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Abstract. Function of long non-coding RNA urothelial 
carcinoma antigen 1 (lncRNA UCA1) in regulating the prolif-
erative and migratory abilities of vascular smooth muscle cells 
(VSMCs) by mediating matrix metalloproteinase-9 (MMP9) 
level were elucidated. After treatment with different concen-
trations of ox-LDL for different time points, lncRNA UCA1 
level in VSMCs was determined by quantitative real-time 
polymerase chain reaction (qRT-PCR). Subcellular distribution 
of UCA1 was analyzed. Proliferative and migratory abilities 
of VSMCs transfected with pcDNA-UCA1 were assessed. 
Protein level of MMP9 in HA-VSMCs treated with different 
concentrations of ox-LDL for different time points was also 
determined. The potential interaction between UCA1 and 
enhancer of zeste homolog 2 (EZH2) was identified by RNA 
immunoprecipitation (RIP) assay. Recruitment ability of 
EZH2 to MMP9 promoter region influenced by UCA1 was 
determined by Chromatin immunoprecipitation (ChIP) assay. 
Finally, the potential function of MMP9 in UCA1-mediated 
cellular behavior of VSMCs was explored. UCA1 was time-
dependently and dose-dependently upregulated in VSMCs 
by ox-LDL treatment. Proliferative and migratory abilities 
of VSMCs were enhanced by treatment of 100 mg/l ox-LDL 
for 48 h, which were further reduced after transfection of 
pcDNA-UCA1. Subcellular distribution analysis showed that 
UCA1 was mainly distributed in the nucleus. Protein level of 
MMP9 was gradually elevated with the treatment of increased 
concentrations of ox-LDL in VSMCs. Its level was down-
regulated by transfection of pcDNA-UCA1 in VSMCs. The 

interaction between UCA1 and EZH2 was confirmed by RIP 
assay. Transfection of pcDNA-UCA1 stimulated the binding 
of EZH2 on MMP9 promoter region. Finally, overexpression 
of MMP9 reversed the decreased proliferative and migratory 
abilities in ox-LDL-treated VSMCs overexpressing UCA1. 
Downregulated UCA1 accelerates VSMCs to proliferate and 
migrate through negatively regulating MMP9 level.

Introduction

Vascular smooth muscle cells (VSMCs) are vital cells that 
maintain normal physiological functions of blood vessels. 
Under normal conditions, VSMCs are non-proliferative 
contractile type. However, they are stimulated to proliferate in 
the presence of vascular injury and some bioactive substances 
(i.e. nitric oxide products, angiotensin II and platelet growth 
factor). Proliferative VSMCs synthesize and secret vasoactive 
substances and growth factors, thus leading to thickening of 
blood vessels, luminal stenosis and vascular remodeling (1). 
Phenotype conversion and proliferation stimulation of VSMCs 
are the key factors in the development of vascular proliferative 
diseases, such as hypertension and atherosclerosis (2,3).

Long non-coding RNA (lncRNA) is a class of ncRNAs 
synthesized by RNA polymerase II over 200 nucleotides 
long. In generally, lncRNAs are classified into five subtypes, 
namely antisense lncRNAs, intronic transcripts, large inter-
genic noncoding RNAs, promoter-associated lncRNAs and 
UTR-associated lncRNAs  (4,5). It is reported that certain 
lncRNAs are able to influence the phenotypes of VSMCs and 
further affect the occurrence of atherosclerosis (6,7). LncRNA 
UCA1 (urothelial carcinoma antigen 1) was initially discov-
ered by Wang et al  (8). UCA1 locates on 19p13.12, and is 
commonly expressed in embryonic tissues. Han et al (9) found 
that UCA1 is highly expressed in colorectal cancer tissues, 
which is closely related to tumor size, depth of invasion and 
poor tissue differentiation. A recent study demonstrated the 
ability of UCA1 in mediating the proliferative and migratory 
capacities of VSMCs (10).

Matrix metalloproteinases (MMPs), known as matrix 
metalloproteinases, are calcium-dependent zinc-containing 
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endopeptidases. They are capable of degrading components of 
the extracellular matrix (ECM), including laminin, collagen, 
and fibronectin (11). Currently, at least 26 members of the 
MMPs family have been discovered. Among them, MMP9 
is closely related to cerebrovascular system (12). MMP9, 
also known as gelatinase B or 92 kDa gelatinase, locates on 
16q 11.2-13.1 and contains 13 exons. The basic structure of 
MMP9 consists of a signal peptide region, amino-terminal 
propeptide, the zinc-binding catalytic domain, the carboxyl-
terminal hemopexin-like domain and the hinge region (13). 
A relevant study has demonstrated that MMP9 downregu-
lation suppressed chlamydia pneumonia infection-induced 
migration of VSMCs (14). This study mainly investigated 
the potential function of UCA1 in ox-LDL-treated cellular 
phenotype changes of VSMCs through regulating MMP9, 
thus providing novel directions in the treatment of vascular 
diseases.

