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Abstract. S‑allyl‑L‑cysteine (SAC) is a sulfur‑containing 
amino acid present in garlic and exhibits a wide range of 
biological activities such as antioxidant, anti‑inflammatory, 
and anticancer agent. An earlier study demonstrated that 
SAC ameliorates oxidative damage in a model of experi-
mental stroke. However, the antioxidant property of SAC 
does not suffice to explain its beneficial effects in terms of 
the underlying mechanisms. Endoplasmic reticulum  (ER) 
stress and ER stress‑induced cell death have been shown to be 
involved in various neurological diseases such as brain isch-
emia, Alzheimer's disease, Parkinson's disease, amyotrophic 
lateral sclerosis and Huntington's disease. We have previously 
demonstrated that SAC exerts significant protective effects 
against ER stress‑induced neurotoxicity in cultured rat hippo-
campal neurons and organotypic hippocampal slice cultures. 

Recently, we demonstrated that these results are due to the 
direct suppression of calpain activity via the binding of SAC 
to this enzyme's Ca2+‑binding domain. We also found that the 
protective effects of the side‑chain‑modified SAC derivatives, 
S‑ethyl‑L‑cysteine  (SEC) and S‑propyl‑L‑cysteine  (SPC), 
against ER stress‑induced neurotoxicity were more potent 
than those of SAC in cultured rat hippocampal neurons. In 
addition, SAC, SEC and SPC have been shown to decrease 
the production of amyloid‑β peptide in the brains of mice 
with D‑galactose‑induced aging. These three hydrophilic 
cysteine‑containing compounds have also been shown to 
exert neuroprotective effects against dopaminergic neuron 
injury in a murine model of Parkinson's disease induced by 
1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine (MPTP). In this 
review, we aim to provide a current overview of the protective 
actions of SAC and the SAC‑related compounds, SEC and 
SPC, in neurodegenerative disease and discuss the promise of 
SAC as a prototype for developing novel therapeutic drugs for 
neurological diseases.
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1. Introduction

S‑allyl‑L‑cysteine (SAC) is the most abundant organosulfur 
compound derived from garlic (Allium sativum) and is 
biosynthesized by hydrolysis of γ‑glutamyl‑S‑allyl‑cysteine (G
SAC) by the enzyme γ‑glutamyl transpeptidase (γGTP). SAC 
is known as a water soluble bioactive compound of extremely 
high antioxidant capacity, and has long been used as a common 
dietary supplement and in traditional medicine (1). Moreover, 
SAC has been reported to exert multiple biological effects, 
such as anti‑diabetic (2), cholesterol‑lowering (3), anticancer (4) 
and anti‑hepatotoxic (5) effects. SAC and other organosulfur 
compounds are found in aged garlic extract (AGE), which is 
produced by natural extraction from fresh garlic followed by 
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incubation for >10 months in aqueous ethanol. In cultures of 
dissociated rat hippocampal neurons, these compounds have 
been shown to promote neuronal survival and to increase the 
number of branching points per axon (6). The chronic dietary 
intake of a low dose of SAC (40 mg/kg) has been reported 
to ameliorate deficits in learning performance and memory 
consolidation normally observed in the senescence‑accel-
erated mouse strains, SAMP8 and SAMP10  (7). Recently, 
Baluchnejadmojarad et al demonstrated that chronic oral treat-
ment with SAC (150 mg/kg) ameliorated cognitive deficits in 
a rat model of streptozotocin‑induced diabetes by suppressing 
oxidative stress and neuroinflammation (8). Despite the accu-
mulating knowledge of the properties of SAC in the presence of 
oxidative stress, little is known as to whether SAC ameliorates 
stress conditions other than oxidative stress, as well as the 
underlying mechanisms.

The endoplasmic reticulum (ER) is the largest organelle of 
most eukaryotic cells and plays crucial roles in various cellular 
processes, such as the synthesis, transport and correct folding 
of proteins, as well as lipid synthesis, carbohydrate metabo-
lism and intracellular Ca2+ storage. Various physiological and 
pathological conditions, such as glucose deprivation, Ca2+ 
depletion and exposure to free radicals lead to the accumula-
tion of misfolded or unfolded proteins in the ER, a condition 
known as ER stress  (9). ER stress has been implicated in 
various neurological diseases, including brain ischemia, 
traumatic brain injury, and age‑associated neurodegeneration. 
ER stress‑induced cell death has been shown to be involved 
in various neurodegenerative diseases, such as Alzheimer's 
disease, Parkinson's disease, amyotrophic lateral sclerosis and 
Huntington's disease (10). Thus, it is possible that a pharmaco-
logical agent targeting the intracellular signaling of ER stress 
could provide a potential therapeutic approach for neurode-
generation and brain damage. The purpose of the present 
review was to summarize the neuroprotective mechanisms of 
SAC in relation to ER stress and to discuss the prospects of 
SAC becoming the prototype of a new type of therapeutic drug 
for neurodegenerative diseases linked to ER stress.

