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Abstract. Imatinib (IM) is successfully used in the majority 
of patients with chronic myeloid leukemia (CML), but some 
patients develop resistance to drug treatment. Insufficient 
apoptosis results in uncontrolled cell proliferation, which is 
closely associated with the occurrence of drug resistance. 
Therefore, it is crucial to identify new biomarkers related to 
drug resistance. This aim of the present study was to inves-
tigate the profile of apoptosis‑related proteins in K562 and 
K562/G (IM‑resistant K562 cells) cells, in order to identify 
new biomarkers. A human apoptosis antibody array was 
used to screen 46 proteins in the two cells lines, among 
which 20 proteins were found to be differentially expressed 
between K562 and K562/G cells. The major proteins included 
secreted caspase‑8, insulin‑like growth factor‑binding protein 
(IGFBP)‑1, IGFBP‑2, IGFBP‑3, caspase‑3 and p27. IGFBP‑1 
IGFBP‑2 and IGFBP‑3 were selected for the follow‑up study. 
Subsequently, reverse transcription‑quantitative PCR analysis 
and western blotting were used to detect the expression levels 
of the IGFBPs. The results revealed that the expression levels 
of IGFBP‑2 and IGFBP‑3 in K562/G cells were significantly 
decreased compared with those in K562 cells, whereas the 
IGFBP‑1 level was higher. Moreover, no significant correlation 
was observed between IGFBP‑1 or IGFBP‑2 and the level of 
the BCR‑ABL fusion protein, whereas decreasing IGFBP‑3 
levels were associated with increasing BCR‑ABL levels. These 
results suggested that IGFBP‑1, IGFBP‑2 and IGFBP‑3 could 
be useful novel biomarkers for IM resistance in CML.

Introduction

Chronic myeloid leukemia (CML) is a clonal hematopoietic 
stem cell disease and its incidence among all adult leukemia 

cases is 10‑15% (1,2). CML is more common in middle‑aged 
patients, and may be associated with malnutrition, night 
sweats, hematopenia and bleeding (3). CML may be divided 
into the chronic, accelerated and blast phases, and the 
majority of the patients are in the chronic phase at the time of 
diagnosis (4,5). Imatinib mesylate (IM) was the first tyrosine 
kinase inhibitor (TKI) to be used for the treatment of CML 
in clinical settings, and has provided a survival benefit by 
restoring normal hematopoiesis and achieving hematological, 
cytogenetic and molecular remission (6). However, despite the 
satisfactory efficacy of IM and second‑ and third‑generation 
TKIs, a proportion of patients display varying degrees of 
resistance (7). Therefore, it is crucial to further investigate 
the molecular mechanism underlying the development 
of drug resistance and identify new targets to overcome this 
resistance.

The main components of the insulin‑like growth factor 
(IGF) axis include the type 1 IGF receptor and insulin 
receptor, ligands (IGF‑1 and IGF‑2) and IGF binding proteins 
(IGFBPs) (8,9). IGF is a type of multifunctional cell prolif-
eration regulator (10). IGFBPs play an essential role in the 
proliferation and differentiation of various cell types, and 
body development (11). It was previously demonstrated that 
the transmembrane tyrosine kinase receptor on the cell surface 
mainly mediates the biological functions of the IGF axis, 
and six IGDBPs mainly regulate its activity (12,13). Signal 
dysregulation has been associated with chemoresistance and 
radioresistance (14). The role of the IGF axis in tumors, such 
as malignant renal tumors, gastrointestinal cancer, breast 
cancer and hematological malignancies has been extensively 
investigated (15,16). However, it remains unclear whether the 
IGF axis plays a role in IM resistance of CML.

In the present study, protein microarray technology was 
used to assess differentially expressed proteins (DEPs) in 
K562 cells and K562/G (IM‑resistant K562) cells. An apop-
tosis antibody array was used to screen 46 proteins in the cells, 
among which 20 proteins, differentially expressed between 
K562 and K562/G cells, were identified. Reverse transcrip-
tion‑quantitative (RT‑q)PCR and western blot analyses were 
used to detect the levels of IGFBP‑1, IGFBP‑2 and IGFBP‑3 
in K562 and K562/G cells. In addition, the expression levels of 
IGFBP‑1, IGFBP‑2 and IGFBP‑3 were detected in the periph-
eral blood (PB) of healthy individuals, patients with optimal 
response and patients with treatment failure. Furthermore, 
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it was investigated whether there were correlations between 
IGFBP levels and BCR‑ABL, in order to determine whether 
IGFBPs may be of value as a specific protein marker of 
imatinib resistance in CML. The findings of the present study 
may help identify novel targets for the treatment of CML.