Materials and methods

Cell culture and induction. VSMCs were provided by Cell 
Bank (Shanghai, China). Cells were cultured in Roswell 
Park Memorial Institute 1640 (RPMI-1640) (HyClone) 
containing 10% fetal bovine serum (FBS) (Gibco; Thermo 
Fisher Scientific, Inc.), 100 µg/ml penicillin and 0.1 µg/ml 
streptomycin, at 37˚C, in a 5% CO2 incubator. Fourth to fifth 
generation VSMCs were selected for treatment with ox-LDL.

Cell transfection. Cells were inoculated in 6-well plates with 
2x105 cells per well. At 80% confluence, cells were trans-
fected using Lipofactamine 2000 (Invitrogen; Thermo Fisher 
Scientific, Inc.). Medium containing 2 µg/ml puromycin was 
replaced 48 h later, and continued for 72 h of culture. Positive 
colonies were selected and amplified for in vitro experiments.

Quantitative real-time polymerase chain reaction (qRT-PCR). 
Extraction of total RNA in cells was performed using TRIzol 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) and 
subjected to reverse transcription. The extracted complemen-
tary deoxyribose nucleic acid (cDNA) was applied for PCR 
using SYBR Green method. Primer sequences were as follows: 
UCA1, forward: 5'-CTCTCCATTGGGTTCACCATTC-3' 
and reverse: 5'-GCGGCAGGTCTTAAGAGATGAG-3'; 
MMP9, forward: 5'-CGATGCCTGCAACGTGAAC-3' 
and reverse: 5'-AGAGCCGCTCCTCAAAGACC-3'; 
Glyceraldheyde 3-phosphate dehydrogenase (GAPDH), 
forward: 5'-TGAAGGTCGGAGTCAACGG-3' and reverse: 
5'-CCTGGAAGATGGTGATGCG-3'.

Cell Counting Kit-8 (CCK-8). Cells were seeded in a 96-well 
plate and cultured overnight. Absorbance (A) at 490 nm was 
recorded at the appointed time points using the CCK-8 kit 
(Dojindo Laboratories) for depicting the viability curves.

Transwell migration assay. Cells transfected for 48 h were 
adjusted to the dose of 1.0x105 cells/ml and subjected to serum 
starvation for 12 h. Then, 200 µl/well suspension was applied 
to the upper Transwell chamber (Merck KGaA). In the lower 
chamber, 700 µl of medium containing 10% FBS was applied. 
After 48 h of incubation, cells migrated to the lower chamber 

were subjected to fixation in methanol for 15 min, crystal 
violet staining for 20 min and cell counting using a micro-
scope. Penetrating cells were counted in 5 randomly selected 
fields per sample.

Western blotting. Total protein was extracted from cells using 
radioimmunoprecipitation assay (RIPA) and quantified by 
bicinchoninic acid (BCA) method (Pierce; Thermo Fisher 
Scientific, Inc.). Protein sample was loaded for electrophoresis 
and transferred on polyvinylidene fluoride (PVDF) membranes 
(Merck KGaA). Membranes were blocked in 5% skim milk for 
2 h, and subjected to incubation with primary and secondary 
antibodies. Bands were exposed by electrochemiluminescence 
(ECL) and analyzed by Image Software (National Institutes 
of Health).

Determination of subcellular distribution. Cytoplasmic and 
nuclear RNAs were extracted using the PARIS kit (Invitrogen; 
Thermo Fisher Scientific, Inc.) and subjected to qRT-PCR. 18s 
was the internal reference of nucleus and U1 was that of the 
cytoplasm.

RNA immunoprecipitation (RIP). Cells were treated according 
to the procedures of Millipore Magna RIPTM RNA-Binding 
Protein Immunoprecipitation kit. Cell lysate was incubated 
with anti-EZH2 (enhancer of zeste homolog 2), or anti-IgG 
antibody at 4˚C for 6 h. A protein-RNA complex was captured 
and digested with 0.5 mg/ml proteinase K containing 0.1% SDS 
to extract RNA. The magnetic beads were repeatedly washed 
with RIP washing buffer to remove non-specific adsorption as 
much as possible. Finally, the extracted RNA was subjected to 
mRNA level determination using qRT-PCR.

