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Abstract. The aims of the present study were to investigate 
the protective effect of a κ‑opioid receptor (KOR) agonist on 
intestinal barrier dysfunction in rats during cardiopulmonary 
bypass (CPB), as well as to examine the role of NF‑κB and 
the transcription factor hypoxia‑inducible factor‑1α (HIF‑1α) 
signaling pathway in the regulatory mechanism. A total of 
50 rats were randomly divided into five groups, with 10 rats in 
each group: Sham surgery group (group Sham), CPB surgery 
group  (group CPB), KOR agonist + CPB (group K), KOR 
agonist + specific KOR antagonist + CBP (group NK) and KOR 
agonist + NF‑κB pathway specific inhibitor + CPB (group NF). 
Intestinal microcirculation was evaluated to determine 
intestinal barrier dysfunction in rats following CPB surgery. 
Hematoxylin and eosin (H&E) staining was used to observe 
intestinal tissue injury in the rats. ELISA was used to detect 
the inflammatory factors interleukin  (IL)‑1β, IL‑6, IL10 
and tumor necrosis factor‑α, and the oxidative stress factors 
superoxidase dismutase, malondialdehyde and nitric oxide in 
serum. In addition, ELISA was used to investigate the serum 
levels of the intestinal damage markers D‑lactic acid, diamine 
oxidase and intestinal fatty acid‑binding protein. Western 
blotting was used to investigate the protein expression levels 
of tight junction proteins zonula occludens‑1 and claudin‑1. 
Furthermore, immunohistochemistry was used to examine 
intestinal injuries and western blotting was used to detect 

expression levels of NF‑κB/HIF‑1α signaling pathway‑related 
proteins. H&E staining results suggested that the KOR agonist 
alleviated intestinal damage in the CPB model rats. This effect 
was reversed by the addition of a KOR antagonist. Further 
investigation of inflammatory and oxidative stress factors 
using ELISA revealed that the KOR agonist reduced the 
inflammatory and oxidative stress responses in the intestinal 
tissues of the CPB model rats. The ELISA results of intestinal 
damage markers and western blotting results of tight junction 
protein expression suggested that KOR agonist treatment may 
alleviate intestinal injury in CPB model rats. In addition, the 
western blotting and immunohistochemistry results suggested 
that KOR agonists may decrease the expression levels of 
NF‑κB, p65 and HIF‑1α in CPB. Collectively, the present 
results suggested that KOR agonists are able to ameliorate 
the intestinal barrier dysfunction in rats undergoing CPB by 
inhibiting the expression levels of NF‑κB/HIF‑1α signaling 
pathway‑related proteins.

Introduction

As modern medical technology develops, the number of 
patients undergoing cardiac surgery under cardiopulmonary 
bypass (CPB) has increased (1). CPB enables cardiovascular 
surgery to be safer and more practical, but complications from 
surgery can lead to a systemic inflammatory response (2). 
Previous studies have demonstrated that the intestinal tract 
plays a key role in the continuous occurrence and development 
of systemic inflammatory response syndrome (SIRS), as well as 
multiple organ dysfunction syndrome (3,4). The occurrence of 
gastrointestinal complications following CPB cardiac surgery 
is <3%, but the mortality rate can be as high as 90% (5,6). 
Previous studies investigating the damage to and protection of 
tissues and organs caused by CPB have focused on the heart 
and brain (7,8). However, increased intestinal permeability and 
bacterial translocation occur in animal models and patients 
during CPB (9,10). Therefore, further study is needed into the 
intestinal complications of cardiac surgery. Prevention and 
treatment of intestinal damage during peri‑intestinal circula-
tion is crucial for reducing the incidence of complications and 
the mortality rate. 
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The κ‑opioid receptor (KOR) serves a key role in regu-
lating hypoxia and ischemia‑induced damage  (11,12), by 
mechanisms including protection of the microcirculation 
of skeletal muscle or activation of the PI3K/Akt signaling 
pathway (13). The KOR agonist U50448H protects against 
retinal ischemia‑reperfusion injury in rats by activating the 
PI3K/Akt signaling pathway or via the production of tumor 
necrosis factor‑α (TNF‑α) in the retina (14). KOR agonists 
effectively reduce the occurrence of ischemia/reperfusion 
arrhythmia in rats  (15,16). KOR agonists can also inhibit 
β‑adrenergic receptors, thus reducing the contractile 
response of blood vessels as well as myocardial oxygen 
consumption  (17). Zhang  et al  (18), has shown that KOR 
agonists can reduce pulmonary arterial hypertension caused 
by hypoxia by inhibiting pulmonary arterial smooth muscle 
cell proliferation and remodeling the pulmonary artery. 
However, the specific regulatory mechanism by which KOR 
agonists attenuate intestinal barrier damage following CPB 
remains unknown.