2. Protective effects of SAC against neuronal death due to 
ER stress

ER stress can be activated by various pathological and physi-
ological conditions. The accumulation of misfolded or unfolded 
proteins in the ER activates a set of signaling pathways termed 
the unfolded protein response (UPR). The UPR can promote 
cellular repair and survival by reducing the load of unfolded 
proteins through the upregulation of chaperones and the 
attenuation of protein synthesis (11). However, when adaptive 
responses fail to resolve ER stress, the UPR ultimately initi-
ates multiple, ER‑specific pathways to induce apoptosis. In 
recent years, several lines of evidence have implicated several 
proteins in ER stress‑induced cell death, such as C/EBP 
homologous protein (CHOP), also known as growth arrest and 
DNA damage‑inducible protein 153 (GADD153), caspase‑12 
and apoptosis‑signal‑regulating kinase 1 (ASK‑1) (12). Among 
these stress‑related factors, caspase‑12 is localized specifi-
cally on the cytoplasmic side of the ER and has been shown 
to be proteolytically activated under conditions of ER stress in 
rodents (13,14). Mutant mice lacking the caspase‑12 gene are 

resistant to chemical ER stress inducers such as tunicamycin 
(an inhibitor of protein glycosylation), thapsigargin (an inhibitor 
of ER‑associated Ca2+ ATPase) and brefeldin A (an inhibitor of 
ER‑to‑Golgi transport) (14). Previous studies by our group have 
demonstrated that neuronal death is mediated by caspase‑12 
when death is induced either by amyloid β‑peptide (abbrevi-
ated Aβ, and a key player in the pathology of Alzheimer's 
disease), or by tunicamycin, in both rat cultured hippocampal 
neurons  (15,16) and rat organotypic hippocampal slice 
cultures (17,18). We have also previously demonstrated that the 
cell‑permeable caspase‑12‑selective inhibitor, z‑ATAD‑fmk, 
significantly suppresses cell death induced by tunicamycin 
in organotypic hippocampal slice cultures (17,18). Moreover, 
previous studies conducted in our laboratory have revealed 
that SAC protects against Aβ‑ and tunicamycin‑induced cell 
death in 3 cell lines: PC12 cells differentiated by nerve growth 
factor (NGF) (19), cultured hippocampal neurons (15,16,20) 
and organotypic hippocampal slice cultures (17,18). Moreover, 
the increases in cleaved, activated caspase‑12 induced by Aβ 
and tunicamycin have been shown to be prevented by the 
simultaneous application of SAC (15). The lipid peroxidation 
product, 4‑hydroxynonenal, associated with oxidative stress, 
has been shown to play a pivotal role in the pathogenesis of a 
number of neurodegenerative disorders. However, SAC was 
shown to not prevent 4‑hydroxynonenal‑induced cell death in 
NGF‑differentiated PC12 cells (19) or in cultured hippocampal 
neurons (15). Taken together, these results strongly suggest 
that SAC exerts a significant neuroprotective effect against ER 
stress‑induced neuronal death by attenuating the activation of 
caspase‑12.

3. Calpain is a probable target molecule for SAC

Three main mechanisms for caspase‑12 activation by ER stress 
signals have been discovered thus far. First, caspase‑12 forms 
a stable complex in the ER membrane with inositol‑requiring 
enzyme 1 (IRE1) and the adapter protein tumor necrosis factor 
receptor‑associated factor 2 (TRAF2) (21). The dissociation of 
TRAF2 from caspase‑12 is reportedly a trigger for the activa-
tion of caspase‑12 under ER stress conditions (21). Second, 
Rao et al have reported that in the 293T cell line, caspase‑7 
translocates from the cytosol to the ER membrane in response 
to ER stress, which leads to the processing of procaspase‑12 
and activation of caspase‑12  (22). Third and most impor-
tantly, calpain, a cytoplasmic cysteine protease, has also been 
shown to cleave and activate caspase‑12, which it does in 
response to Ca2+ release from the ER during ER stress (13). 
Furthermore, embryonic fibroblasts derived from conditional 
calpain knockout mice have been shown to be resistant to 
ER stress‑induced cell death, which is due to resistance to 
caspase‑12 activation (23). Moreover, the calpain inhibitor, 
PD150606, has been shown to inhibit tunicamycin‑induced 
cell death in the kidney cell line, LLC‑PK1 (24). These results 
suggest that the calpain activation pathway dominates in 
caspase‑12‑dependent, ER stress‑induced cell death.

