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Abstract. Adropin is a secreted polypeptide that has been 
demonstrated to serve an important role in protecting 
the vascular endothelium. Pharmacological activation of 
pro‑survival kinases, such as PI3K‑Akt and ERK1/2, are 
involved in the reperfusion injury salvage kinase (RISK) 
pathway. In the present study, the effects of adropin in cardio-
myocyte injury induced by simulated ischemia/reperfusion 
(SI/R) were assessed. Additionally, the current study also 
assessed the mechanisms that govern SI/R in a H9c2 cardio-
myoblast cell model. Cell viability was measured using an 
MTT assay. Cell injury was assessed using creatine kinase 
MB measurements. Apoptosis was assessed using flow cytom-
etry and caspase‑3 activity. The inflammatory response was 
measured using tumor necrosis factor α and interleukin‑10 
expression. Oxidative stress was assessed using malondialde-
hyde and superoxide dismutase. The expression levels of Akt, 
ERK1/2, glycogen synthase kinase 3β (GSK3β), Bcl‑2 and Bax 
were determined using western blot analysis. The results of the 
current study revealed that moderate‑dose adropin increased 
cell viability, reduced early apoptosis and caspase‑3 activity, 
promoted Bcl‑2 expression, inhibited Bax and increased the 
Bcl‑2/Bax ratio. Adropin significantly increased the phos-
phorylation of Akt, ERK1/2 and GSK3β, whereas inhibitors 
of PI3K and ERK1/2, respectively, LY294002 and PD98059, 
abolished the cardioprotective role of adropin. Furthermore, 
no significant difference was observed in phosphory-
lated‑STAT3/total‑STAT3 expression between the adropin 
and SI/R groups and Janus kinase 2 inhibitor AG490 did 
not significantly inhibit the protective role of adropin. These 
results indicate that adropin exerts a protective effect against 
SI/R injury through the RISK pathway instead of the survivor 
activating factor enhancement pathway.

Introduction

The most effective strategy to reduce acute myocardial 
ischemic injury and subsequent mortality is to promptly 
recover coronary reflow using thrombolytic therapy or 
percutaneous intervention  (1). However, reperfusion can 
induce myocardial ischemia reperfusion injury (MIRI). The 
inflammatory response, oxidative stress and cell apoptosis are 
considered to be critical factors associated with mediating the 
effects of MIRI (2‑4). Targeting these factors is important in 
the prevention and reduction of MIRI.

Adropin, first described by Kumar et al  (5) in 2008, is 
a secreted protein and an endogenous biologically active 
substance encoded for by an energy homeostasis‑associated 
gene. Lovren et al (6) demonstrated that adropin is expressed 
in the endothelial cells of the umbilical veins and coronary 
arteries. The aforementioned study also revealed that adropin 
may exhibit nonmetabolic properties, which includes the 
regulation of endothelial function through the upregulation of 
endothelial nitric oxide synthase (eNOS) via the PI3K‑Akt and 
ERK1/2, which are the two major components of the reperfu-
sion injury salvage kinase (RISK) pathway. The RISK pathway 
represents one of the most important survival mechanisms 
against ischemic reperfusion injury. Apart from the RISK 
pathway, the survivor activating factor enhancement (SAFE) 
pathway also serves a role in ischemic postconditioning. The 
major components of the SAFE pathway are TNF‑α and Janus 
kinase (JAK), which phosphorylates the transcription factor 
STAT3. Additionally, adropin has been revealed to improve 
murine limb perfusion and elevate capillary density following 
the induction of hindlimb ischemia (6). Clinical research has 
demonstrated that adropin is associated with a variety of meta-
bolic risk factors. Butler et al (7) demonstrated that plasma 
adropin levels are negatively associated with obesity and 
insulin resistance. Celik et al (8) revealed that serum adropin 
levels were negatively associated with cardiac X syndrome 
due to coronary microvascular perfusion dysfunction and that 
low serum adropin levels were an independent risk factor of X 
syndrome. Adropin has been revealed to be negatively corre-
lated with inflammatory biomarker‑C reactive protein and it 
has been demonstrated that patients with severe atherosclerosis 
exhibit lower adropin levels (9). These results indicated that 
adropin may influence the anti‑inflammatory response and 
reduce atherosclerosis (9). Yang et al (10) demonstrated that 
adropin reduces endothelial cell permeability and modulates 
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ischemia‑induced blood‑brain barrier injury. However, to the 
best of our knowledge, the role of adropin in myocardial reper-
fusion injury has not yet been assessed.