Hypoxia‑inducible factor‑1 (HIF‑1) is a transcriptionally 
active nuclear protein that is produced by cells under hypoxic 
conditions and plays a key role in the hypoxic compensatory 
response of the body (19). HIF‑1 is also important in cellular 
energy production, the metabolism of iron and catechol-
amines, as well as vasoconstriction, neovascularization and 
apoptosis in tumor cells under ischemic and hypoxic condi-
tions (20‑25). Previous studies have shown that HIF‑1α is a 
disruptor of the intestinal mucosal barrier during hypoxia, 
ischemia‑reperfusion and inflammation  (26,27). HIF‑1α 
can be activated not only by hypoxia, but also by several 
non‑hypoxic stimuli, including various inflammatory media-
tors and cytokines (28,29). A common mechanism of these 
non‑hypoxic stimuli of HIF‑1α involves the upregulation of 
NF‑κB‑dependent HIF‑1α expression levels (30).

In the present study, a model of post‑operative intestinal 
barrier injury in rats undergoing CPB was established to 
observe the effects of a KOR agonist on intestinal barrier func-
tion injury, inflammation, oxidative stress response and the 
expression of NF‑κB signaling pathway‑associated proteins 
in CPB rats. In addition, the present study investigated the 
protective effect and mechanism of KOR agonists in the 
intestinal barrier of the CPB model rats. The present results 
may provide theoretical and experimental evidence that could 
facilitate the treatment of patients who have intestinal barrier 
function damage following CPB.

Materials and methods

Experimental animals and groupings. A total of 50 male 
Sprague Dawley rats, eight weeks old, specific pathogen 
free, 350‑450 g were provided by the Animal Experimental 
Department of the General Hospital of Northern Theater 
Command [rodent use permit: SYXK (Military) 20120007; 
rodent production permit: SCXK (Military) 20120006]. All 
rats were in good health condition, maintained at 22‑26˚C, in 
a 12 h light/dark cycle with 40‑60% relative humidity in the 
animal rooms. Rats were maintained on standard laboratory 
diet with tap water ad  libitum throughout the experiment, 
except for an overnight fast before surgery. The whole animal 
study has been reviewed and approved by Animal Ethical 

and Welfare Committee of The General Hospital of Northern 
Theater Command. 

Rats were randomly divided into five groups, with 10 rats in 
each group. The groups were as follows: i) Sham operation (group 
Sham); ii) CPB surgery (group CPB); iii) KOR agonist (U5048
8H) + CPB (group K); iv) KOR agonist (U50488H) + specific 
KOR antagonist (norBNI) + CPB (group NK); and v) KOR 
agonist (U50488H) + NF‑κB inhibitor pyrrolidinedithiocar-
bamic acid (PDTC) + CPB (NF group). The CPB rat model 
was established using a CPB bypass for all rats, with the 
exception of those in the sham group. In group K, an intrave-
nous injection of 1.5 mg/kg U50488H (cat. no. 0495/25; Tocris 
Bioscience) was administered prior to the bypass. In group 
NK, an intravenous injection of 1.5 mg/kg U50488H was given 
after rats were catheterized and then 2 mg/kg norBNI (cat. 
no. sc‑396970A; Santa Cruz Biotechnology, Inc.) was admin-
istered intravenously after 30  min  (31,32). In group NF, 
1.5 mg/kg U50488H was given intravenously after rats were 
catheterized, and then 50 mg/kg NF‑κB inhibitor PDTC (cat. 
no. sc‑203224A; Santa Cruz Biotechnology, Inc.) was injected 
intravenously 30 min later. After 2 h of CPB bypass, rats were 
anesthetized and following the intestinal microcirculation 
test (as described below), 5 ml of blood was taken from the 
right internal vein. The serum was separated by centrifugation 
1,000 x g for 20 min and stored at ‑80˚C for subsequent experi-
mentation. The jejunum and ileum tissues (section thickness, 
2 µm) were stored at ‑80˚C for further analysis. Moreover, 
additional jejunum and ileum tissue (thickness, 2 cm) were 
immersed in 4% formalin for subsequent analysis.

