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Abstract. The present study aimed to investigate bone 
morphogenetic protein (BMP)‑2 and microRNA (miR)‑410 
expression and the mechanism of regulation in serum and 
CD14+ peripheral blood mononuclear cells (PBMCs) from 
postmenopausal osteoporosis patients and model mice. A 
total of 26 patients with postmenopausal osteoporosis were 
included in the experimental group and 29 age‑matched 
healthy subjects were included in the control group. A total of 
60 mice were divided into sham and ovariectomized (OVX) 
groups. Following surgery, 28 mice remained in the sham and 
25 mice remained in OVX group. BMP‑2 protein expression 
in serum and CD14+ PBMCs from patients and model mice was 
determined using ELISA and western blotting, respectively. 
Reverse transcription‑quantitative polymerase chain reaction 
assays were performed to determine miR‑410 and BMP‑2 
mRNA levels in serum and CD14+ PBMCs from patients and 
model mice. Dual luciferase reporter assays were used to iden-
tify direct interactions between miR‑410 and BMP‑2 mRNA. 
Compared with the control group, BMP‑2 mRNA and protein 
expression in serum and CD14+ PBMCs from patients with post-
menopausal osteoporosis and model mice were significantly 
decreased. miR‑410 levels in serum and CD14+ PBMCs from 
patients with postmenopausal osteoporosis and model mice 
were significantly increased when compared with the control 
group. Dual luciferase reporter assays revealed that BMP‑2 
was a target gene of miR‑410. The current study demonstrated 
that decreased BMP‑2 expression in serum and CD14+ PBMCs 
from patients with postmenopausal osteoporosis was associ-
ated with the upregulation of miR‑410. These results suggest 

that miR‑410 may participate in the pathological process of 
postmenopausal osteoporosis by downregulating BMP‑2.

Introduction

Osteoporosis affects >40% of postmenopausal females (1) 
and is characterized by damage to the bone microstruc-
ture, a decrease in bone mineral and matrix composition, a 
decrease in bone density and an increase in bone fragility and 
fracture risks (2). A survey performed in 2008 revealed that 
~54.1 million Chinese females were diagnosed with osteopo-
rosis, while 113 million Chinese females exhibited a reduction 
in bone mass (3). This has led to severe health threats and a 
social and economic burden (3). Postmenopausal osteoporosis 
is caused by imbalance of bone absorption and formation (4). 
Despite the availability and clinical use of various drugs that 
effectively target bone resorption, treatments that promote 
bone formation have yet to be identified (5).

CD14+ peripheral blood mononuclear cells (PBMCs) are 
precursors of osteoclasts and are associated with the pathogen-
esis of osteoporosis (6,7). Under the joint action of macrophage 
colony stimulating factor and receptor activator of nuclear 
factor‑κB (RANK) ligand (L), CD14+ PBMCs that are differen-
tiated from CD14‑ PBMCs differentiate into osteoclasts during 
cultivation, suggesting that CD14+ PBMCs are precursor cells 
of osteoclasts (8). CD14+ PBMCs express RANK, which is acti-
vated following binding to RANKL and mediates osteoclast 
differentiation (9).

To date, a number of active bone morphogenetic proteins 
(BMPs) have been discovered  (10,11). BMP‑2 has been 
reported to be a member of transforming growth factor‑β 
supergene family (12), and serves important roles in osteogen-
esis (13), fracture healing (14) and bone formation (15). BMP‑2 
further serves important roles in the process of ossification, 
by stimulating the differentiation of pluripotent stromal stem 
cells into osteoblasts and enhancing the functions of osteo-
blasts (16‑18). There are various approaches to regulate BMP‑2 
expression, including the use of microRNAs (miRs), which has 
been widely studied. miR‑98 (19), miR‑203 and miR‑320 (20) 
have been reported to regulate BMP‑2 expression. Additional 
miRs may exert regulatory effects on BMP‑2. A previous 
study reported that miR‑410 enhances the stem cell charac-
teristics of cells  (21); however, whether miR‑410 regulates 
BMP‑2 expression is currently unclear. Therefore, the aim of 
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the present study was to investigate the mechanisms under-
lying the pathogenesis of postmenopausal osteoporosis, and 
to understand the role of miR‑410 and BMP‑2 in the disease.