In the current study, a hypoxia/reoxygenation model was 
established in neonatal rat cardiomyoblast cells (H9c2) to 
simulate ischemia/reperfusion (SI/R) injury. The effect of 
adropin on SI/R injury and the mechanisms that govern this 
effect were subsequently assessed.

Materials and methods

Cell culture. H9c2 cells were obtained from the Type Culture 
Collection of the Chinese Academy of Sciences. Cells were 
passaged up to 4  times and were cultured in DMEM (GE 
Healthcare Life Sciences) containing 10% (v/v) heat‑inacti-
vated FBS (Gibco; Thermo Fisher Scientific, Inc.), 100 IU/ml 
penicillin (GE Healthcare Life Sciences) and 100 µg/ml strep-
tomycin (GE Healthcare Life Sciences), under a 5% CO2 
atmosphere at 37˚C.

H9c2 cells subjected to hypoxia/reoxygenation induced injury. 
Hypoxia was induced as described previously (11). H9c2 cells 
were cultured to 70‑80% confluency, fresh DMEM without 
FBS was subsequently added and the cells were transferred 
to a triple gas incubator with either hypoxic (5% CO2, 1% O2 
and 94% N2) or SI/R (hypoxia: 5% CO2, 1% O2 and 94% N2, 
followed by reoxygenation: 5% CO2, 21% O2 and 74% N2) 
settings. A hypoxia/reoxygenation model was established 
and cells were divided into 11 groups. All groups except the 
control group were treated with hypoxic conditions for 12 h 
and reoxygenation for 24 h. Postconditioning of cardiomyo-
cytes was achieved as follows: At the end of 12 h of hypoxia, 
the cells were initially received different doses of adropin 
and then returned to the reoxygenated condition for another 
24 h. The groups were classified as follows: i) Control group, 
normoxic conditions (37˚C, 5% CO2, 21% O2, 71% N2); ii) SI/R 
group; iii)  SI/R + low dose adropin (10  ng/ml; Phoenix 
Pharmaceuticals, Inc.), in which adropin was added prior to 
reoxygenation (adropin‑L); iv) SI/R + moderate dose adropin 
group (25 ng/ml; adropin‑M); v) SI/R + high dose adropin 
group (50 ng/ml; adropin‑H); vi) LY294002 group, 40 µmol/l 
PI3K specific inhibitor LY294002 (Sigma‑Aldrich; Merck 
KGaA) was added to the medium prior to hypoxia as described 
previously  (12); vii) adropin + LY294002 group, in which 
40 µmol/l LY294002 and 25 ng/ml adropin were added to the 
medium prior to hypoxia (12) and reoxygenation, respectively; 
viii) PD98059 group, in which 25 µmol/l ERK1/2‑specific 
inhibitor PD98059 (Sigma‑Aldrich; Merck KGaA) was added 
to the medium (12) prior to hypoxia; ix) adropin + PD98059 
group, in which 25 µmol/l PD98059 and 25 ng/ml adropin were 
added to the medium (12) prior to hypoxia and reoxygenation, 
respectively; x) AG490 group, in which 100 µmol/l JAK2 
inhibitor AG490 (Sigma‑Aldrich; Merck KGaA) was added 
to the medium prior to hypoxia as described previously (13); 
xi) adropin + AG490 group, in which 100 µmol/l AG490 and 
25 ng/ml adropin were added to the medium (13) prior to 
hypoxia and reoxygenation, respectively.

MTT measurement of cell viability. A total of 1x105 H9c2 
cells/ml were seeded into a 96‑well culture plate and incubated 

at 5% CO2 and 37˚C for 24 h. Cell viability was determined 
using an MTT assay. At 12 h following reoxygenation, 20 µl 
MTT solution was added into each well (5 mg/ml) and plates 
were incubated for 4 h at 37˚C. A microplate reader was used 
to measure the absorbance at a wavelength of 490 nm.