Preparation of CPB model. CPB surgery was performed 
following the procedure described in a previous study (33). Rats 
received an intraperitoneal injection of 30 mg/kg pentobarbital 
sodium (Shanghai Ziyuan Pharmaceutical Co., Ltd.) every 
2 h during surgery. Photopic oral intubation was conducted 
using a 16G intravenous catheter, and the rats were mechani-
cally ventilated using a small animal ventilator (frequency, 
60 beats/min; tidal volume, 3 ml/kg; inspiratory to expiratory 
ratio, 1:1.5), which was connected to a monitor to observe 
heart rate, oxygen saturation and rectal temperature. 

The puncture site was sterilized using iodophor (Shandong 
Lierkang Disinfection Technology Co., Ltd.), which was 
followed by exposure and puncture of the femoral vein. 
Right femoral vein catheterization (24G) was performed in 
order to open the fluid path, which was then transfused with 
6% hydroxyethyl starch (Guangdong Jiabao Pharmaceutical 
Co., Ltd.) and connected to a micro‑infusion pump. In addi-
tion, the left femoral artery was catheterized (22G) and multi 
parameter ECG monitor (cat. no. CMS7000, Contec Medical 
Systems Co., Ltd.) used to monitor blood pressure. Both coccy-
geal artery catheterization (22G) and right internal jugular 
vein catheterization (18G) were performed so that blood could 
be drained for the CPB. A drainage tube, homemade blood 
storage device, constant peristaltic pump (Baoding Longer 
Precision Pump Co., Ltd.), silicone tubing (internal diameter, 
4  mm) and rat membrane oxygenator  (Guangdong Kewei 
Medical Instrument Co., Ltd.) were installed between the two 
puncture sites to establish the CPB circuit. Then, 300 IU/kg 
heparin sodium (Shenyang Haitong Pharmaceutical Co., Ltd.) 
was injected into the left femoral vein. 
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CPB was performed with a membrane oxygenator to 
supply oxygen; the low‑flow CPB velocity was 35 ml/kg/min, 
which was later increased to 100‑120 ml/kg/min at full‑flow 
bypass. In order to prevent an air embolism, 1‑2 ml of blood 
was retained in the blood storage device. Heart rate (HR) and 
mean arterial pressure (MAP) were monitored on a Gould 
ES2000 recorder  (Gould, Inc.). Blood and body tempera-
tures were maintained using heating lamps and controlled 
by esophageal temperature monitoring. Arterial blood gases 
taken from the right carotid artery were analyzed at 0, 30, 60, 
90 and 180 min using a blood gas analyzer (GEM Premier 
3000; Heal Force Bio‑meditech Holdings Ltd. The mean arte-
rial pressure was maintained at >60 mmHg, partial pressure of 
CO2 (PaCO2) 35‑45 mmHg, base excess ‑3‑3 mmol/l mmHg, 
pH 7.35‑7.45 and hematocrit >0.25. 2‑20 µg/100 g of epineph-
rine hydrochloride (Wuhan Grand Pharmaceutical Group Co., 
Ltd.) was infused into fluid during surgery to maintain rats 
stable circulation. 

Intestinal microcirculation detection in rats. Once the rats 
were anesthetized, the abdominal cavity was incised. The 
lower part of the ileum was extracted and fixed securely in 
a constant temperature perfusion box, which was maintained 
at 37˚C with physiological saline. A microscope and medical 
image analysis system were connected to the box. The micro-
vascular diameter of the same mesenteric vessel and the blood 
flow state of the rat were recorded using the microscope at 
40‑fold magnification. A semi‑quantitative flow rate grading 
method was used to determine the blood flow state, which was 
divided into four levels (34): i) Level 0, characterized by fast 
vascular blood, a smooth vessel wall and a slight or no pres-
ence of debris in the blood vessels; ii) level 1, distinguished 
by a relatively faster blood flow and an obvious graininess in 
the blood vessels; iii) level 2, characterized by silt vessels and 
either a slow or variable blood flow; and iv) level 3, charac-
terized by the stagnation or loss of blood flow. The rats were 
euthanized at the end of the study by an overdose of pentobar-
bital sodium (200 mg/kg).

