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Abstract. The presence of taste receptors and their secondary 
messengers in stomach raised the possibility that the stomach 
might play a role in food ‘tasting’ and consequently, it might 
initiate specific adaptations of its secretory and motor func-
tion. Furthermore, activated taste receptors release a variety of 
chemical mediators able to modulate the activity of the enteric 
nervous system (ENS), and also to influence both secretory 
and motor functions of the stomach. Based on the physi-
ological fundamental structure of a reflex arch, the stimulation 
of the gastric taste receptors activates sensory neurons of the 
gastric wall, continues with motor neurons which initiate the 
contraction of the local smooth muscle fibers. Beyond this, 
compounds which act on different taste receptors initiate 
different responses, stimulatory or inhibitory. These interac-
tions may be translated in the gastric ability to selectively 
evacuate different nutritive compounds into the duodenum. 
Consequently, sugars could be favored to the detriment of 
other compounds.
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1. Introduction

Sugars represent essential constituents of the human cellular 
structures: membrane glycoproteins, receptors and nucleic 
acid molecules  (DNA) (1). Carbohydrates are essential for 
the maintenance of the basal metabolic processes within the 
human metabolism (2) as they represent the preferred fuel for 
all body cells (3).

The consumption of sugars, as highly palatable nutrients, is 
associated to their increased energy density (4); this behavior 
is innate, providing survival of newborns being maintained 
during childhood (5).

This preference can be partially explained by an addictive 
effect, based on the activation of a reward complex, which 
involves the mesolimbic dopamine system (6).

Even though sugar intake reduction is a dominant pres-
sure of today's nutrition (4), they still represent fundamental 
compounds for a normal life. Moreover, a theory arose, 
according to which sugar consumption, even in 80% of caloric 
ratio, is completely innocuous in physically active popula-
tions (2).

Based on the physiological high significance of sugars, the 
human body presents adaptive mechanisms able to detect (7) 
select (8) and absorb them (9).

The classical distribution of the taste receptors refers 
mainly to the tongue (10), but nowadays many other digestive 
(stomach, duodenum, colon) (11‑14) and extradigestive organs 
(upper airways, lung, testis) (15‑18) are also provided.

2. Stomach possesses taste receptors

The first gastric and intestinal taste receptors that expressed 
α‑gustducin were identified in rats (14). In the stomach, an 
abundancy of α‑gustducin expressing cells, located in the 
gastric mucosa folds and cardia was described (19).

Other gastric localizations for sweet taste receptor are 
represented by the brush cells of the limiting ridge (14) and 
by X/A‑like cells (20), an abundant type of gastric endocrine 
cells, which may represent ~20‑30% of the stomach oxyntic 
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glands (21). After the identification of α‑gustducin in these 
brush cells of the human stomach, the possible direct action of 
the glucose intake on these taste cells was outlined (22).

3. Taste receptor signaling mechanisms

Sweet molecules interact with sweet taste receptors  (23), 
produce GTP that binds to α‑gustducin and induce the disso-
ciation of the other subunits (β,γ) (24). They change the level 
of cAMP and AMP‑activated protein kinase (AMPK). The 
classical chain of reaction includes phospholipase C2 (21), 
diacylglycerol (DAG) and IP3 as second messengers and even-
tually, intracellular calcium increase (25).

Ca2+ triggers many intracellular pathways. One example 
is TRPM5 (transient receptor potential cation channel, 
subfamily M, member 5), which regulates Ca2+ entrance 
inside the cell. Another one is represented by the monova-
lent selective cation channel‑(CALHM1), the voltage‑gated 
ion channel, calcium homeostasis modulator 1, which is 
involved in Adenosine 5'‑triphosphate (ATP) release (26). 
In response to ATP release, K+‑ATP channels (KATP) are 
blocked, causing cell membrane depolarization (27). A third 
example is CaMK, a calcium-dependent kinase that acti-
vates exocytoses of glucagon-like peptide‑1 (GLP‑1). GLP‑1 
may act as a paracrine agent (28), but also as a hormone (29); 
it crosses the blood‑brain barrier through simple diffusion 
and it may activate the central GLP‑1 receptors  (30). In 
response, the activation of the non‑adrenergic non‑cholin-
ergic (NANC) system produces a change in the pattern of 
the gastric myoelectric activity, translated into a gastric 
emptying delay (31). ATP is a non‑adrenergic non‑cholin-
ergic transmitter that acts through P2X and P2Y receptors 
of the myenteric plexus (32).