ELISA assay and colorimetry. The expression of creatine 
kinase MB (CK‑MB; cat. no. H197), tumor necrosis factor α 
(TNF‑α; cat. no. H052) and interleukin (IL)‑10 (cat. no. H009) 
were measured using ELISA assay kits (Nanjing Jiancheng 
Bioengineering Institute). Malondialdehyde (MDA; cat. 
no. A003‑4) and superoxide dismutase (SOD; cat. no. A001‑1) 
concentrations were determined using colorimetry kits 
according to manufacturer's protocols (Nanjing Jiancheng 
Bioengineering Institute). The experiment was performed at 
least three times and CK‑MB level was expressed as IU/l. 
TNF‑α and IL‑10 levels were expressed as pg/ml. The MDA 
level and SOD were expressed as nmol/mg protein and as 
U/mg protein, respectively.

Apoptosis analysis. Early cell apoptosis was measured using 
flow cytometry. The analysis of phosphatidylserine on the outer 
apoptotic cell membranes was performed using annexin‑V‑
f luorescein and propidium iodide (Annexin‑V‑FLUOS 
Staining kit; Roche Diagnostics). Collected cells were rinsed 
with ice‑cold PBS and resuspended in 250 µl of binding buffer 
and ~1‑5x105 cells were analyzed in each of the samples. A 
total of 100 µl annexin‑V‑FLUOS labeling solution was added 
to the cells, which were then incubated for 15 min at 25˚C. 
The cells were analyzed using FlowJo software (version 10.4.1; 
BD FACScanto II; Becton, Dickinson and Company).

Measurement of caspase‑3 activity. Caspase‑3 activity 
was measured using a colorimetric activity assay kit 
(Ac‑DEVD‑pNA; Beyotime Institute of Biotechnology) 
according to manufacturer's protocol. In brief, cells were 
lysed in ice‑cold lysis buffer, placed on ice for 15 min, then 
centrifuged at 4˚C for 15 min at 16,000 x g and supernatant 
was subsequently incubated with caspase‑3 substrate on a 
96‑well plate. Protein concentration was determined using 
Bradford protein assay kit (cat. no. P0006; Beyotime Institute 
of Biotechnology). Caspase‑3 activity was determined using a 
microplate reader at a wavelength of 405 nm.

Western blot analysis. H9c2 cells were washed with PBS, 
enzymatically dissociated with the use of trypsin (HyClone; 
GE Healthcare Life Sciences), and prepared in lysis buffer 
with protease inhibitor cocktail (cat. no. P0013B; Beyotime 
Institute of Biotechnology). Protein quantification was 
measured by using a BCA protein assay kit (cat. no. P0012; 
Beyotime Institute of Biotechnology). Equal quantities of 
protein (30 µg/lane) from whole cell lysates of cultured H9c2 
cells were separated by 10% SDS‑PAGE and transferred to a 
PVDF membrane. Following blocking with 5% BSA for 1 h at 
room temperature for binding non‑specific sites, membranes 
were incubated with primary antibodies overnight at 4˚C. 
The following primary antibodies were used: Phosphorylated 
(p)‑Akt polyclonal antibody (1:1,000; cat. no. YP0864) and 
Akt polyclonal antibody (1:1,000; cat. no.  YT0173) were 
purchased from ImmunoWay Biotechnology Company. 
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p‑ERK 1/2 monoclonal antibody (1:1,000; cat. no. sc‑136521), 
ERK 1/2 monoclonal antibody (1:1,000; cat. no. sc‑514302), 
p‑STAT3 antibody (1:1000; cat. no.  sc‑7993) and STAT3 
antibody (1:1,000; cat. no.  sc‑8019) were purchased 
from Santa Cruz Biotechnology, Inc. P‑GSK3β antibody 
(1:1,000; cat. no. ab131097), GSK3β antibody (1:5,000; cat. 
no. ab32391), Bcl‑2 antibody (1:1,000; cat. no. ab59348) and 
Bax antibody (1:1,000; cat. no.  ab32503) were purchased 
from Abcam. Following incubation with horseradish peroxi-
dase (HRP)‑conjugated goat anti‑rabbit IgG (1:5,000; cat. 
no. ZB‑5301; OriGene Technologies, Inc.) or HRP‑conjugated 
goat anti‑mouse IgG (1:5,000; cat. no. ZB‑2305; OriGene 
Technologies, Inc.) at 37˚C for 1 h, the signals were detected 
with Pierce™ ECL Western Blotting Substrate kit (cat. 
no. 32209, Pierce; Thermo Fisher Scientific, Inc.) and bands 
were subsequently quantified using Quantity One software 
(version 4.6.2; Bio‑Rad Laboratories, Inc.).