Chromatin immunoprecipitation (ChIP). Cells were subjected 
to 10 min cross-link with 1% formaldehyde at room tempera-
ture into small fractions with 200-1000 bp. Subsequently, 
cells were lysed and sonicated for 30  min. Finally, the 
sonicated lysate was immuno-precipitated with anti-EZH2, 
anti-H3K27me3 or anti-IgG. Purified immunoprecipitated 
chromatins were subjected to qRT-PCR.

Statistical analysis. Statistical Product and Service Solutions 
(SPSS) 20.0 (IBM Corp.) was used for data analyses. Data 
were expressed as mean ±  standard deviation. Intergroup 
differences were analyzed by t-test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Downregulation of UCA1 in VSMCs undergoing ox-LDL 
treatment. QRT-PCR data showed that UCA1 level was 
gradually reduced after 50 and 100 mg/l ox-LDL treatment in 
VSMCs for 48 h (Fig. 1A). With the prolongation of 100 mg/l 
ox-LDL treatment, UCA1 was downregulated at 24 and 48 h 
(Fig. 1B). It is indicated that UCA1 was dose-dependently 
and time-dependently downregulated by ox-LDL treatment. 
Transfection of pcDNA-UCA1 sufficiently upregulated UCA1 
level in VSMCs, showing great transfection efficacy (Fig. 1C). 
CCK-8 assay showed increased viability in VSMCs under-
going 100 mg/l ox-LDL treatment for 48 h, which was reversed 
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by transfection of pcDNA-UCA1 (Fig. 1D). Similarly, relative 
number of migratory VSMCs increased by 100 mg/l ox-LDL 
treatment for 48 h, and was further reduced after overexpres-
sion of UCA1 (Fig. 1E). It is suggested that UCA1 suppressed 
the proliferative and migratory abilities of VSMCs.

UCA1 negatively regulates MMP9 level. Subcellular distri-
bution analysis indicated that UCA1 was mainly enriched 
in the nucleus (Fig. 2A). Treatment of ox-LDL in VSMCs 
gradually upregulated protein level of MMP9 in a concen-
tration-dependent manner (Fig. 2B). In addition, transfection 
of pcDNA-UCA1 markedly downregulated MMP9 level 
(Fig. 2C). RIP assay pointed out higher enrichment of UCA1 
in anti-EZH2 relative to anti-IgG (Fig. 2D). Transfection of 
si-EZH2 markedly upregulated MMP9 level in VSMCs 
(Fig. 2E). Furthermore, higher immunoprecipitants of EZH2 
and H3K27me3 were shown in VSMCs overexpressing UCA1 
(Fig. 2F). It is suggested that UCA1 recruited EZH2 to nega-
tively mediate the PTEN level.

MMP9 partially reverses the biological role of UCA1. 
Transfection of pcDNA-MMP9 remarkably upregulated 
mRNA and protein level of MMP in VMSCs (Fig. 3A and B). 
Overexpression of UCA1 in ox-LDL-treated VSMCs attenuated 

their proliferative and migratory abilities, but were further 
reversed by MMP overexpression (Fig. 3C and D). Hence, it 
is believed that UCA1 suppressed proliferative and migratory 
abilities of VSMCs by negatively regulating the MMP9 level.

Discussion

Dysfunction of VSMCs contributes to the occurrence and 
development of cardiovascular diseases  (15,16). In recent 
years, the morbidity and mortality of cardiovascular diseases, 
including hypertension, atherosclerosis and ischemic encepha-
lopathy have been enhanced each year. VSMCs and vascular 
endothelial cells are important components of blood vessels. 
The former are located in the tunicae media vasorum and the 
latter are distributed in the tunicae intima vasorum. Under 
normal circumstances, VSMCs are differentiated and mature 
(contractile type), which maintains the normal contractile 
function of the arterial wall and regulates blood pressure. 
After vascular endothelium damage or surrounding microen-
vironment changes, multiple activated pathways stimulate the 
contractile type of VSMCs into synthetic type. At this time, 
VSMCs are prone to proliferate and migrate, which accelerate 
the deposition of ECMs in blood vessels and lead to vascular 
remodeling (17,18).