Materials and methods

Patients. A total of 26 female patients with postmenopausal 
osteoporosis that received treatment at Changhai Hospital 
(Shanghai, China) between October 2012 and March 2017 
were included in the present study. The age range was 
50‑59 years and the mean age was 55.6±4.8 years. In addition, 
29 aged‑matched healthy female subjects were recruited into 
the normal control group at the same hospital within the same 
date range (age range, 50‑59 years; mean age, 55.1±4.6 years). 
Subjects in the control group and patients with postmenopausal 
osteoporosis had similar serum levels of estrogen, vitamin 
D and parathyroid hormone. Osteoporosis and normal bone 
mass were determined according to the standards of the World 
Health Organization  (22‑24). The inclusion and exclusion 
criteria were the same as these standards. Fasting peripheral 
blood was collected from all subjects in the morning on the 
day of diagnosis and stored at ‑20˚C. To obtain serum samples, 
blood was centrifuged at 400 x g and 4˚C for 10 min and serum 
was transferred into fresh tubes (100 µl/tube). All procedures 
were approved by the Ethics Committee of Changhai Hospital. 
Written informed consent was obtained from all patients or 
their families.

Animals. A total of 60 female C57BL/6 mice (age, 5 weeks) 
were purchased from Chongqing TengXin Biotech Company 
(Chongqing, China). The weight of the mice ranged between 
18 and 22 g. Mice were maintained in individual cages in a 
room with 50‑65% humidity, at 26˚C with a 12‑h light/dark 
cycle. One week prior to experiments, mice had free access 
to food and water to acclimate to the environment. Access 
to food and water was not changed during the experiments. 
The Reduction, Replacement and Refinement animal welfare 
principle was followed during the experiments  (25). Mice 
were randomly divided into sham operation group (sham; 
n=30) and ovariectomized model group (OVX; n=30). Mice 
in the OVX group were anesthetized by intraperitoneal injec-
tion of 5% chloral hydrate at a dosage of 400 mg/kg animal 
body weight. Both sides of the ovaries were extirpated. Mice 
in the sham group were treated using the same surgical proto-
cols but without ovarian extirpation. At 3 months following 
surgery, mice were anesthetized by intraperitoneal injection 
of 5% chloral hydrate at 400 mg/kg body weight and under-
went distal femur scanning using microcomputed tomography 
(80 kV, 500 µA; SkyScan; Bruker Corporation, Billerica, 
MA, USA) along the long axis of femur (360˚ scanning angle; 
10.44 µm resolution) to test for postmenopausal osteoporosis 
symptoms (data not shown). Peripheral blood was collected 
from mice in the sham group (n=28) and OVX group (n=25) 
during operation, and serum was obtained by centrifugation 
at 400 x g and 4˚C for 10 min. Mice that did not develop post-
menopausal osteoporosis were excluded from the study. Serum 
was transferred into tubes (100 µl/tube). All animal experi-
ments were conducted according to the Ethical Guidelines of 
Changhai Hospital. The present study was approved by the 
Ethics Committee of Changhai Hospital.

Cells. CD14+ PBMCs were separated by gradient centrifugation 
from both human and mice (26) and Ficoll‑Paque according 
to the manufacturer's instructions (cat. no.  17‑1440‑03; 
GE Healthcare, Chicago, IL, USA). Cells were cultured in 
α‑minimum essential medium (MEM) supplemented with 
10% fetal bovine serum, 100 U/ml penicillin and 100 ng/ml 
streptomycin (all reagents from Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) at 37˚C and 5% CO2. Following 
2 h, non‑adherent cells were removed and adherent cells were 
resuspended in fresh complete α‑MEM medium. Using a 
monocyte isolation kit (cat. no., 130‑117‑337; Miltenyi Biotec 
GmbH, Bergisch Gladbach, Germany), CD14+ PBMCs were 
isolated from the cell suspension according to the manufac-
turer's protocol. CD14+ PBMCs (3x105/well) were cultured in 
24‑well plates according to a previously published method (27).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Samples (200 µl serum or 3x106 PBMCs) were 
lysed using 1 ml TRIzol reagent (Thermo Fisher Scientific, 
Inc.) according to the manufacturer's protocol. Total RNA 
was extracted using the phenol chloroform method. The 
concentration and quality of RNA was measured spectropho-
tometrically (Nanodrop ND2000; NanoDrop; Thermo Fisher 
Scientific, Inc., Pittsburgh, PA, USA), and OD260/A280 and 
A260/A230 ratios were used for evaluation of quality. cDNA 
was obtained by RT using 1 µg RNA, and stored at ‑20˚C. RT 
of the extracted RNA was achieved using the TIANScript II 
cDNA First Strand Synthesis kit (Tiangen Biotech Co., Ltd., 
Beijing, China).