Statistical analysis. Data are presented as the mean ± standard 
deviation. Comparisons between groups were performed using 
one‑way ANOVA with Student‑Newman‑Keuls correction for 
multiple comparisons. Statistical analyses were performed 
using SPSS version 13.0 (SPSS Inc.). P<0.05 was considered to 
indicate a statistically significant difference.

Results

Effect of adropin dose on cell viability and CK‑MB levels. Cell 
viability was examined using a MTT assay and CK‑MB levels 
were measured to assess cardiomyocyte injury. As presented 
in Fig. 1A and B, SI/R group cell viability was significantly 
reduced (P<0.001) and CK‑MB levels significantly increased 
(P<0.001) compared with the control group. Cell viability 
was significantly higher and CK‑MB levels were significantly 
lower in the adropin‑M and adropin‑H groups when compared 
with the SI/R group. In addition, no significant difference in 
cell viability and CK‑MB levels was observed between the 
adropin‑M and adropin‑H groups. The adropin‑L group did 
not exhibit any significant effect on cell viability or CK‑MB 
expression when compared with the SI/R group, indicating that 
moderate and high adropin levels can reduce SI/R injury. The 
subsequent experiments were performed using moderate‑dose 
adropin as the adropin group.

Effect of adropin on myocardial apoptosis. Flow cytometry 
was used to assess myocardial apoptosis and caspase‑3 activity 
subsequent to reoxygenation (Fig. 2). The SI/R group exhibited 
a higher early apoptosis rate (P<0.001) and higher caspase‑3 
activity (P<0.001) when compared with the control group 
(Fig. 2B and C, respectively). Moderate‑dose adropin exhib-
ited a significantly lower early apoptosis rate (P<0.001) and 
caspase‑3 activity (P<0.001) compared with the SI/R group. 
Additionally, LY294002 and PD98059 significantly reversed 
the protective effects of adropin on apoptosis rate (P<0.001) 
and significantly increased caspase‑3 activity (P<0.001) 
compared with the adropin group (Fig.  2A‑C). However, 
AG490 exhibited no significant effect on early apoptosis rate 
or caspase‑3 activity when compared with the adropin group 
(Fig. 2A‑C).

Western blot analysis was used to detect the effect of 
adropin and the aforementioned inhibitors on the Bcl‑2/Bax 
ratio. As presented in Fig. 2D and E, the SI/R group had a 
significantly lower Bcl‑2/Bax ratio compared with the control 
group (P<0.05). When compared with the SI/R group, the 
adropin group exhibited a significantly higher Bcl‑2/Bax 
ratio (P<0.05). Additionally, the adropin + LY294002 and 
adropin + PD98059 groups exhibited significantly lower 
Bcl‑2/Bax ratios (P<0.05) compared with the adropin‑only 
group. However, no significant differences were determined in 
the Bcl‑2/Bax ratio between the adropin and adropin + AG490 
group (Fig. 2D and E).

Effects of different doses of adropin on the inflammatory 
response. The inflammatory response was assessed using 
TNF‑α and IL‑10 expression measurements (Fig. 3A and B, 
respectively). TNF‑α levels significantly increased (P<0.001) 
and IL‑10 levels decreased (P<0.001) in the SI/R group 
compared with the control group. The adropin‑M and 
adropin‑H groups exhibited significantly reduced TNF‑α 
expression (P<0.001) and significantly increased IL‑10 
expression (P<0.001) when compared with the SI/R group. 
In addition, no significant difference was determined in 
TNF‑α and IL‑10 expression levels between the adropin‑M 
and adropin‑H groups (P>0.05). The adropin‑L group did not 
affect TNF‑α or IL‑10 levels compared with the control group, 
suggesting that moderate and high concentrations of adropin 
can protect the heart by alleviating the inflammatory response.