To further support this concept, we previously evaluated 
the effects of SAC on ER stress‑induced calpain activation in 
cultured hippocampal neurons (20). Calpain activity can be 
measured by the quantitative analysis of full‑length α‑spectrin, 
a neuron‑specific cytoskeletal protein, which undergoes 
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proteolysis by activated calpain. The exposure of cultured 
hippocampal neurons to tunicamycin for 24 h was shown 
to result in a decrease in the levels of full‑length α‑spectrin. 
The degradation of α‑spectrin was significantly prevented by 
simultaneous treatment with SAC (20). We have also previously 
examined the effects of SAC on activation of recombinant 
calpain in a cell‑free assay system containing a synthetic 
substrate for calpain, Suc‑LLVY‑Glo  (20). The calpain 
activity was inhibited by SAC in a concentration‑dependent 
manner, as observed with typical synthetic calpain inhibitors 
such as calpeptin, ALLN and PD150606 (20). At the higher 
concentrations tested (ALLN, 10 nM; PD150606, 100 mM), 
these synthetic calpain inhibitors completely inhibited calpain 
activity in our in vitro assay system. SAC partially inhibited 
calpain activity at still higher concentrations (10 mM) (20). 
These findings suggest that, at least in the hippocampus, the 
neuroprotective effects of SAC against ER stress are partly 
attributable to the direct inhibition of calpain activity.

To characterize the site of interaction of SAC with 
calpain, we previously examined the interactions of SAC with 
synthetic calpain inhibitors that have known calpain interac-
tion sites: ALLN, which interferes with the active site of 
calpain, and PD150606, which interacts with the Ca2+‑binding 
site (20,25,26). When submaximal concentrations of synthetic 
calpain inhibitors were applied in the in vitro assay system, 
ALLN (5 pM) in combination with SAC additively inhibited 
calpain activity, whereas the inhibitory effect of PD150606 
(25 µM) was unaffected (20). By contrast, at supramaximal 
concentrations of synthetic calpain inhibitors, SAC significantly 
reversed the inhibitory effects of PD150606 (100 µM), but did 
not affect inhibition by ALLN (1 nM) (20). Taken together, 
these results suggest that SAC interacts with the Ca2+‑binding 
site of calpain (Fig. 1). This finding of a novel target for SAC 
strongly suggests that the limited concept of SAC as a mere 
antioxidant agent must be expanded to include the property of 
SAC of inhibiting ER stress. Although further in vivo studies 
should be carried out to clarify the underlying mechanisms 
responsible for the neuroprotective effects of SAC, the calpain 
inhibitory potential of SAC may prove to be useful in deriving 

therapeutic agents for neurological disorders associated with 
ER stress or the overactivation of calpain.

4. Analogs of SAC

In addition to SAC, various other sulfur‑substituted compounds 
are abundant in the genus, Allium  (27). Among these are 
S‑methyl‑L‑cysteine (SMC), S‑ethyl‑L‑cysteine  (SEC) 
and S‑propyl‑L‑cysteine (SPC), three typical hydrophilic 
cysteine‑containing compounds naturally found in garlic (27). 
More recently, we synthesized various structurally related deriv-
atives of SAC and examined their neuroprotective effects in a 
model of ER stress based on tunicamycin‑induced neurotoxicity 
in rat cultured hippocampal neurons (28). The following 20 SAC 
derivatives were tested: SAC itself, S‑allyl‑D‑cysteine (ent‑SAC), 
S‑allyl‑L‑cysteine amide (SACA), S‑benzyl‑L‑cysteine (SBC), 
S‑benzyl‑D‑cysteine (ent‑SBC), S‑carboxymethyl‑L‑cysteine 
(SCMC), SEC, S‑allyl‑DL‑homocysteine (rac‑SAHC), SMC, 
SPC, S‑propynyl‑L‑cysteine (SPNC), S‑trityl‑L‑cysteine 
(STC), methyl S‑allyl‑L‑cysteinate  (MSAC), methyl 
O‑allyl‑L‑serinate (MOAS), methyl O‑allyl‑N‑boc‑L‑serinate 
(MOANBS), N‑acetyl‑S‑allyl‑L‑cysteine (NASAC), 
N‑acetyl‑S‑allyl‑L‑cysteine amide (NASACA), O‑allyl‑L‑serine 
(OAS) and O‑allyl‑L‑serine amide (OASA). Cultured hippo-
campal neurons were treated with tunicamycin (10 µg/ml) in 
the absence or presence of 1 µM of a SAC derivative. These 
experiments demonstrated that the neuroprotective effects 
of the side‑chain substituted SAC derivatives, SEC and SPC, 
against ER stress‑induced cytotoxicity were more potent than 
those of SAC (Fig. 2). By contrast, compounds with bulky 
substituents (SBC, ent‑SBC, SCMC, SPNC and STC) exerted 
neurotoxic effects. We have also previously demonstrated that 
several compounds with modified carboxyl or amino groups 
(SACA, rac‑SAHC and NASAC) are as effective as SAC. 
Unlike SAC, SEC and SPC did not block calpain activity in the 
cell‑free assay system, suggesting that the mechanism under-
lying the protective activity of SEC and SPC differs from that 
of SAC. We have also demonstrated that tunicamycin‑induced 
cell death in cultured hippocampal neurons is not mediated 