Materials and methods

Cell culture and treatment. Human CML K562 cells were 
obtained from the Shanghai Institute of Life Sciences. The 
IM‑resistant clone K562/G was obtained by constant exposure 
to increasing IM concentrations of up to 15 µmol/l. The K562 
and K562/G cells were grown in Iscove's Modified Dulbecco's 
medium supplemented with 10% FBS (both purchased from 
Gibco; Thermo Fisher Scientific, Inc.) and 1% penicillin‑strep-
tomycin. In addition, the K562/G cells were cultured in the 
continuous presence of 1 µmol/l imatinib. The methods for 
the detection of cell drug resistance, were as mentioned in an 
earlier study (17). The K562/G cells exhibited significantly 
higher resistance to IM, with >50‑fold increase of the IC50 
value, compared with K562 cells.

Human subjects and blood samples. CML patients who were 
treated by chemotherapy at the Anhui Provincial Hospital 
between March 2018 and April 2019 were recruited in the 
present study. The study protocols were approved by the 
Institutional Review Board of Anhui Provincial Hospital and 
informed consent was obtained from all participants, according 
to the principles outlined in the Declaration of Helsinki. The 
patients were divided into different groups according to the 
therapeutic effect and time of treatment. A total of 19 healthy 
individuals served as control subjects. The patients were 
newly diagnosed and treated with IM 400 mg/day. All CML 
samples were subjected to cytogenetic analysis and RT‑qPCR. 
The response to treatment was evaluated according to the 
relevant guidelines (18). Patients whose response lasted for at 
least 6 months, without discontinuing or changing drugs, were 
recruited into the corresponding group (optimal response or 
treatment failure). The remaining patients were divided into 
four groups according to the duration of treatment. Clinical 
data on all subjects are summarized in Tables I and II. PB 
samples were collected from the subjects and PB mononuclear 
cells were isolated using gradient centrifugation (400 x g 
for 20 min at room temperature) by layering on top of Ficoll 
(GE Healthcare). Total RNA was extracted and stored at ‑80˚C 
until further use.

Apoptosis antibody array processing. An apoptosis antibody 
array (Ray Biotech, Inc.) was used to explore the differences 
in the apoptotic protein profile between K562 and K562/G 
cells. First, 100 µl of blocking solution was added to each 
well and incubated for 1 h at room temperature. Second, the 
blocking solution was removed, 100 µl sample was added 
to each well (500 µg/ml) and washed with Wellwash Versa 
chip (Thermo Fisher Scientific, Inc.). Third, 300 µl blocking 
solution and 70 µl biotin‑labeled antibody were added to each 
well; after incubating for 2 h at room temperature, 70 µl of 
1,500‑fold diluted fluorescent dye‑streptavidin conjugate 
was added to each well. Finally, the signal was scanned by 
an Axon MaPix laser scanner (Molecular Devices, LLC) and 

data analysis was performed with software specific for Human 
Apoptosis Array G1 (AAH‑APO‑G1). DEPs were defined as 
those with fold‑change >1.2 or <0.83, and a fluorescent value 
>150 according to the manufacturer's protocol to observe 
more differential proteins and further verify them in subse-
quent experiments. In order to analyze the related pathways 
that were enriched in the DEPs, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway (https://www.genome.
jp/kegg/) with the R package ‘clusterProfiler’ (v3.0.4) (19) was 
performed to link genomic information with higher‑order 
functional information. Specifically, the method used was 
Fisher's precise inspection and the number was derived from 
R/Bioconductor according to the ‘clusterProfiler’ package. 
The selection criteria were the number of genes that fall on 
a certain term/pathway ≥5 and P<0.05. The term/pathway 
obtained in the pathway is arranged in descending order 
according to the count value.