Figure 1. Effect of adropin on cell viability. (A) Cell viability and (B) CK‑MB of H9c2 cells subjected to SI/R. *P<0.001 vs. control and #P<0.001 vs. SI/R. 
Results are representative of three independent experiments. CK‑MB, creatine kinase MB; SI/R, simulated ischemia/reperfusion; L, low; M, medium; H, high.
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Figure 2. Effect of adropin on cell apoptosis and caspase‑3 activity. (A and B) Apoptotic rates were quantified by annexin V‑FITC/PI double staining cytom-
etry. Viable cells are annexin V‑FITC‑/PI‑ (Q3); annexin V‑FITC+/PI‑ cells (Q4) are early in the apoptotic process; annexin V‑FITC+/PI+ cells (Q2) are late in 
the apoptotic process; and necrotic cells are Annexin V‑FITC‑/PI+ (Q1). (C) Caspase‑3 activity analysis. *P<0.001 vs. control; #P<0.001 vs. SI/R; †P<0.001 vs. 
adropin. Results are representative of three independent experiments. (D) Western blot analysis and (E) subsequent quantification of Bcl‑2 and Bax expression. 
Mean ± standard deviation of relative Bcl‑2/Bax ratios are presented. Data were normalized to loading control GAPDH. *P<0.05 vs. control; #P<0.05 vs. SI/R; 
†P<0.05 vs. adropin. PI, propidium iodide; SI/R, simulated ischemia/reperfusion.
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Effects of different doses of adropin on oxidative stress. 
Oxidative stress was examined by measuring MDA levels 
and SOD activity (Fig. 3C and D, respectively). MDA levels 
significantly increased (P<0.001) and SOD activity was signifi-
cantly reduced in the SI/R group (P<0.001) compared with the 
control group. The adropin‑M and adropin‑H groups exhibited 
reduced MDA levels (P<0.001) and exhibited higher SOD 
activity (P<0.001) compared with the SI/R group. The results 
indicated that adropin may inhibit lipid peroxide produc-
tion and increase scavenging superoxide radical activity. No 
significant difference in MDA levels and SOD activity were 
determined between the adropin‑M and adropin‑H groups. 
Adropin‑L did not reduce MDA levels or increase SOD 
activity when compared with the SI/R group, demonstrating 
the dose‑dependent role of adropin in the antioxidative effect.

Reperfusion injury salvage kinase (RISK) pathway is 
associated with the reduction of SI/R injury by adropin. The 
results of the present study demonstrated that adropin inhib-
ited myocardial injury induced by SI/R in a dose‑dependent 
manner. The Adropin‑M group (the minimum optimal 
concentration) was used as the Adropin group in subsequent 
experiments to further assess the molecular mechanisms 
associated with the reduction of adropin in SI/R injury.

As presented in Fig.  4A, the adropin group induced a 
significant elevation in p‑Akt/t‑Akt ratio (P<0.05) compared 
with the SI/R group. LY294002 group exhibited a signifi-
cantly decreased p‑Akt/t‑Akt ratio when compared with the 
adropin group (P<0.05). In addition, the adropin group had 

a significantly higher p‑ERK1/2/t‑ERK1/2 ratio (P<0.05) 
compared with the SI/R group. PD98059 exhibited a signifi-
cantly decreased p‑ERK1/2/t‑ERK1/2 ratio compared with 
the adropin group (Fig. 4B). Furthermore, adropin signifi-
cantly increased p‑GSK3β/t‑GSK3β ratio compared with the 
SI/R group (P<0.05), which was partially but significantly 
reversed by additive treatments with LY294002 (P<0.05) 
or PD98059 (P<0.05). However, the adropin and adropin 
+ AG490 groups demonstrated no significant difference in 
the p‑GSK3β/t‑GSK3β ratio (Fig. 4C). Compared with the 
control, the AG490 and adropin + AG490 groups significantly 
inhibited the phosphorylation levels of STAT3 (P<0.05). 
Notably, adropin and control groups exhibited no difference in 
the p‑STAT3/t‑STAT ratio (Fig. 4D).