The SuperReal PreMix (SYBR Green) RT‑qPCR kit 
(Tiangen Biotech Co., Ltd.) was used to detect the expression 
of human BMP‑2 using GAPDH as internal standard, and 
mouse BMP‑2 expression using β‑actin as internal reference. 
The primer sequences were as follows: Human BMP‑2 
forward, 5'‑CCT​ATA​TGC​TCG​ACC​TGT​AC‑3', and reverse, 
5'‑CCC​ACT​CAT​TTC​TGA​AAG​TTC‑3'; GAPDH forward, 
5'‑GCACAGTCAAGGCTGAGAAT‑3', and reverse, 5'‑TGA​
AGA​CGC​CAG​TAG​ACT​CC‑3'; mouse BMP‑2 forward, 
5'‑TGT​GAG​GAT​TAG​CAG​GTC​TT‑3', and reverse, 5'‑GTT​
AGT​GGA​GTT​CAG​GTG​GT‑3'; β‑actin forward, 5'‑CTC​TTT​
TCC​AGC​CTT​CCT​TCT‑3', and reverse, 5'‑TGG​AAG​GTG​
GAC​AGT​GAG​G‑3'. Reaction mixtures (20 µl) consisted of 
qPCR‑mix (10 µl), forward primer (0.5 µl; 10 µmol/µl), reverse 
primer (0.5 µl; 10 µmol/µl), cDNA (2 µl) and ddH2O (7 µl). 
Thermocycling conditions were as follows: Initial denaturation 
at 95˚C for 30 sec followed by 39 cycles of denaturation at 
95˚C for 5 sec and elongation at 60˚C for 20 sec (iQ5; Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA). The 2‑ΔΔCq method (28) 
was used to calculate the relative expression of human or 
mouse BMP‑2 mRNA vs. GAPDH or β‑actin, respectively. 
Each sample was analyzed in triplicate.

miR‑410 expression was determined using the miRcute 
miRNA qPCR detection kit (Tiangen Biotech Co., Ltd.) using 
U6 as an internal reference. Primer sequences for human 
samples were as follows: Human miR‑410 forward, 5'‑GTC​
AGC​GCA​ATA​TAA​CAC​AG‑3'; human U6 forward, 5'‑GTC​
AGC​GCG​TGC​TCG​CTT​CG‑3', and the human universal 
reverse primer, 5'‑GTGCAGGGTCCGAGGT‑3' (provided in 
the kit). The same aforementioned reaction mixtures were 
used. Thermocycling conditions were as follows: Initial 
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denaturation at 95˚C for 5 min followed by 40 cycles of dena-
turation at 95˚C for 10 sec, annealing at 60˚C for 20 sec and 
extension at 72˚C for 10 sec (iQ5; Bio‑Rad Laboratories, Inc.). 
Primer sequences for murine samples were as follows: Mouse 
miR‑410 forward, 5'‑AGG​TTG​TCT​GTG​ATG​AGT​TCG‑3'; 
mouse U6 forward, 5'‑CTC​GCT​TCG​GCA​GCA​CAT​ATA​
CT‑3' and the mouse universal reverse primer, 5'‑ACG​CTT​
CAC​GAA​TTT​GCG​TGT​C‑3' (provided in the kit). Reaction 
mixtures were prepared as described above. Thermocycling 
conditions were as follows: Initial denaturation at 95˚C for 
5 min followed by 40 cycles of denaturation at 95˚C for 15 sec, 
annealing at 60˚C for 15 sec and extension at 72˚C for 10 sec 
(iQ5; Bio‑Rad Laboratories, Inc.). The 2‑ΔΔCq method was used 
to calculate human or mouse miR‑410 expression relative to 
U6. Each sample was analyzed in triplicate.