Figure 1. Downregulation of UCA1 in VSMCs undergoing ox-LDL treatment. (A) Relative level of UCA1 in VSMCs induced with 0, 25, 50 and 100 mg/l 
ox-LDL for 48 h. (B) Relative level of UCA1 in VSMCs induced with 100 mg/l ox-LDL for 0, 12, 24 and 48 h. (C) Transfection efficacy of pcDNA-UCA1 in 
VSMCs. (D) CCK-8 assay showed viability in VSMCs transfected with pcDNA-NC, ox-LDL + pcDNA-NC or ox-LDL + pcDNA-UCA1. (E) Relative number 
of migratory VSMCs transfected with pcDNA-NC, ox-LDL + pcDNA-NC or ox-LDL + pcDNA-UCA1. UCA1, urothelial carcinoma antigen 1; VSMCs, 
vascular smooth muscle cells. *P<0.05, **P<0.01, ***P<0.001.
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Figure 2. UCA1 negatively regulates MMP9 level. (A) Subcellular distribution of UCA1 in nuclear and cytoplasmic fractions of VSMCs. 18s and U1 are internal 
reference for cytoplasm and nucleus, respectively. (B) Relative level of MMP9 in VSMCs induces with 0, 25, 50 and 100 mg/l ox-LDL for 48 h. (C) Relative 
level of MMP9 in VSMCs transfected with pcDNA-NC or pcDNA-UCA1. (D) RIP assay showed the enrichment of UCA1 in anti-IgG or anti-EZH2. (E) Protein 
levels of MMP9 and EZH2 in VSMCs transfected with si-NC or si-EZH2. (F) ChIP assay shows the immunoprecipitants of IgG, EZH2 and H3K27me3 in 
VSMCs transfected with pcDNA-NC or pcDNA-UCA1. UCA1, urothelial carcinoma antigen 1; VSMCs, vascular smooth muscle cells; MMP9, matrix metal-
loproteinase-9; EZH2, enhancer of zeste homolog 2; RIP, RNA immunoprecipitation; ChIP, Chromatin immunoprecipitation. *P<0.05, ***P<0.001.

Figure 3. MMP9 partially reverses the biological role of UCA1. (A) Relative level of MMP9 in VSMCs transfected with pcDNA-NC or pcDNA-MMP9. 
(B) Protein level of MMP9 in VSMCs transfected with pcDNA-NC or pcDNA-MMP9. (C) CCK-8 assay shows the viability in VSMCs transfected with 
pcDNA-NC, ox-LDL + pcDNA-NC, ox-LDL + pcDNA-UCA1 or ox-LDL + pcDNA-UCA1 + pcDNA-MMP9. (D) Relative number of migratory VSMCs 
transfected with pcDNA-NC, ox-LDL + pcDNA-NC, ox-LDL + pcDNA-UCA1 or ox-LDL + pcDNA-UCA1 + pcDNA-MMP9. UCA1, urothelial carcinoma 
antigen 1; VSMCs, vascular smooth muscle cells; MMP9, matrix metalloproteinase-9; CCK-8, Cell Counting Kit-8. *P<0.05, ***P<0.001.
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lncRNAs are defined as transcripts without protein-
encoding ability. They are able to influence tumorigenesis 
through acting on multiple pathways. Abnormally expressed 
lncRNAs can be detected in the serum, urine or tumor cells 
in tumor patients. They present specific expression patterns 
in different stages of tumor diseases and different types of 
tissues. Therefore, lncRNAs could be utilized as diagnostic 
hallmarks for tumors (19). It is indicated that downregulation 
of lncRNA RNCR3 accelerates the occurrence of atheroscle-
rosis, elevates blood lipid levels and stimulates inflammatory 
response. Moreover, the differentiation and migration of 
endothelial cells and VSMCs are suppressed, while their 
apoptotic abilities are enhanced (20). In this study, UCA1 was 
gradually downregulated with the prolongation of increased 
concentrations of ox-LDL treatment. Overexpression of 
UCA1 attenuated the proliferative and migratory abilities of 
VSMCs.

MMPs and their tissue inhibitors are a class of zinc-
containing enzymes that degrade ECMs and remodel ECM 
proteins. MMPs are mainly produced and released by smooth 
muscle cells, fibroblasts, and inflammatory cells. MMP9 
belongs to gelatinase, which degrades both elastin and 
collagen (21). Relevant studies have shown that MMP9 influ-
ences familial aortic dissection by activating TGF-β/Smad 
pathway  (22). Specifically, MMP9 is able to regulate the 
balance of ECM synthesis and degradation, systolic function 
of VSMCs and normal function and structure of the aortic 
wall. LncRNA MEG8 is reported to affect the proliferative 
ability of VSMCs through targeting PPARα (23). Consistently, 
this study demonstrated that UCA1 suppressed the prolif-
erative and migratory abilities of VSMCs through regulating 
MMP9. Our conclusions may lay a solid foundation for VSMC 
research and the application in clinical practice.

In conclusion, downregulated UCA1 accelerates VSMCs 
to proliferate and migrate through negatively regulating the 
MMP9 level.
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