1:1,000), p-p70S6K, (cat. no. ab8892; 1:1,000), 
proline-rich Akt1 substrate 1 (PRAS40; cat. no. ab3323; 
1:1,000), p-PRAS40 (cat. no. ab5505; 1:1,000), p-S6KT229 
(cat. no. ab1223; 1:1,000), p-S6T40/244 (cat. no. ab4435; 
1:1,000) and S6 (cat. no. ab2334; 1:1,000) (all from Abcam, 
Cambridge, UK). All antibodies were purchased from Cell 
Signaling Technologies Inc. (Beverly, MA, USA) β-actin 
(cat. no. ab8227; 1:1,000; Abcam) was used as the internal 
reference protein. Membranes were then incubated with 
horseradish peroxidase-conjugated goat anti-mouse immu-
noglobulin G secondary antibodies (cat. no. ab6789; 1:5,000; 
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Abcam) for 2 h at room temperature. The antigen-antibody 
complexes were visualized using an enhanced chemilumi-
nescence detection plus kit (cat. no. PE0010; EMD Millipore) 
according to the manufacturer's protocol. 

RT‑qPCR. Total RNA was extracted from mice lung vessels 
using TRIzol® (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) and first‑strand cDNA was synthesized 
at 37˚C for 15 min (cat. no. 00345; Qiagen, Inc.). The mRNA 
expression of PDK1 was determined using a SYBR Premix Ex 
Taq™ kit (Takara Bio, Inc., Otsu, Japan) on an ABI 7500 fast 
real time PCR platform (Applied Biosystems; Thermo Fisher 
Scientific, Inc.). The following thermocycling conditions were 
used: 95˚C for 3 min, 40 cycles of 95˚C for 30 sec, 60˚C for 
30 sec and 72˚C 10 sec, followed by 65˚C for 3 min. The relative 
expression level was calculated using the 2-ΔΔCq method (18). 
All reactions were run in triplicate. β-actin was used as the 
internal reference gene for mRNA detection. The forward and 
reverse primers were as following: PDK1, forward, CTG TGA 
TAC GGA TCA GAA ACC G and reverse, TCC ACC AAA CAA 
TAA AGA GTG CT; β-actin forward, GGT GTG GCA TCA GGA 
TTC AAG and reverse, TTT CAT ACC GAT TGC TGT TGG A.

Statistical analysis. Statistical analyses were performed using 
SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA). All data 
are expressed as the mean + standard deviation from three 
independent experiments with each measured in triplicate. 
Differences between two groups and among three groups were 
assessed by Student's t-test and one-way analysis of variance, 
respectively. A post-hoc test (Tukey's test) was performed 
following ANOVA. P<0.05 was considered to indicate a 
statistically significant difference. 

Results

PDK1 is upregulated in lung tissue in a mouse model of 
PAH. PDK1 mRNA was significantly upregulated in a mouse 
model of hypoxia-induced PAH compared with the control 
as detected by RT-qPCR (Fig. 1A). The protein expression 
of PDK1 was increased in the PAH group compared with the 
control as determined by western blot analysis (Fig. 1B). It 
was also observed that p-Akt and p-p70S6K were increased 
markedly in the PAH group compared with the control, which 

indicated that the PDK1/Akt/p70S6K signaling pathway was 
activated.

Generation of PDK1f/+ genotype mice. PDK1flox/flox male mice 
and Tie2-Cre female mice were hybridized and the tails 
were obtained 7 days after birth. sqPCR was performed 
and the embryos with different PDK1 genotypes were 
revealed (Fig. 2A). Mice with the PDK1f/+ genotype had clear 
bi-stripe features (Fig. 2A). The protein expression of PDK1 
in PDK1 knockout mice was notably reduced compared 
with the wild type mice (Fig. 2B), which indicated that the 
PDK1f/+: Tie2-Cre mice were successfully established.

PDK1f/+ genotype reduces hypoxia‑induced PAH in mice. 
After 21 days following PAH induction RVSP and RVHI 
(RV/LV+S) were significantly increased in the experimental 
group compared with the control (Fig. 3A). Hypoxia induced 
a notable increase in the thickness of the lung vessels and the 

Figure 2. Identification of PDK1 genotype in mice. (A) Semi‑quantitative 
polymerase chain reaction analysis was performed to determine the PDK1 
genotypes of the mice using the tails obtained 7 days after birth. (B) Protein 
expression of PDK1 in the yolk sac of 5 normal type and PDK1f/+: Tie2-Cre 
mice. PDK1, phosphoinositide-dependent protein kinase-1.

Figure 1. Expression of PDK1 in a mouse model of hypoxia-induced PAH. (A) mRNA expression of PDK1 as determined by reverse transcription-quantitative 
polymerase chain reaction. (B) Protein expression of PDK1, Akt, p-Akt, p70S6K and p-p70S6K in a mouse model of PAH as determined by western blot 
analysis. **P<0.01 vs. the control. PAH, pulmonary arterial hypertension; PDK1, phosphoinositide-dependent protein kinase-1; PAH, pulmonary arterial 
hypertension; Akt, protein kinase B; p-, phosphorylated; p70S6K, ribosomal protein S6 kinase.
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proportion of muscularized pulmonary vessels (as indicated 
by black arrows in Fig. 3B). However, the partial deletion of 
PDK1 (PDK1f/+: Tie2-Cre mice) reduced hypoxia-induced 
damage to the pulmonary vessels, resulting in notably lower 
RVSP and RVHI values compared with the control mice. The 
histology of the PDK1f/+ mice was similar to that of the control 
group. These results demonstrated that the PDK1f/+ genotype 
may limit the procession of hypoxia-induced PAH in mice, 
potentially by reducing pulmonary vascular remodeling. 