Hematoxylin and eosin (H&E) staining. Jejunum and ileum 
samples in 4% formalin were dehydrated using an increasing 
ethanol gradient  (70, 80, 90, 95 and 100%). The samples 
were then made transparent using xylene, waxed, embedded 
into paraffin blocks and then cut into 4‑µm sections. After 
dewaxing, the sections were stained with hematoxylin for 
~5 min and washed with PBS. Then, 1% hydrochloric acid was 
used for alcohol differentiation and 0.5% eosin dyeing solution 
was applied for 30 sec at room temperature. Gradient alcohol 
concentrations (70, 80, 90 and 100%) were used for dehydra-
tion, followed by transparentizing treatment and sealing 
using a neutral gum. Pathological changes to the tissues were 
observed using a light microscope (x200).

ELISA. ELISA kits were used to detect the inflammatory 
factors interleukin (IL)‑1β (cat. no. CSB‑E08055r; CUSABIO 
Technology), IL‑6 (cat. no. SEA079Ra; Wuhan USCN Business 
Co., Ltd.), TNF‑α (cat. no. SEA133Si; Wuhan USCN Business 
Co., Ltd.) and IL‑10  (cat. no.  SEA056Ra; Wuhan USCN 
Business Co., Ltd.) in the serum from the rats. In addition, the 
oxidative stress indicators superoxidase dismutase (SOD; cat. 

no. SES134Hu), malondialdehyde (MDA; cat. no. CEA597Ge), 
nitric oxide  (NO; cat. no.  IS100) and the intestinal injury 
markers D‑lactic acid in serum (cat. no. CEV643Ge), diamine 
oxidase  (DAO; cat. no.  SEJ298Hu) and intestinal fatty 
acid‑binding protein  (I‑FABP; cat. no.  SEA559Ra) were 
detected in the serum using kits from Wuhan USCN Business 
Co., Ltd. The tests were performed according to the manufac-
turer's instructions. 

Immunohistochemistry. Jejunum and ileum samples were fixed 
in 4% (v/v) formalin in distilled water at room temperature 
for 24 h. Samples were then separately dehydrated using an 
increasing concentration ethanol (70, 80, 90, 95 and 100%) 
for 30 min each at room temperature. The samples were then 
made transparent using xylene, waxed, embedded into paraffin 
blocks and cut into 4‑µm sections. Subsequently, the sections 
were then incubated with 3% H2O2 for 10 min at room tempera-
ture and washed with PBS for 5 min. The sections were then 
incubated with primary antibodies against NF‑κB‑p65 (1:100; 
cat. no. ab207297; Abcam) and HIF‑1α (1:500; cat. no. ab16066; 
Abcam), and washed twice with PBS for 5 min. Sections were 
incubated with HRP‑labeled secondary antibody (1:500; cat. 
no. sc‑2004; Santa Cruz Biotechnology, Inc.) for 1 h at room 
temperature and washed three times with PBS for 5 min. The 
slices were developed with 3,3'‑diaminobenzidine at room 
temperature for 5 min and washed thrice with PBS for 5 min, 
before being counterstained with hematoxylin for 3 min. Sections 
were then washed thrice with PBS for 5 min, dehydrated, and 
sealed with neutral gum. The expression of NF‑κB‑p65 and 
HIF‑1α were observed under light microscope (x400).

Western blotting. After homogenization of the jejunum and 
ileum tissues, pre‑cooled RIPA (cat. no. 89900; Thermo Fisher 
Scientific, Inc.) buffer was added and lysis was conducted on 
ice for 30 min. Once the supernatant had been collected, the 
concentration of the collected protein solution was determined 
using a bicinchoninic acid protein quantification kit  (cat. 
no. 23225; Thermo Fisher Scientific, Inc.). A total of 20 µg 
proteins were loaded and separated using a 10% SDS‑PAGE 
electrophoresis and transferred to a PVDF membrane. After 
blocking with 5% low‑fat milk buffer at room temperature, the 
PVDF membrane was incubated with zonula occludens‑1 (ZO‑1; 
1:1,000; cat. no.  ab96587; Abcam), claudin‑1  (1:1,000; cat. 
no. ab15098; Abcam,), NF‑κB‑p65 (1:1,000; cat. no. ab207297; 
Abcam), HIF‑1α  (1:2,000; cat. no.  ab16066; Abcam) and 
GAPDH (1:1,000; cat. no. ab37168; Abcam) antibodies over-
night at 4˚C. After washing the PVDF membrane with PBS, 
a secondary antibody, goat anti‑rabbit IgG H&L (horse radish 
peroxidase conjugated; 1:1,000; cat. no. ab205718; Abcam) was 
added and the membrane was incubated for 2 h at room tempera-
ture. Then, an ECL luminescence kit (GE Healthcare) was used 
to develop the color. A gel imaging system was used for imaging, 
and Quantity One (version 4.5.2. Bio‑Rad Laboratories, Inc.) 
software was used for quantification of protein expression.