RNA extraction and RT‑qPCR analysis. RNA was isolated 
and cDNA was prepared as described previously (20). The 
Power SYBR® Green PCR Master Mix (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) was used for RT‑qPCR and the 
PCR primers are shown in Table III. The mRNA levels were 
normalized to GAPDH. The changes in mRNA expression 
levels were calculated using the comparative Cq method, as 
follows: Fold‑change=2‑ΔΔCq (21). Healthy patients' data and 
untreated patients would be set to ‘1’ and the other groups' 
expression levels shown ‘relative’ to that. The PCR conditions 
for all genes were as follows: Initial activation at 95˚C for 30 
sec, followed by 40 cycles at 95˚C for 3 sec and at 60˚C for 
30 sec. Fluorescence determination at the melting temperature 
of the product for 20 sec was performed on a QuantStudio™ 
5 Real‑Time PCR instrument (Applied Biosystems; Thermo 
Fisher Scientific, Inc.).

Western blot analysis. Cells were prepared for protein extrac-
tion using RIPA buffer containing a protease inhibitor cocktail 
(Beyotime Institute of Biotechnology) according to the manu-
facturer's protocol. The protein concentration was estimated 
by the Enhanced BCA Protein Assay kit (Beyotime Institute 
of Biotechnology). Protein (40 µg) samples were separated on 
12% SDS‑PAGE, followed by transfer to a PVDF membrane; 
the membranes were then blocked in 5% skimmed milk for 

Table I. Clinical characteristics of patients with optional 
responses and response failure.

	 Optional	 Response
	 responses	 failure
Group	  (n=21)	 (n=19)

Age	 44.43±13.59	 41.95+15.77
Sex		
  Male	 12	 9
  Female	 9	 10
White blood cells (109/ml)	 9.06±4.36	 63.55+65.13
BCR/ABL international 	 0.03±0.08	 19.17±17.61
scale (%)		
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1.5 h at 37˚C. The membrane was subsequently incubated 
with specific antibodies: IGFBP‑1 (1:1,000; cat. no. 31025T; 
Cell Signaling Technology, Inc.), IGFBP‑2 (1:1,000; cat. 
no. 3922S; Cell Signaling Technology, Inc.), IGFBP‑3 (1:1,000; 
cat. no. 13216S; Cell Signaling Technology, Inc.) and β‑actin 
(1:100,000; cat. no. AC026; ABclonal). On the following day, 
TBS containing 0.1% Tween 20 was used to wash the membrane 
again for 15 min. Then, the membranes were incubated with 
horseradish peroxidase conjugated‑Goat Anti‑Rabbit IgG 
(H+L) (1:50,000; cat. no. A21020; Abbkine Scientific Co., Ltd.) 
for 1 h at 37˚C before washing the membrane for 15 min once 
again. Finally, the membranes were treated with BeyoECL 
Moon (P0018FS; Beyotime Institute of Biotechnology) and 
digitalized by scanning (Fusion Solo3 v 16.12; Fusion FX; 
VilberLourmat).

Statistical analysis. Protein microarray data were 
statistically analyzed with the ‘R’ programming language 
(R version 3.6.2) (22). After raw data were normalized by the 
software, DEPs were screened by fold‑change and P‑value. 
Data are expressed as the mean ± SD of three independent 
experiments. All statistical analyses were performed with 
the SPSS software, version 17.0 (SPSS, Inc.). Differences 
between two cells lines were determined by Student's t‑test. 
One‑way ANOVA and Bonferroni's post hoc test were used 
in the analysis of the differential expression of IGFBPs in 
human subjects. Non‑parametric Spearman's correlation 
was used to analyze the association between two indicators. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Analysis of apoptosis antibody array data. In the present study, 
a total of 46 proteins associated with apoptosis were detected, 
20 of which were found to be differentially expressed between 
K562 and K562/G cells. To identify DEPs, the fold‑change of 
each protein was analyzed individually between two groups. It 
was observed that the levels of BCL‑w, TRAILER‑1, HTRA, 
caspase‑8, SMAC, HSP27, BID, Stnf‑R1, IGFBP‑1 and IGF‑II 
were increased in K562/G cells, while those of IGFBP‑3, 
Stnf‑R2, P27, Survivin, TRAILER‑4, caspase‑3, IGFBP‑2, 
FAS, cytoC and CD40L were decreased. Among these DEPs, 
IGFBP‑1, IGFBP‑2 and IGFBP‑3 were significantly different 
between K562 and K562/G cells (Fig.  1A). Furthermore, 
enrichment of the KEGG pathway with the R package ‘clus-
terProfiler’ was performed to analysis these pathways mainly 
enriched in the DEPs. A total of 12 pathways were mainly 
enriched in the DEPs, including apoptosis, apoptosis‑multiple 
species and the p53 signaling pathway (Fig. 1B).