Western blotting. PBMCs in each group were lysed using 
prechilled radioimmunoprecipitation assay lysis buffer (600 µl; 
50 mM Tris‑base, 1 mM EDTA, 150 mM NaCl, 0.1% SDS, 1% 
TritonX‑100, 1% sodium deoxycholate; Beyotime Institute of 
Biotechnology, Haimen, China). Following lysis for 30 min on 
ice, the mixture was centrifuged at 12,000 x g for 10 min at 4˚C. 
The protein concentration of the supernatant was determined 
using a bicinchoninic acid protein concentration determination 
kit (cat. no., RTP7102; Real‑Times (Beijing) Biotechnology Co., 
Ltd., Beijing, China). Protein samples (50 µg) were mixed with 
SDS loading buffer (5X) and denatured in a boiling water bath 
for 10 min. Samples were then separated on 10% SDS‑PAGE 
gels. Proteins were transferred to polyvinylidene difluoride 
membranes (100 V, 1 h) in an ice box and blocked with 5% 
skimmed milk at room temperature for 1  h. Membranes 
were incubated with rabbit anti‑human or rabbit anti‑mouse 
BMP‑2 polyclonal primary antibodies (dilution, 1:1,000; cat. 
no. ab14933; Abcam, Cambridge, USA) and rabbit anti‑human 
or rabbit anti‑mouse β‑actin primary antibody (dilution 1:5,000; 
cat. no. ab8227; Abcam) at 4˚C overnight. Following washing 
with PBS containing Tween 20 (concentration, 0.1%; five 
washes for 5 min each time), membranes were incubated with 
goat anti‑rabbit horseradish peroxidase‑conjugated secondary 
antibody (dilution, 1:3,000; cat. no. ab6721; Abcam) for 1 h 
at room temperature prior to washing with PBS containing 
Tween 20 (5 washes for 5 min each time). Membranes were 
developed with an enhanced chemiluminescence detection kit 
(Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany). Image 
lab 3.0 (Bio‑Rad Laboratories, Inc.) was used to analyze the 
results. BMP‑2 protein levels were quantified relative to β‑actin.

ELISA. Human and mouse BMP‑2 ELISA kits (ab119581 
and ab119582, respectively; Abcam) were used to deter-
mine concentrations of human and mouse BMP‑2 in serum 
samples. In 96‑well plates, kit standards (50 µl) and samples 
(10 µl serum and 40 µl kit diluent) were added to the wells; 
empty wells served as blanks. Horseradish peroxidase‑labeled 
conjugate (100 µl) was added to the wells prior to sealing and 
the plate was incubated at 37˚C for 1 h. The samples were 
washed five times using a washing reagent supplied in the kit, 
substrates A (50 µl) and B (50 µl) were added to each well and 
plates were incubated at 37˚C for 15 min. Stop solution (50 µl) 
was added to each well and the absorbance was measured at 
450 nm within 15 min of adding the stop solution.

Bioinformatics. To investigate the regulatory mechanisms of 
BMP‑2, miRanda (http://www.microrna.org/microrna/home.
do), TargetScan (http://www.targetscan.org), PITA (http://genie.
weizmann.ac.il/pubs/mir07/mir07_data.html), RNAhybrid 
(http://bibiserv.techfak.uni‑bielefeld.de/rnahybrid/) and PicTar 
(http://pictar.mdc‑berlin.de/) were used to predict miR targets 
that may regulate BMP‑2.

Dual luciferase reporter assay. Wild‑type (WT; UUAUAU) 
and mutant miR‑410 seed regions (AAUAUA) in the 
3'‑untranslated region (UTR) of BMP‑2 were synthesized 
in vitro. Spe‑1 and HindIII restriction sites were created at 
the ends and constructs were cloned into the pMIR‑REPORT 
luciferase reporter plasmid (Ambion; Thermo Fisher Scientific, 
Inc.). Plasmids (0.8 µg) with WT or mutant 3'‑UTR DNA 
sequences were co‑transfected with agomiR‑410 (100 nM; 
Sangon Biotech Co., Ltd., Shanghai, China) into 293T cells 
Cell Bank of Type Culture Collection of Chinese Academy 
of Sciences (Shanghai, China) using Lipofectamine® 2000 
transfection reagent (Thermo Fisher Scientific, Inc.). Negative 
control (NC) group was transfected with agomiR‑410 and 
empty plasmid. Following cultivation at 37˚C for 24 h, cells 
were lysed using the dual luciferase reporter assay kit (Promega 
Corporation, Madison, WI, USA) according to the manu-
facturer's protocol, and fluorescence intensity was measured 
using a GloMax 20/20 luminometer (Promega Corporation). 
Renilla fluorescence activity was used as internal reference.