Statistical analysis. Statistical analyses were performed using 
SPSS 19.0 software (IBM Corp.). Multiple comparisons were 
analyzed using one‑way ANOVA followed by Tukey's test. 
P<0.05 was considered to indicate a statistically significant 
difference.
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Results 

Rat hemodynamics. In the CPB model rats, the rectal tempera-
ture, pH, arterial blood PaCO2 and PaO2 were not significantly 
different from those in the sham group. However, the MAP, 
HR, left ventricular diastolic pressure, highest rate of change 
of pressure development and hemoglobin levels were signifi-
cantly decreased in the CPB group compared with the sham 
group, and in group K these parameters were significantly 
increased compared with the CBP group (P<0.05; Fig. 1).

KOR agonist alleviates intestinal damage in CPB model rats. 
In the CPB model, the blood perfusion of important organs 
such as the brain is maintained, while that of the abdominal 
organs is suddenly reduced and eventually causes intestinal 
mucosal ischemia and hypoxia. The intestinal injury of the 
CPB model rats was assessed using H&E staining (Fig. 2). The 
results suggested that the intestinal mucosa, villi and brush 
border were normal in the sham group. However, the following 
were observed in the CPB group: Intestinal mucosal edema, 

Figure 1. Altered hemodynamics in a rat CPB model with and without KOR agonist. The rectal temperature, HR, MAP, pH, PaO2, PaCO2, HB, LVDP, 
+dP/dtmax of rats in each group are presented. *P<0.05 as indicated. HR, heart rate; MAP, mean arterial pressure; PaO2, partial pressure of oxygen; PaCO2, 
partial pressure of carbon dioxide; HB, hemoglobin; LVDP, left ventricular diastolic pressure; +dP/dtmax, highest rate of change of pressure development; 
KOR, κ‑opioid receptor; CPB, cardiopulmonary bypass; K, KOR agonist (U50488H) + CPD; NS, not significant.

Figure 2. KOR agonist alleviates intestinal damage in CPB model rats. 
Intestinal injuries of rats were observed by hematoxylin and eosin staining. 
Scale bar, 50 µm. KOR, κ‑opioid receptor; CPB, cardiopulmonary bypass; 
K, KOR agonist (U50488H) + CPB; NK, KOR agonist (U50488H) + specific 
KOR antagonist (norBNI) + CPB.
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infiltration of neutrophils and lymphocytes, partial atrophy 
and shedding of the villus, and filling of flaky capillaries. 
Following the addition of the KOR agonist, the intestinal 
mucosal injury in group K appeared to be attenuated compared 
with that in the CPB group; there was only mild partial villus 
edema, the intestinal epithelium and lamina propria were 
partially separated, and only minor inflammatory cell infiltra-
tion was observed. In group NK, the intestinal mucosa was 
thin, the intestinal villus was atrophied and inflammatory cell 
infiltration was observed. These results suggest that the intes-
tinal mucosal damage in group NK was reduced compared 
with that in the CPB group, but not as much as that in group K. 
Collectively, the present results suggested that KOR agonists 
may alleviate intestinal damage in CPB rats.