IGFBP‑1, IGFBP‑2 and IGFBP‑3 are differentially expressed 
in cells and CML patients. After apoptosis antibody array 
analysis, RT‑qPCR and western blot analyses were conducted 
to validate microarray data. The results of the RT‑qPCR 
analysis revealed that the expression levels of the IGFBP‑1 
were significantly increased in K562/G cells compared 
with K562 cells (P<0.05; Fig. 2A); conversely, the levels of 
IGFBP‑2 and IGFBP‑3 were lower. The results of western blot-
ting were consistent with those of RT‑qPCR analysis (Fig. 2B). 
Furthermore, significantly increased IGFBP‑1 expression was 
observed in patients with treatment failure, compared with 
that in patients with optimal responses and healthy individuals 
(P<0.05). In addition, the mRNA expression of IGFBP‑2 and 
IGFBP‑3 in the patients with optimal response was signifi-
cantly increased compared with that in healthy individuals and 
patients with treatment failure (Fig. 2C).

Expression of IGFBP‑1, IGFBP‑2 and IGFBP‑3 by medication 
time and association with BCR‑ABL. The patients were 
divided into four groups to further investigate the changes 
of IGFBPs in PB of CML patients with prolonged treatment 
time. RT‑qPCR was used to detect the expression of IGFBP‑1, 
IGFBP‑2 and IGFBP‑3 in the PB of patients in each group. 
The present study compared each treatment group with 
the untreated group. The results revealed that IGFBP‑1 was 
significantly increased in untreated patients compared with 
patients who had been receiving IM for >12 months (P<0.05). 

Table II. Clinical characteristics of patients taking medicine for different durations.

Group	 Untreated	 <6 months	 6‑12 months	 >12 months

Age	 47.15±18.74	 43.20±16.56	 44.14±17.27	 39.74±11.74
Sex				  
  Male	 11	 9	 8	 15
  Female	 9	 6	 5	 12
White blood cells (109/ml)	 75.97±80.21	 34.37±48.45	 24.88±54.14	 7.48±7.57
BCR/ABL international scale (%)	 66.46±65.34	 10.08±15.36	 3.12±5.65	 3.12±10.51

Table III. Primers for reverse transcription‑quantitative PCR.

Gene	 Primer sequence (5'‑3')

IGFBP‑1	 F: CACAGGGTATGGCTC
	 R: CTTCTGGGTCTTGGG
IGFBP‑2	 F: CGATGCTGGTGCTTCTCA
	 R: GGGGTCTTGGGTGGG
IGFBP‑3	 F: CTCTCCCAGGCTACACCA
	 R: GAAGTCTGGGTGCTGTGC
GAPDH	 F: GAGCGAGATCCCTCCAAAAT
	 R: GGCTGTTGTCATACTTCTCATGG

IGFBP, insulin‑like growth factor‑binding protein.
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Conversely, IGFBP‑2 and IGFBP‑3 were decreased in the PB 
of untreated patients compared with those treated (Fig. 3A). 
There was no significant difference among the groups whose 
medication time was <12 months. No significant correlation 
was found between IGFBP‑1 or IGFBP‑2 and the level of 
BCR‑ABL (r=0.144, P>0.05 and r=‑0.112, P>0.05, respec-
tively). However, a decrease in IGFBP‑3 levels was observed 
with increasing BCR‑ABL levels (r=‑0.602, P<0.0001; 
Fig. 3B).