Discussion

Adropin is a newly identified endogenous bioactive substance 
that serves an important role in energy metabolism. 
Lovren et al (6) demonstrated that adropin may directly affect 
endothelial cells and may possess nonmetabolic properties, 
including the protection of endothelial function through the 
RISK pathway. Adropin upregulates eNOS and increases the 
production of NO through the PI3K‑Akt and ERK1/2 path-
ways. Adropin also serves a role in improving murine limb 
perfusion and elevating capillary density after ischemia (6). 
Exogenous adropin reduces insulin resistance and metabolic 
disorders, protects endothelial cells and attenuates organ isch-
emia (6,10). These results indicate that adropin may also be 

Figure 3. Effects of adropin on the inflammatory response and oxidative stress. Effect of adropin on (A) TNF‑α, (B) IL‑10, (C) MDA and (D) SOD of H9c2 
cells subjected to SI/R. *P<0.001 vs. control and #P<0.001 vs. SI/R. Results are representative of three independent experiments. TNF‑α, tumor necrosis factor 
α; IL‑10, interleukin 10; MDA, malondialdehyde; SOD, superoxide dismutase; SI/R, simulated ischemia/reperfusion; L, low; M, medium; H, high.
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associated with ischemia reperfusion injury and may serve a 
cardioprotective role in MIRI.

Apoptosis is an important factor in the pathogenesis of 
MIRI (14,15). Mitochondria serve a central role in apoptosis 

regulation and control cytochrome C release through channels 
formed by Bcl‑2 gene family expression, which is a key mecha-
nism that regulates apoptosis (14). The inhibition of myocardial 
apoptosis can prevent myocardial cell loss and delay the 

Figure 4. Effect of SI/R and adropin on the activation of the RISK pathway in H9c2 cells. Expression and subsequent quantification of (A) p‑Akt and t‑Akt, 
(B) p‑ERK1/2 and t‑ERK1/2, (C) p‑GSK3β and t‑GSK3β and (D) p‑STAT3 and t‑STAT3. Data are presented as the mean ± standard deviation. Results were 
normalized to loading control GAPDH. *P<0.05 vs. control; #P<0.05 vs. SI/R. †P<0.05 vs. adropin. P, phosphorylated; t, total; GSK3β, glycogen synthase kinase 
3β; SI/R, simulated ischemia/reperfusion.
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occurrence of heart failure (16,17). In the present study, the 
results indicated that adropin treatment after hypoxia induc-
tion can inhibit hypoxia/reoxygenation‑induced injury in H9c2 
cells. Adropin reduced the proportion of early apoptosis in 
myocardial cells, decreased the activity of caspase‑3, reduced 
the expression of Bax gene and increased Bcl‑2 gene expres-
sion. These results demonstrated that adropin can reduce SI/R 
injury by regulating the mitochondrial apoptosis pathway.

A number of inflammatory factors including TNF‑α, 
IL‑1, IL‑6 and IL‑8 are released by myocardium subjected to 
ischemia‑reperfusion (18,19). Oxidative stress also serves an 
important role in myocardial injury located in the infarcted 
and reperfused myocardium (20,21). Myocardial cells generate 
numerous reactive oxygen species during the ischemia‑reper-
fusion process and increase TNF‑α synthesis, which can 
lead to an increase in the apoptosis cascade reaction, the 
interactions between inflammatory and endothelial cells and 
intracellular calcium overload (22). Various novel antioxi-
dants have been associated with renal protection through the 
antioxidative and antiapoptotic pathways (23,24). A previous 
study (9) has demonstrated that adropin is negatively correlated 
with the inflammatory marker C reactive protein. In patients 
with severe coronary atherosclerosis, adropin serum level is 
low (9), which indicates that adropin possesses a potential 
anti‑inflammatory effect. In the current study, moderate and 
high concentrations of adropin were indicated to reduce the 
inflammatory response and oxidative stress during SI/R injury. 
Additionally, adropin was revealed to inhibit SI/R‑induced 
myocardial injury by reducing early myocardial apoptosis, 
inflammatory response and oxidative stress, and increasing 
myocardial cell viability.