Sweet taste receptor molecules are also present on the 
enteroendocrine cell surface; in the stomach, receptors 
T1R1/T1R3 type were described at the apical pole of a very 
frequent endocrine cell type: A/X‑like cells in rat and P/D cells 
in humans (33). These cells release ghrelin, des‑acyl ghrelin, 
obestatin and nesfatin‑1 (34).

4. By ‘tasting’ the food, stomach adjusts its emptying - 
interrelation with gastric motor response

The presence of the taste receptors and their secondary 
messengers in the stomach raised the possibility that the 
stomach might play a role in food ‘tasting’ and, consequently, 
it might initiate specific adaptations of its secretory and 
motor function. In addition, the effect of the taste receptors 
in releasing GLP‑1 and ATP may modulate the activity of the 
enteric nervous system (ENS) in many ways, with both secre-
tory and motor responses.

Following the sensory neurons stimulation, these neurons 
activate excitatory or inhibitory motor neurons, regulating the 
motor pattern in different parts of the stomach, while also 
modulating the gastric emptying (35). The latter represents a 
complex process, regulated by ingested food through neural 
components and neurohormonal mechanisms (36,37).

The gastric emptying rate is influenced by factors such as 
the gastric content consistency, osmolarity, temperature (38) 
and it is also correlated to digestion and absorption rates (19).

However, through taste receptors, the stomach not only 
regulates its own emptying, but we believe that it may also 
adjust the sequence in which a nutrient type from the ingested 
food is emptied preferentially into duodenum. Lipid, proteic 
and sweet could interact with taste receptors and could induce 
a specific motility pattern, which selects and preferentially 
eliminates some compounds into the duodenum before other 
nutrients (lipids or proteins). Sweet compounds interact 
with sweet taste receptors, associated to high caloric food 
content (18).

Our theory is that, by activating sweet receptors and by 
increasing the intracellular calcium concentration, glucose 
activates the local motility in gastric wall. This could be in 
relation with the new gastric emptying pattern consisting of 
a preferential road that orients mainly sugars directly toward 
the duodenum; the presence of such a pathway was generally 
described as Magenstrasse by Pal et al (39), but was not related 
with selection of sugars before.

Sweet taste receptors induce the appearance of this rapid 
‘slide’ way of gastric emptying, possibly like the one described 
as a physiological Magenstrasse. This way, sweet substances 
could be rapidly selected and evacuated into the duodenum 
in contrast to others (proteic and lipidic compounds), which 
are ‘kept’ inside the stomach for digestion. In the duodenum, 
the sweet compounds activate GLP‑1 release, which delay the 
gastric emptying (40), by closing a regulatory feedback loop (41).

The idea of sugar selection and early evacuation into the 
duodenum by the stomach is also sustained by the observation 
of the previous mentioned study according to which antral 
contraction waves produce a longer or a shorter, a larger or a 
thinner Magenstrasse control of which compounds are emptied 
out of the stomach earlier and which later (39).

There are many possible reasons for this behavior, starting 
with the absence of the digestive enzymes for sugars in the 
stomach (42) and ending with the longer protein and lipid 
digestion (43,44).

Another reason for a preferential choice of carbohydrates is 
represented by the classical observation that they are preferred 
nutrients for all body cells, as long as glucose is metabolized to 
H2O and CO2 and most of the absorbed monosaccharides are 
converted by the liver into glucose.

Overall, the presence of taste receptors in the entire diges-
tive tube may have the role of adjusting the intensity, duration 
and length of the peristaltic waves. In this manner, peristaltic 
waves not only mix and propel, but also orient and redirect 
different flows of components to different parts of the digestive 
tube, where specific enzymes are organized in clusters (45). 
As a result, different nutrients digestion and absorption may 
preferentially take place and the optimum occurs in certain 
territories, in relation to body requirements. We advance the 
idea that sweet compounds of the gastric content are ‘selected’ 
by the gastric mucosa, and, through communication with local 
motor neural network, certain folds are ‘built’ in order to direct 
sugars to the duodenum. Other compounds, such as lipids and 
proteins, are kept for a longer time in the stomach, through 
the activation of other specific motility patterns, in other parts 
of the stomach (38). This hypothesis is sustained by a recent 
observation affirming that only the sweet compounds do not 
inhibit the gastric myoelectrical activity, compared with sour, 
salty and bitter substances (37). At the same time, intragastric 
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distribution of the proteins and lipid keeps them inside for a 
longer time, by delaying their emptying (46). Indeed, it has 
been shown that high fat diets reduce motility by increasing 
the number of nitrergic inhibitory motor neurons of the 
ENS (42,47).

The stomach's ability to generate different motility patterns 
and sequences in different gastric areas at the same time, as 
a response to local ingested compounds ‘tasting’, requires 
further studies, and it may impact certain clinical practice 
fields.
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