KOR agonist inhibits the inflammatory and oxidative stress 
response in CPB model rats. The present study investigated 
changes in the levels of inflammatory and oxidative stress factors 
in the serum of rats using ELISA. In terms of the intestinal 
damage caused by CPB, factors associated with inflammation 
of the intestinal mucosa cells (Fig. 3A) and the oxidative stress 
response (Fig. 3B) were identified. The results suggest that the 
serum levels of IL‑1β, IL‑6 and TNF‑α increased, while the 
level of IL‑10 significantly decreased in group CPB compared 
with the sham group (P<0.05). In group K, the serum levels of 
IL‑1β, IL‑6 and TNF‑α were decreased, while that of IL‑10 was 
significantly increased compared with group CPB (P<0.05). 
The results for oxidative stress factors suggested that the 
levels of serum SOD and NO were decreased, and the level of 
MDA was significantly increased in the CPB group compared 
with the sham group (P<0.05). In addition, serum SOD and 
NO levels were significantly increased, and the level of MDA 
was significantly reduced in group K compared with group 
CPB  (P<0.05). Therefore, the present results suggest that 
CPB triggers inflammatory and oxidative stress responses in 

intestinal mucosal cells, and that a KOR agonist reverses these 
responses.

KOR agonist improves intestinal mucosal function in CPB 
model rats. CPB‑induced dysfunction of intestinal mucosa 
causes intestinal epithelial cells to release highly active DAO 
into the blood, increases the metabolism of D‑lactic acid 
via gastrointestinal bacterial fermentation, and increases 
serum levels of I‑FABP  (35). The present results indicate 
that serum DAO, D‑lactic acid and I‑FABP levels were 
significantly increased in group CPB compared with the sham 
group (P<0.05). Compared with the CPB group, serum DAO, 
D‑lactic acid and I‑FABP levels were decreased in group 
K (P<0.05). In addition, DAO, D‑lactic acid and I‑FABP levels 
in group NK were significantly higher compared with those 
in group K (P<0.05). These results suggest that CPB‑induced 
damage occurred in the intestinal mucosa of rats, and KOR 
agonists have the potential to ameliorate this damage (Fig. 4A).

Between epithelial and endothelial cells, tight junction 
molecules including the transmembrane proteins claudins, 
occludins, junctional adhesion molecules, ZOs and other 
peripheral proteins are involved in maintaining the internal 
environment and barrier function (36). In the present study, the 
protein expression levels of claudin‑1 and ZO‑1 were signifi-
cantly decreased in the CPB group compared with the sham 
group, and were significantly increased in group K compared 
with group CPB (P<0.05). In addition, the protein expression 
levels of claudin‑1 and ZO‑1 in group NK were significantly 
decreased compared with those in group K (P<0.05; Fig. 4B). 
These results suggest that CPB may cause damage to the intes-
tinal barrier in rats, and that KOR agonists could attenuate this 
damage.

KOR agonist improves intestinal microcirculation in CPB 
model rats. The present study estimated intestinal microcircu-

Figure 3. KOR agonist inhibits inflammatory and oxidative stress responses in CPB model rats. (A) Inflammatory factors and (B) oxidative stress factors 
detected by ELISA. *P<0.05. CPB, cardiopulmonary bypass; KOR, κ‑opioid receptor; K, KOR agonist (U50488H) + CPB; IL, interleukin; TNF‑α, tumor 
necrosis factor‑α; SOD, superoxidase dismutase; MDA, malondialdehyde; NO, nitric oxide.
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lation by calculating the microvessel diameter (Fig. 5A) and 
blood flow state (Fig. 5B) in rats. In group CPB, the mean 
microvessel diameter value of rats was 41.74±5.18 µm, which 
was significantly narrower compared with that in the sham 
group (54.75±6.21 µm; P<0.05). The mean microvessel diam-
eter value of rats in group K, which had been treated with KOR 
agonists was 52.83±5.42 µm, which was significantly increased 
compared with the CPB group (P<0.05). In group NK, in which 
rats were treated with a KOR agonist and KOR antagonist; the 
microvessel diameter was 44.11±6.34 µm, which was signifi-
cantly narrower compared with that in group K (P<0.05). 

When the blood flow state of the rats was assessed using a 
semi‑quantitative flow rate grading method, the blood flow state 

of the 10 rats in the sham group was at level 0. However, in the 
CPB group there were two rats at level 1, six rats at level 2 and 
two rats at level 3. In addition, the blood flow state of the rats 
in group K showed some improvement compared with the CPB 
group. In group K, there were six rats at level 0 and four rats at 
level 1, while for group NK there were three rats at level 1, five 
rats at level 2 and one rat at level 3. Collectively, these results 
suggested that CPB may lead to microcirculatory disturbance 
in rats and that KOR agonists could significantly improve the 
intestinal microcirculation disturbance caused by CPB.