Figure 1. The proposed protective mechanism of S‑allylcysteine (SAC) in endoplasmic reticulum (ER) stress‑induced neuronal death in the hippocampus.
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by the oxidative stress cascade (20). Thus, we are left with the 
possibility that in hippocampal neurons, the stimulation of 
survival cascades other than the antioxidant defensive system 
underlies the neuroprotective action of SAC derivatives, such as 
SEC and SPC. Although further detailed studies are required 
to clarify the underlying mechanisms, it now appears that the 
number of carbon atoms in the linear 3‑alkylthio groups of 
some SAC derivatives is key in potentiating neuroprotective 
effects against ER stress.

5. Conclusions and future perspectives

The pharmacokinetics of SAC are characterized by high 
oral absorption, limited metabolism, and extensive renal 
reabsorption, all of which potentially contribute to its high 
oral bioavailability  (29). Moreover, SAC has already been 
used in the treatment of patients with hypertension without 
any obvious signs of toxicity (30). These results support the 
hypothesis that SAC may be a useful therapeutic agent with 
few harmful effects. Our group, as well as others have shown 
that SAC has neuroprotective potency in in vivo and in vitro 
in models of brain injury. SAC has been shown to amelio-
rate the neuronal damage usually observed in a rat model of 
transient middle cerebral artery occlusion (MCAO) (31). In 
a transgenic mouse model of Alzheimer's disease, SAC was 
shown to prevent synaptic degeneration (32) and the abnormal 
phosphorylation of tau protein (33). The dietary intake of SAC, 
SEC and SPC has been shown to decrease the production of 
Aβ in the brains of mice with D‑galactose‑induced aging (34). 
Similar cysteine‑containing compounds exert neuroprotec-
tive effects against the loss of dopaminergic neurons in 
the 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine  (MPTP) 
mouse model of Parkinson's disease (35,36). Oxidative stress 
plays a critical role in the pathogenesis of the neurodegen-
erative diseases modeled above, including Alzheimer's disease, 

Parkinson's disease and cerebral ischemic insults. However, a 
growing body of evidence indicates that oxidative stress has 
a strong connection with ER stress (37). Importantly, intracel-
lular Ca2+ is a prime candidate for mediating the crosstalk 
between ER stress and oxidative stress. The surprising finding 
that calpain is a therapeutic target for SAC strongly suggests 
that SAC is not merely an antioxidant, but is also an inhibitor 
of ER stress signaling. Given the probable existence of intra-
cellular Ca2+‑mediated, ER‑oxidative stress crosstalk, the fact 
that SAC blocks the calpain calcium‑sensing site appears thera-
peutically advantageous. Moreover, the two‑pronged activity 
profile appears ideally suited to treating a wide spectrum of 
neurodegenerative diseases in which both types of stress 
play a role. Finally, the chemical modification of the parent 
molecule has potential for achieving desirable changes in the 
pharmacodynamic profile. Although further in vivo detailed 
studies culminating in a clinical study are required, SAC and 
its derivatives, in their roles as both antioxidants and modula-
tors of ER stress, can now be identified as good candidate drugs 
for the treatment of patients with neurodegenerative disorders. 
This concise review may provide new insight into the thera-
peutic potency of garlic‑derived organosulfur compounds and 
may lead to the development of novel treatment strategies for 
patients with otherwise intractable neurological disorders.
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