Statistical analysis. Results were analyzed using SPSS 18.0 
(SPSS, Inc., Chicago, IL, USA). All data is presented as the 
mean ± standard deviation. Data were tested for normality. 
Multigroup comparisons were analyzed using one‑way 
ANOVA. In case of homogeneity of variance, the least signifi-
cant difference and Student‑Newman‑Keuls test were used; in 
case of heterogeneity of variance, Tamhane's T2 or Dunnett's 
test was used. Comparisons between two groups were analyzed 
using a Student's t‑test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Patients with postmenopausal osteoporosis exhibit reduced 
BMP‑2 and elevated miR‑410 expression. To measure 
miR‑410 and BMP‑2 mRNA and protein levels in serum 
samples from patients with postmenopausal osteoporosis, 
RT‑qPCR and ELISA tests were employed, respectively. 
RT‑qPCR analysis revealed that miR‑410 levels in the serum of 
patients with postmenopausal osteoporosis were significantly 
increased when compared with the healthy control group 
(P<0.01; Fig. 1A), while BMP‑2 mRNA levels were signifi-
cantly decreased compared with the control group (P<0.01; 
Fig. 1B). In addition, BMP‑2 protein levels in the serum were 
significantly decreased when compared with the control group 
(P<0.05; Fig. 1C). These results suggest that reduced BMP‑2 
and elevated miR‑410 expression in serum may be associated 
with postmenopausal osteoporosis.

Patients with postmenopausal osteoporosis exhibit decreased 
BMP‑2 and increased miR‑410 expression in CD14+ PBMCs. 
To determine miR‑410 and BMP‑2 mRNA and protein 
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levels in CD14+ PBMCs from patients with postmenopausal 
osteoporosis, RT‑qPCR and western blotting analyses were 
performed, respectively. The RT‑qPCR results demonstrated 
that miR‑410 levels in CD14+ PBMCs from patients with post-
menopausal osteoporosis were significantly increased when 
compared with the control group (P<0.01; Fig. 2A), while 
BMP‑2 mRNA levels in CD14+ PBMCs were significantly 
decreased compared with the control group (P<0.01; Fig. 2B). 
In addition, BMP‑2 protein levels in CD14+ PBMCs from 
patients with postmenopausal osteoporosis were significantly 
decreased compared with the control group (P<0.05; Fig. 2C). 
The results provide further evidence that decreased BMP‑2 
and increased miR‑410 expression in CD14+ PBMCs may be 
associated with postmenopausal osteoporosis.

Reduced BMP‑2 and increased miR‑410 expression is observed 
in serum of mouse model with postmenopausal osteoporosis. 
To examine miR‑410 and BMP‑2 mRNA and protein levels in 
serum from mice in the sham (n=28) and OVX groups (n=25), 
RT‑qPCR and ELISA assays were performed, respectively. 
The RT‑qPCR results revealed that miR‑410 levels in serum 
samples from the OVX group were significantly increased 
when compared with the sham group (P<0.05; Fig. 3A), while 
BMP‑2 mRNA levels in serum samples from the OVX group 
were significantly decreased compared with the sham group 
(P<0.01; Fig. 3B). In addition, BMP‑2 protein levels in serum 
from the OVX group were significantly decreased compared 
with the sham group (P<0.05; Fig. 3C). These results confirmed 
that reduced BMP‑2 and increased miR‑410 expression may 
be associated with postmenopausal osteoporosis in vivo.

Decreased BMP‑2 and increased miR‑410 expression is 
observed in CD14+ PBMCs derived from a mouse model 
of postmenopausal osteoporosis. To analyze miR‑410 and 
BMP‑2 mRNA and protein levels in CD14+ PBMCs from mice, 
RT‑qPCR and western blotting analyses were performed, 
respectively. The RT‑qPCR results demonstrated that miR‑410 
levels in CD14+ PBMCs from the OVX group were significantly 
increased when compared with the sham group (P<0.01; 
Fig. 4A), while BMP‑2 mRNA levels in CD14+ PBMCs from 
OVX group were significantly decreased compared with the 
sham group (P<0.05; Fig. 4B). In addition, BMP‑2 protein 
levels in CD14+ PBMCs from the OVX group were significantly 
decreased when compared with the sham group (P<0.05; 
Fig. 4C). The results indicated that CD14+ PBMCs derived from 
a mouse model of postmenopausal osteoporosis exhibited 
decreased BMP‑2 and elevated miR‑410 expression levels.