In 2007, Yellon et al (25) proposed a new cardioprotec-
tive strategy to reduce MIRI at the early stages of reperfusion 
by targeting the RISK‑mitochondrial permeability transi-
tion pathway (mPTP). This study revealed that ischemic or 
pharmacological postconditioning prior to reperfusion can 
activate RISK or inhibit mPTP opening to limit infarct 
size and reduce MIRI (25). Ischemic and pharmacological 
postconditioning invoke the activation of signal transduc-
tion cascades by autacoids triggers and eventually inhibit 
the opening of mPTP  (26). However, pharmacological 
postconditioning performed prior to continuous reperfusion 
is operable in clinical practice and can avoid mechanical 
manipulation and associated complications (26). The activa-
tion of the RISK signaling pathway (PI3K/Akt and ERK1/2) 
may serve a role in cardioprotection in myocardial reperfu-
sion and therefore, this pathway may become an important 
drug target (27). The activation of PI3K and its downstream 
target (Akt) is also associated with myocardial reperfusion 
injury (28,29). In the ischemic myocardium, the phosphory-
lation of Akt can inhibit myocardial apoptosis and promote 
the cell survival pathway (30). Additionally, ERK1/2 is an 
important kinase of the RISK pathway and its activation 
in myocardial ischemia/reperfusion is beneficial to reduce 
apoptosis and to help recover cardiac function (31).

In addition to the RISK pathway, the survivor activating 
factor enhancement (SAFE) pathway has been revealed to 
be an additional pro‑survival signaling pathway associated 
with the early reperfusion period and is composed of TNF‑α 
and STAT‑3 (32). mPTP is the downstream effector of the 

SAFE and RISK pathways (32). mPTP may be the common 
final effector of cardioprotective effects exhibited by pre 
and postconditioning (27). Furthermore, complex crosstalk 
between RISK and SAFE pathways may exist.

The current study assessed whether the RISK and 
SAFE pathways are associated with the role of adropin in 
the reduction of SI/R injury in cardiomyocytes. The results 
demonstrated that a moderate concentration of adropin signifi-
cantly increased the phosphorylation of Akt and ERK1/2 
and these results are consistent with Lovren et al (6). It was 
also revealed that adropin can promote the phosphorylation 
of GSK3β (a prosurvival signaling pathway downstream 
target protein). PI3K specific inhibitor LY294002 or ERK1/2 
inhibitor PD98059 also significantly inhibited the cardiopro-
tective effects of adropin, indicating that these effects may be 
dependent on the PI3K/Akt and ERK1/2 pathway. The adropin 
treatment did not significantly increase the phosphorylation 
of STAT3, which is the most important target of the SAFE 
pathway (33). STAT3 is also the substrate of JAK2 kinase. The 
JAK2 kinase specific inhibitor, AG490, did not significantly 
inhibit the protective role of adropin in SI/R injury.

In conclusion, the results of the present study demon-
strate that adropin reduces SI/R injury in H9c2 myocardial 
cells through the RISK pathway (PI3K/Akt and ERK1/2) 
by activating the downstream target GSK3β to regulate 
the mitochondrial apoptosis. However, the SAFE pathway 
(JAK‑STAT3) was not indicated to be associated with the 
exhibited myocardial protection. The current study may 
provide a potential therapeutic target for ischemia reperfusion 
injury and a theoretical basis for the clinical use of adropin.

Although H9c2 cells have been widely used in the study 
of cardiovascular disease, these studies may not accurately 
represent the in vivo reaction of normal myocardial cells to 
drug treatments. In the current study, the effects of adropin 
were only assessed in relation to a few inflammatory factors. 
However, other inflammatory factors such as leukocyte adhe-
sion, aggregation and inflammatory stimulation signals and 
their receptors have not been involved. Reactive oxygen species 
(ROS) levels were not directly assessed and ROS scavenger 
was also not used. Therefore, the mechanisms underlying the 
changes in SOD and MDA levels observed in the current study 
following treatment with adropin remain to be determined.
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