Discussion

IM is currently the main agent used for the treatment of CML. 
IM can inhibit the proliferation of leukemic cells and promote 
their apoptosis by targeting the BCR‑ABL fusion gene and 
inhibiting the activity of the BCR‑ABL fusion protein (23,24). 
The advent of imatinib has markedly improved the survival 
rate of CML patients and certain shortcomings were over-
come by the second‑ and third‑generation TKIs  (25,26). 
Unfortunately, IM resistance in CML is a frequent occurrence 
and poses a major clinical challenge in the successful treat-
ment of CML. The most common cause of TKI resistance 
is gene mutations of BCR‑ABL1, which usually occur at a 
frequency of 40‑90%  (27). Other drug resistance mecha-
nisms include abnormal expression of Src family kinase, an 
epigenetic mechanism, abnormal expression of tumor drug 

resistance‑associated proteins, increased telomerase activity 
and the presence of leukemic stem cells (28‑32). The research 
for targets apart from BCR‑ABL1 is crucial for the treatment 
of CML.

To the best of our knowledge, the present study is the first 
to propose a high‑throughput robust protein array method, 
which has enough clinical specificity and sensitivity, for 
identifying new protein targets. As an advanced new tool, 
protein chip technology has developed rapidly in recent 
years (33,34). Its basic principle is that all types of proteins 
are fixed on various carriers in an orderly manner. The 
designated, labeled antibodies can be matched by chromatin 
immunoprecipitation (ChIP). The fluorescent antibody is 
matched to the corresponding protein and the corresponding 
signal indicates the expression level of the protein. All other 
antimicrobial agents that are not complementary are washed 
away and the samples are evaluated by fluorescence scanners 
or laser scanning techniques. By analyzing the fluorescence 
intensity of each point on the chip and the interaction 
between proteins, the expression level of the related proteins 
can be evaluated. A total of 46 apoptosis‑related proteins 
were detected and 20 DEPs were screened out and enriched 
with KEGG, and these proteins were found to play a role 
in 12 regulatory pathways, including the apoptosis signaling 
pathway, the p53 signaling pathway and the tumor necrosis 
factor signaling pathway.

Figure 1. Results of apoptosis antibody array data. (A) Heat maps of differentially expressed proteins between K562 and K562/G cells, the cut‑off value was 
set as follows: Fold‑change <1.2 or <0.83, fluorescent value >150 and P<0.05 (K562/G VS K562). (B) Kyoto Encyclopedia of Genes and Genomes pathway 
analysis of differentially expressed proteins.
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The authors previously demonstrated that the p53 signaling 
pathway that regulates redox status plays an essential role in 
IM resistance (17). The study had revealed that IGFBP‑1 acts 
as a negative regulator of BAK‑dependent apoptosis and its 
expression is involved in the transcriptional and mitochondrial 
functions of the p53 tumor suppressor protein (35). However, 
the role of IGFBP in CML resistance is unclear. IGFBP‑1, 
IGFBP‑2 and IGFBP‑3 proteins, which were significantly 
different in the results of a protein chip, were selected and a 
follow‑up study was performed.

The expression of IGFBP‑1, IGFBP‑2 and IGFBP‑3 in the 
K562 and K562/G cell lines was detected by RT‑qPCR and 
western blot analyses to confirm the results of the protein ChIP 
analysis. The results demonstrated that the level of IGFBP‑1 in 
the drug‑resistant cell line K562/G was increased compared 
with that in K562, while the levels of IGFBP‑2 and IGFBP‑3 
were lower, consistent with the results of the antibody array.

Similarly, the level of IGFBP‑1 in the PB of patients 
with drug resistance was increased compared with that in 
IM‑sensitive patients and healthy subjects, while the levels 
of IGFBP‑2 and IGFBP‑3 were lower. Previous mecha-
nistic investigations revealed that IGFBP‑1 plays a role via 

a mechanism involving the extracellular signal regulated 
kinase (ERK)/c‑Jun pathway  (36). IGFBP2 induced the 
apoptosis of tumor cells through the PI3K/protein kinase 
B/inhibitor of NF‑κB kinase subunit β pathway (37). However, 
IGFBP3 gene silencing mediated inhibition of ERK/mitogen 
associated protein kinase signaling pathway on proliferation, 
apoptosis, autophagy and cell senescence (38). In addition, 
the content and ratio of IGFBP‑1 and IGFBP‑3 play an 
important role in the occurrence, development and prognosis 
of the tumor (39). In the present study, the levels of IGFBP‑1 
in patients who have been receiving IM for >12 months were 
lower compared with those in the untreated group, whereas 
IGFBP‑2 and ‑3 exhibited the opposite results. Such differ-
ences may arise from the change of cellular components 
in CML patients receiving long‑term IM treatment, which 
should be further confirmed in future studies. No significant 
correlation between IGFBP‑1 or IGFBP‑2 and the level of 
BCR‑ABL was observed. A decrease in the levels IGFBP‑3 
was observed with increasing BCR‑ABL levels. These 
results indicate that the role of IGFBP‑3 in IM resistance 
may depend on the level of BCR‑ABL, which is not the case 
for IGFBP‑1 and IGFBP‑2. This suggests that IGFBPs may 