miR‑410 binds to the 3'‑UTR seed region of BMP‑2 and 
regulates its expression. Bioinformatics analysis revealed that 
miR‑410 was a potential regulator of BMP‑2 (Fig. 5). To iden-
tify interactions between miR‑410 and the 3'‑UTR of human 
and mouse BMP‑2 mRNA, dual luciferase reporter assays 
were performed. The level of fluorescence generated by cells 
co‑transfected with miR‑410 mimics and pMIR‑REPORT‑WT 
luciferase reporter plasmids was significantly decreased when 
compared with the negative control group (P<0.01; Fig. 6). By 
contrast, the level of fluorescence generated by cells co‑trans-
fected with miR‑410 mimics and pMIR‑REPORT‑mutant 
luciferase reporter plasmids was not significantly altered when 

compared with the negative control group (P>0.05; Fig. 6). 
These results suggest that miR‑410 binds to the 3'‑UTR seed 
region of BMP‑2 mRNA and regulates its expression.

Discussion

It is generally accepted that the underlying cause of post-
menopausal osteoporosis is an imbalance between bone 
formation and bone resorption induced by estrogen deficiency, 
which leads to bone remodeling disorders  (29). Treatment 
of postmenopausal osteoporosis is focused on recovery and 
maintenance of a balance between bone remodeling and bone 
resorption (30,31). Understanding the molecular mechanisms 
underlying the disease is beneficial for clinical prevention, 
diagnosis and treatment.

BMP, a factor that induces osteogenesis, promotes the 
differentiation of mesenchymal cells into bone, cartilage, 
ligament, tendon and nerve tissues  (32). BMP‑2 has been 
demonstrated to transform murine myoblasts into osteoblast 

Figure 1. BMP‑2 and miR‑410 expression in serum samples from patients 
with postmenopausal osteoporosis. Levels of (A) miR‑410 and (B) BMP‑2 
mRNA, and the protein expression levels of (C) BMP‑2 in the serum from 
controls and patients with postmenopausal osteoporosis. Reverse transcrip-
tion‑quantitative polymerase chain reaction analysis was performed to 
measure miRNA and mRNA expression, and ELISA was used to determine 
BMP‑2 protein expression levels. *P<0.05 and **P<0.01 vs. control group. 
miR, microRNA; BMP‑2, bone morphogenetic protein‑2; control, healthy 
subjects.
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cells (33,34). It is thought that BMP‑2 levels in osteoblasts 
may reflect bone formation ability  (35,36). In the present 
study, BMP‑2 levels in serum samples and CD14+ PBMCs 
derived from patients with postmenopausal osteoporosis were 
observed to be significantly lower when compared with healthy 
individuals, suggesting that reduced BMP‑2 expression may be 
associated with postmenopausal osteoporosis. Similarly, in a 
mouse model of postmenopausal osteoporosis, BMP‑2 expres-
sion in serum and CD14+ PBMCs from mice in the OVX group 
was downregulated when compared with the sham group. 
These results indicated that BMP‑2 may be closely associated 
with postmenopausal osteoporosis.

miRs are important post‑transcriptional regulators. It 
has been reported that miRs are widely associated with the 
regulation of cartilage development, osteocyte proliferation 
and osteoporosis (37,38). The authors of the present study 
hypothesized an association between BMP‑2 and postmeno-
pausal osteoporosis, and miRs that may regulate BMP‑2 
were investigated in the present study. Previous studies have 
identified a number of miRs as biomarkers for different 
diseases (39,40). In the current study, bioinformatics tools 
were utilized to identify upstream genes predicted to regulate 
BMP‑2, which resulted in the identification of miR‑410 as 
a potential upstream regulator. To date, there are a limited 
number of reports that have investigated the functional role 
of miR‑410 in human disease. Wheeler et al (41) reported that 
miR‑410 and miR‑431 are expressed in the central nervous 
system. Goodarzi et al (42) demonstrated that miR‑410 serves 
an important regulatory role in the pathological process of 
male alopecia. Hennessy et al (43) discovered that miR‑410 
serves an important role in the regulation of insulin secretion. 