Effects of KOR agonist on the NF‑κB/HIF‑1α signaling 
pathway in CPB model rats. HIF‑1α plays a role in destroying 
the intestinal barrier during hypoxia, ischemia‑reperfusion 
and inflammation (37‑39). Therefore, the present study further 
investigated the effects of a KOR on the intestinal barrier of CPB 
model rats by examining the expression levels of NF‑κB‑p65 
and HIF‑1α using western blotting  (Fig.  6A). The results 
suggest that the protein expression levels of NF‑κB‑p65 and 
HIF‑1α in intestinal tissue in the CPB group were significantly 
increased compared with those in the sham group (P<0.05). In 
addition, the expression levels of NF‑κB‑p65 and HIF‑1α in 
group K were significantly lower compared with those in group 
CPB (P<0.05), and the expression levels of NF‑κB‑p65 and 
HIF‑1α in group NK were significantly higher compared with 
those in group K (P<0.05). These results were also confirmed 
by immunohistochemistry (Fig. 6B). Therefore, the present 
results suggested that KOR agonists may attenuate intestinal 
damage in CPB model rats by inhibiting the NF‑κB/HIF‑1α 
signaling pathway.

Figure 4. KOR agonist improves intestinal mucosal function in a rat model of CPD. (A) Expression of serum DAO, D‑lactic acid and I‑FABP detected by 
ELISA. (B) Protein expression levels of claudin‑1 and ZO‑1 detected by western blotting. *P<0.05. KOR, κ‑opioid receptor; CPB, cardiopulmonary bypass; K, 
KOR agonist (U50488H) + CPB; NK, KOR agonist (U50488H) + specific KOR antagonist (norBNI) + CPB; ZO‑1, zonula occludens‑1; DAO, diamine oxidase; 
I‑FABP, intestinal fatty acid‑binding protein; D‑LA, D‑lactic acid.

Figure 5. KOR agonist improves intestinal microcirculation in CPB 
model rats. (A) Microvascular diameter and (B) blood flow state. *P<0.05. 
KOR, κ‑opioid receptor; CPB, cardiopulmonary bypass; K, KOR ago-
nist  (U50488H) + CPB; NK, KOR agonist  (U50488H) + specific KOR 
antagonist (norBNI) + CPB.
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KOR agonist improves intestinal mucosal function in CPB 
model rats via the NF‑κB/HIF‑1α signaling pathway. To 
further investigate the relationship between the KOR agonist, 

the NF‑κB/HIF‑1α signaling pathway and intestinal mucosal 
function in CPB rats, an NF‑κB/HIF‑1α signaling pathway 
inhibitor was administered to the rats. The results suggested 
that protein expression levels of NF‑κB‑p65 and HIF‑1α 
in intestinal tissue were significantly decreased in group K 
compared with the CPB group (P<0.05). the expression levels 
of NF‑κB‑p65 and HIF‑1α in group NF were also significantly 
decreased compared with those in the CPB group (P<0.05). 
However, no significant difference was found between groups 
K and NF  (Fig.  7). The present results suggest that KOR 
agonists may improve intestinal mucosal function in CPB rats 
via the NF‑κB/HIF‑1α signaling pathway.

Discussion 

Previous studies have found that pathophysiological mecha-
nisms of CPB‑induced intestinal barrier damage are associated 
with SIRS, while intestinal mucosal injury is caused by isch-
emia and hypoxia‑reperfusion (40,41). Inflammatory responses 
caused by CPB include activation of various systems, including 
complement in blood serum, platelets and neutrophils, mono-
cytes and macrophages, as well as the release of cytokines and 
leukotrienes in plasma (42). The results of the present study 
indicate that the TNF‑α and IL‑6 levels were significantly 
increased in rats after CPB, and were positively associated 
with increased intestinal permeability. Furthermore, they 
suggest that the inflammatory response caused by CPB may be 
closely associated with intestinal mucosal barrier dysfunction. 
In the present study, a rat model of CPD‑induced intestinal 
injury was established in which the intestinal microcircula-
tion was assessed and the intestinal tissues examined using 

Figure 7. KOR agonist improves intestinal mucosal function in CPB model 
rats via the NF‑κB/HIF‑1α signaling pathway. Protein expression levels of 
NF‑κB‑p65 and HIF‑1α in intestinal tissue detected by western blotting. 
*P<0.05. KOR, κ‑opioid receptor; CPB, cardiopulmonary bypass; K, KOR 
agonist (U50488H) + CPB; NF, KOR agonist (U50488H) + NF‑κB inhibitor 
pyrrolidinedithiocarbamic acid + CPB; NS, not significant.