Figure 2. Results of RT‑qPCR and western blot analyses. (A) RT‑qPCR analysis for the mRNA levels of IGFBP‑1, IGFBP‑2 and IGFBP‑3 in K562 and 
K562/G cells. The mRNA levels were normalized to GAPDH. *P<0.05 vs. K562 group. (B) Western blotting was performed to analyze the protein expres-
sion levels of IGFBP‑1, IGFBP‑2 and IGFBP‑3 in K562 and K562/G cells. (C) RT‑qPCR was performed to detect the IGFBP‑1 (left), IGFBP‑2 (middle) and 
IGFBP‑3 (right) levels in patients with chronic myeloid leukemia with optimal response to imatinib mesylate (n=21) or treatment failure (n=19), and healthy 
subjects (n=19). GAPDH mRNA expression was used as an internal control. *P<0.05. IGFBP, insulin‑like growth factor‑binding protein; RT‑qPCR, reverse 
transcription‑quantitative PCR.
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play a role in IM resistance, but it is not clear which IGFBP 
plays the dominant role. However, these results indicate that 
the protein array is a powerful tool for biomedical discovery. 
IGFBPs may play a key role in the development of drug 
resistance in CML and IGFBP‑1, IGFBP‑2 and IGFBP‑3 may 
represent potential therapeutic targets. However, the specific 
underlying mechanism requires further verification.

IGFBPs are a family of proteins binding to IGFs, including 6 
high‑affinity IGFBPs, namely IGFBP‑1 through IGFBP‑6 (40). 
IGFBP family members may be useful prognostic biomarkers 
in various malignancies and have been indicated to be 
involved in the development and progression of tumors (41). 
Previous studies validated the role of IGFBPs in the diagnosis 
and prognosis prediction of certain solid tumors, including 
rectal, ovarian and pancreatic (42‑44). IGFBP‑1 is abundantly 
expressed in the liver and decidualized endometrium, and 
mainly functions in the intracellular and pericellular compart-
ments to regulate cell growth and survival (45,46). In addition, 
IGFBP‑1 can perform IGF‑independent functions, such as 
transcriptional regulation, nuclear localization, modulation 
of other growth factors and binding to non‑IGF molecules 
involved in tumorigenesis, and tumor growth, metastasis and 
progression (47,48). In humans, IGFBP‑2 is the second most 
abundant IGFBP in the blood (49). High levels of IGFBP‑2 

have been detected in the serum of cancer patients with a poor 
prognostic outcome (50,51). In addition to its role as a secre-
tory protein, the intracellular oncogenic functions of IGFBP‑2 
promote cancer cell proliferation, invasion, metastasis and 
drug resistance (52,53). IGFBP‑3 is the most abundant IGFBP 
and accounts for 80% of all IGF binding  (54). Moreover, 
low serum IGFBP‑3 levels or free IGFBP‑3 levels, which 
are assessed by the molar difference of IGFBP‑3 and IGF‑1, 
increase the risk of tumors (55,56). The present study demon-
strated that the IGFBP‑1 level was higher in the PB of patients 
with drug resistance compared with IM‑sensitive patients and 
healthy subjects, whereas the levels of IGFBP‑2 and IGFBP‑3 
were lower, suggesting that IGFBP‑1, IGFBP‑2 and IGFBP‑3 
may be novel biomarkers of IM resistance.

In summary, the present study assessed K562 and K562/G 
cells by protein arrays. RT‑qPCR and western blot analyses 
were used to confirm the results. Of note, the results were 
obtained from clinical samples and they suggest that IGFBPs 
may represent novel targets for the treatment of IM resistance 
in CML.
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