Figure 2. BMP‑2 and miR‑410 expression in CD14+ PBMCs from patients 
with postmenopausal osteoporosis. (A) miR‑410, (B) BMP‑2 mRNA and 
(C) BMP‑2 protein expression in CD14+ PBMCs from controls and patients 
with postmenopausal osteoporosis. Reverse transcription‑quantitative 
polymerase chain reaction analysis was performed to measure miRNA and 
mRNA expression levels in PBMCs and western blotting was employed to 
determine BMP‑2 protein levels. *P<0.05 and **P<0.01 vs. control group. 
miR, microRNA; BMP‑2, bone morphogenetic protein‑2; PBMC, peripheral 
blood mononuclear cells; controls, healthy subjects.

Figure 3. BMP‑2 and miR‑410 expression in serum from a mouse model 
of postmenopausal osteoporosis. (A)  miR‑410, (B)  BMP‑2 mRNA and 
(C) BMP‑2 protein expression in serum from mice in the sham and OVX 
groups. Reverse transcription‑quantitative polymerase chain reaction anal-
ysis was performed to measure miRNA and mRNA expression in serum, and 
ELISA was used to determine BMP‑2 protein levels. *P<0.05 and **P<0.01 
vs. sham group. miR, microRNA; BMP‑2, bone morphogenetic protein‑2; 
OVX, ovariectomized.
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A previous study demonstrated that miR‑410 expression was 
decreased in endothelial cells with Hantaan virus‑induced 
alterations in cell permeability (44). In addition, miR‑410 
has been demonstrated to serve important regulatory roles in 
the occurrence and development of prostate, breast and colon 
cancer (45‑47). In the present study, miR‑410 expression in 
serum and CD14+ PBMCs from patients with postmenopausal 
osteoporosis was elevated when compared with normal 
healthy controls. Considering that BMP‑2 expression in 
serum and CD14+ PBMCs was decreased, it was hypothesized 
that upregulation of miR‑410 may underlie the observed 
downregulation of BMP‑2 in patients with postmenopausal 
osteoporosis. Similar results were observed in the mouse 
model of postmenopausal osteoporosis, which indicates that 
an association between miR‑410 and BMP‑2 may exists across 
different species. Dual luciferase reporter assays revealed that 
miR‑410 bound to the 3'‑UTR of BMP‑2 and regulated its 
expression.

The present study was limited by the small number of 
samples included and the lack of genetic diversity. Future 
studies may include an increased number of samples from 
multiple ethnic groups. In conclusion, the present study 
demonstrated that enhanced miR‑410 expression in serum 
and CD14+ PBMCs from patients with postmenopausal osteo-
porosis targeted BMP‑2 and may downregulate its mRNA 
expression thus leading to decreased BMP‑2 protein levels. 
The association between miR‑410 and BMP‑2 may therefore 
serve a biological role in the occurrence and development of 
postmenopausal osteoporosis. The present study provided a 

Figure 6. Interactions between miR‑410 and BMP‑2 in (A) human and 
(B) mouse. The fluorescence intensity of cells transfected with WT and 
mutant seed regions of miR‑410 in the 3'‑untranslated region of BMP‑2 
was determined using dual luciferase reporter assays. Renilla fluorescence 
activity served as internal reference. Data are presented as relative intensity. 
**P<0.01 vs. NC. miR, microRNA; BMP‑2, bone morphogenetic protein‑2; 
WT, wild‑type; NC, negative control.

Figure 5. Interactions between miR‑410 and BMP‑2 mRNA in mouse and 
human cells. Bioinformatics tools predicted miR‑410 as potential regulator 
of BMP‑2. miR, microRNA; BMP‑2, bone morphogenetic protein‑2; mmu, 
Mus musculus; has, Homo sapiens.

Figure 4. BMP‑2 and miR‑410 expression in CD14+ PBMCs from a mouse 
model with postmenopausal osteoporosis. (A) miR‑410, (B) BMP‑2 mRNA 
and (C) BMP‑2 protein expression in CD14+ PBMCs from mice in the sham and 
OVX groups. Reverse transcription‑quantitative polymerase chain reaction 
analysis was performed to measure miRNA and mRNA expression levels in 
PBMCs, and western blotting analysis was employed to detect BMP‑2 protein 
levels. *P<0.05 and **P<0.01 vs. sham group. miR, microRNA; BMP‑2, bone 
morphogenetic protein‑2; OVX, ovariectomized; PBMC, peripheral blood 
mononuclear cells.
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novel insight into the mechanisms underlying postmenopausal 
osteoporosis, and provided a theoretical basis for the diagnosis, 
prevention and treatment of the disease.
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