Figure 6. Effects of KOR agonist on the expression levels of NF‑κB/HIF‑1α signaling pathway‑related proteins in CPB model rats. Expression levels of NF‑κB 
p65 and HIF‑1α detected by (A) western blotting and (B) immunohistochemistry. Scale bar, 100 µm. *P<0.05. KOR, κ‑opioid receptor; CPB, cardiopulmonary 
bypass; K, KOR agonist (U50488H) + CPB; NK, KOR agonist (U50488H) + specific KOR antagonist (norBNI) + CPB; HIF‑1α, hypoxia‑inducible factor‑1α.
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H&E staining. Oxidative stress factors, inflammatory factors, 
intestinal injury markers and NF‑κB/HIF‑1α signaling 
pathway‑related proteins were also investigated. The present 
study aimed to investigate the role of KOR agonists in the 
development and progression of intestinal barrier dysfunction 
in CPB model rats.

The expression of KOR mRNA has been detected in the 
heart, kidney, adrenal medulla, digestive tract, peripheral 
blood vessels, placenta, T cells and macrophages of many 
animal species, including humans and the uteri of pregnant 
mice (43‑47). Therefore, KORs are widely distributed in the 
body and may be involved in the regulation of various physi-
ological functions (43‑47). Previous studies have confirmed 
that KOR agonists can be used to treat patients with diseases 
caused by hypoxia, ischemia or reperfusion (48,49). When 
the body is under stress, such as that caused by shock or 
ischemia, the endogenous opioid peptide system is activated 
and the cardiovascular center of the brain is regulated via the 
blood‑brain barrier (50). 

In addition to the negative inotropic, negative chronotropic 
and negative dromotropic effects caused by KORs on the heart, 
studies have shown that the activation of KORs can reduce the 
area of ischemia/reperfusion myocardial infarction and affect 
the occurrence of ischemia/reperfusion arrhythmias (15,16). 
The activation of KORs plays a role in cardioprotection (51,52). 
When CPB occurs, gastrointestinal tissue is also in an ischemic 
state, which leads to damage of the intestinal mucosa (9,10). 
The results of the present study reveal that a KOR agonist 
could inhibit the inflammatory response of CPB model rats, 
reduce oxidative stress, attenuate intestinal damage and relieve 
intestinal microcirculation, therefore reducing the occurrence 
and development of intestinal barrier dysfunction.

NF‑κB is a key transcription factor that regulates the 
expression of numerous cytokines and inflammatory media-
tors, and plays a central role in the inflammatory response (53). 
Activation of the NF‑κB signaling pathway promotes the 
transcription and release of inflammatory factors such as 
TNF‑α and IL‑6 during the inflammatory response  (54). 
Therefore, inhibiting the activity of the NF‑κB pathway can 
relieve the inflammatory response (55). Nicotine can attenuate 
the activation of the NF‑κB signaling pathway caused by 
endotoxin (56,57). In addition, the α7 nicotinic acetylcholine 
receptor  (α7nAchR) can inhibit the activity of transcrip-
tion factor NF‑κB, leading to attenuation of inflammatory 
cytokines (58). Furthermore, vagus nerve stimulation prior to 
α7nAchR antagonist treatment attenuated the destruction of 
the intestinal epithelial cells of rats with endotoxemia, which 
was mediated by the inhibition of NF‑κB‑p65 and transport of 
myosin light‑chain kinase (59). The present results suggest that 
KOR agonists may significantly reduce the expression levels of 
NF‑κB p65 and HIF‑1α in intestinal tissues, thereby reducing 
intestinal damage in CPB model rats.

In conclusion, the present study revealed that a KOR 
agonist can reduce the inflammatory and oxidative stress 
response by decreasing intestinal barrier damage in a rat 
model of CPB, in which the intestinal barrier plays a key regu-
latory role. Collectively, the present results provide theoretical 
and experimental evidence on the prevention, occurrence, 
development and prognosis of intestinal impairment following 
cardiopulmonary bypass.
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