PDK1f/+ genotype reduces hypoxia‑induced activation of 
the PDK1/Akt/p70S6K signaling pathway. The phosphoryla-
tion levels of AktT308, PRAS40, S6KT229 and S6T240/244 were 
upregulated in the pulmonary vessels of the PDK1f/+ PAH 
group (Fig. 4). This suggested that the PDK1/Akt/p70S6K 
signaling pathway was activated. By contrast, the phos-
phorylation of these proteins in the PDK1f/+ group was like 
the control group and notably reduced compared with the 
normal PAH group. This indicated that the partial knockout of 
PDK1 protected against the hypoxia-induced activation of the 
PDK1/Akt/p70S6K signaling pathway in mice. 

Discussion

PDK1 serves an important role in activating the AGC 
subfamily of protein kinases, including Akt, which is essential 
to PAH as well as pulmonary and liver fibrosis (18‑20). The 
results of the present study indicated that PDK1/Akt signaling 
promoted PAH and the partial knockout of PDK1 reduced 
hypoxia-induced Akt activation and PAH procession. 

PAH is characterized by excessive proliferation of pVSMC 
and pVEC, which results in pulmonary pressure (21). The acti-
vation of Akt signaling promotes cell proliferation and survival, 
which accelerates disease procession and the metastasis of 
various types of tumor (21-24). Allard et al (24) demonstrated 
that the activation of Akt promoted their survival of VSMCs 

and inhibited the formation of intimal plaques in atheroscle-
rosis. Tang et al (21) recently suggested that the activation of 
the Akt/mTOR signaling pathway and the knockout of Akt 
significantly reduced hypoxia-induced PAH and vascular 
remodeling in a mouse model. The present study demonstrated 

Figure 3. PDK1 knockout limits pulmonary vascular remodeling in mice under hypoxia. (A) Hemodynamic detection of RVSP and RVHI. *P<0.05 vs. the 
control. (B) Histology of pulmonary vessels. Magnification, x40. RVSP, right ventricular systolic pressure; RV/LV+S, right ventricular weight‑to‑left ventricular 
plus septum weight ratio; PDK1, phosphoinositide-dependent protein kinase-1. Hypoxia induced a notable increase in the thickness of the lung vessels and the 
proportion of muscularized pulmonary vessels. The black arrows in (B) demonstrate these changes.

Figure 4. PDK1 knockout in mice reduces hypoxia-induced activation of 
the PDK1/Akt/p70S6K signaling pathway. Proteins were isolated from the 
mice pulmonary vessels and detected using western blot analysis. It was 
revealed that the partial knockout of PDK1 reduced the activation of the 
PDK1/Akt/p70S6K signaling pathway in hypoxia-induced PAH mice. Akt, 
protein kinase B; PDK1, phosphoinositide-dependent protein kinase-1; 
p70S6K, ribosomal protein S6 kinase; PAH, pulmonary arterial hyperten-
sion; PRAS40, proline-rich Akt1 substrate 1; p-, phosphorylated. 
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that hypoxia significantly upregulated the expression of PDK1 
and notably upregulated the phosphorylation of Akt, whereas 
knockout of PDK1 notably reduced Akt phosphorylation and 
hypoxia-induced PAH. These results indicated that PDK1 is 
essential for hypoxia-induced PAH, which is associated with 
the activation of Akt signals.

PDK1 phosphorylates AktT308, which subsequently acti-
vates Akt signaling pathways, including the Akt survival 
pathway (25). PRAS40 (40 kDa) is a novel mTOR binding 
partner, which serves essential roles in the transmission of 
Akt signaling by mediating Akt signals to the mTORC1 
kinase domain, thus inhibiting mTOR signalling (26). The 
Akt/mTOR signaling pathway serves important roles in extra-
cellular remodelling (19) as well as contributing to fibrosis 
in non-alcoholic steatohepatitis (27) and cancer cell growth 
and proliferation (28,29) by crosstalk with signals, including 
p38/mitogen activated protein kinase, 40S ribosomal 
protein S6 and extracellular signal-regulated kinase (30-32). 
Activation of mTOR signaling may be induced by hypoxia 
in vascular smooth muscle and endothelial cells. In addi-
tion, silencing of PRAS40 inactivated Akt and uncouples 
the Akt/mTOR signaling pathway. Humar et al revealed that 
the activation of mTOR was essential for hypoxia-mediated 
VSMC proliferation and angiogenesis. However, Tang et al 
demonstrated that mTOR was not essential for Akt activa-
tion-mediated regulation of hypoxia-induced PAH. These 
contradicting results mean that any association between 
the mTOR/p70S6K signaling pathway and PAH remains 
unclear. The present study demonstrated that the phos-
phorylation of Akt, PRAS40 and p70S6K was increased in 
hypoxia-induced PAH mice. However, the partial knockout 
of PDK1 in PDK1f/+ mice reduced the phosphorylation of 
these proteins and PAH procession, which indicated that 
the PDK1/Akt/PRAS40/mTOR/p70S6K signaling pathway 
contributed to hypoxia-induced PAH in a mouse model. 

In conclusion, the present study determined that PDK1 was 
essential for hypoxia-induced PAH, which was mediated by 
the PDK1/Akt/PRAS40/mTOR/p70S6K signaling pathway. 
However, it remains unclear whether the interaction or activa-
tion of the mTOR mediated signaling pathway was necessary 
for transmitting PDK1-mediated PAH in a mouse model. 
However, to some extent, this study provides useful strategies 
in the foreseeable future and sheds some lights in clinical 
diagnosis and treatment of PAH.
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