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Abstract. Na+/H+ exchangers (NHEs) are a family of membrane 
proteins that contribute to exchanging one intracellular proton 
for one extracellular sodium. The family of NHEs consists 
of nine known members, NHE1-9. Each isoform represents 
a different gene product that has unique tissue expression, 
membrane localization, physiological effects, pathological 
regulation and sensitivity to drug inhibitors. NHE1 was the first 
to be discovered and is often referred to as the ‘housekeeping’ 
isoform of the NHE family. NHEs are not only involved in 
a variety of physiological processes, including the control of 
transepithelial Na+ absorption, intracellular pH, cell volume, 
cell proliferation, migration and apoptosis, but also modulate 
complex pathological events. Currently, the vast majority of 
review articles have focused on the role of members of the 
NHE family in inflammatory bowel disease, intestinal infec-
tious diarrhea and digestive system tumorigenesis, but only a 
few reviews have discussed the role of NHEs in liver disease. 
Therefore, the present review described the basic biology of 
NHEs and highlighted their physiological and pathological 
effects in the liver.
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1. Introduction

Intracellular pH (pHi) is usually maintained between 6.9-7.2; it 
is important to maintain a normal pHi as a decrease in pHi may 
influence the normal functioning of proteins, ion channels and 
several other physiological processes involved in cell prolif-
eration, division and differentiation (1). Some ion exchanger 
families regulate proton flux at the plasma membrane, such as 
Na+/H+ exchanger (NHE), Cl-/HCO3- exchanger, Na+/HCO3- 
cotransporter and Na+-driven Cl-/HCO3- exchanger (2). The 
present review focused on the NHE family. NHEs are pH-regu-
lated membrane proteins that exchange extracellular Na+ for 
intracellular H+ with a stoichiometry of one for one (2). The 
inward Na+ gradient produced by Na+/K+-ATPase provides a 
constant driving force for H+ efflux (3). Moreover, NHEs are 
activated by decreases in pHi, and thus are likely to respond 
to an increase in proton load during acute acid stimulation (4).

NHEs are evolutionarily conserved membrane trans-
porters; the solute carrier 9A (SLC9A) family contains the 
well-characterized plasma membrane and intracellular NHE 
isoforms (NHE1-9), and the SLC9B subgroup consists of 
Na+/H+ antiporter 1 and Na+/H+ antiporter 2 (5). Different 
NHE isoforms are positioned differently. NHE1 is the ‘house-
keeping’ isoform in NHE family (6) and is nearly ubiquitous 
in the plasma membrane of almost all tissues (7), while the 
other isoforms have more restricted localization and function. 
The specific localization of NHE1 may vary depending on cell 
type. In fibroblasts, NHE1 is mainly localized in lamellae and 
participates in migration and anchoring (8). However, in epithe-
lial cells, NHE1 is distributed in the basolateral membrane (9). 
NHE2-5 are also localized to the plasma membrane, but have 
more restricted tissue distributions (10). For example, NHE2 is 
an apical membrane protein found mainly in the stomach and 
intestines (11). Both NHE3 and NHE4 are highly expressed in 
the kidney and gastrointestinal tract (12). In the gastrointestinal 
tract, NHE3 is mainly expressed in the intestine, while NHE4 
is expressed in the stomach (12). Moreover, NHE5 is expressed 
primarily in the brain (13). The isoforms NHE6-NHE9 exist 
in intracellular organelles, where they participate in the 
maintenance of pHi (14). NHE6 is expressed in early recy-
cling endosomes and mitochondria, NHE7 is located in the 
trans-Golgi network, NHE8 is in the mid- to trans-Golgi and 
NHE9 is expressed in late recovered endosomes (15,16).

Various subtypes of NHEs are related to the pathogenesis 
of digestive diseases, such as Barrett's esophagus (17), gastric 
cancer (18), IBD (19), colon cancer (20) or liver diseases. 
Currently, the vast majority of review articles have focused on 
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the role of the NHE family members in IBD (21), intestinal 
infectious diarrhea (22) and digestive system tumorigen-
esis (23), and to the best of our knowledge, only a few have 
reported the role of NHEs in liver disease. The liver is the 
largest digestive gland in the human digestive system, and plays 
an important role in metabolism, deoxygenation, glycogen 
storage and secretory protein synthesis (24). Disease develop-
ment in the liver seriously affects the normal function of the 
body (25). Thus, it is important to study the physiological and 
pathological regulation of the liver. However, the role of NHEs 
in liver function is not fully understood, although all NHEs 
except NHE5 have been detected in this organ (26).

Therefore, the present review details the physiology and 
pathology of NHEs in the liver, including the regulation of 
hepatocyte volume, hepatocyte growth, regeneration, prolif-
eration, apoptosis, bile formation and other physiological 
activities. The pathologies discussed include non-alcoholic 
fatty liver disease (NAFLD), liver fibrosis, liver cancer and 
other liver diseases.

2. Structure and function of NHEs

The sequences of the nine subtypes of NHEs in the SLC9A 
subfamily are significantly different, with amino acid 
identities ranging between <12% (NHE1 vs. NHE9) and 
>70% (NHE6 vs. NHE7) (27). Despite these differences, 
silico-predicted transmembrane protein domains have 
suggested very similar structural arrangements for all nine 
isoforms, which have a high degree of similarity in the 
NH2-terminal hydrophobic domain, which contains multiple 
predicted membrane-spanning segments (27). However, it is 
important to note that NHE membrane topology has been 
most extensively studied in the NHE1 isoform (28). The 
complete membrane protein consists of 815 amino acids, 
and the first 500 amino acids of the protein are speculated 
to consist of 12 transmembrane hydrophobic domains (29). 
A C-terminal hydrophilic cytosolic domain of ~315 amino 
acids regulates the protein and mediates cytoskeletal 
interactions (30,31). Moreover, NHE2, 3, 4 and 5 have been 
reported to have 42, 39, 42 and 39% amino acid homology 
to NHE1, respectively (12). The NHE1 protein contains N- 
and O-glycosylated residues (32) and the N- and C- termini 
of NHE1 are found in the cytosol (6). Growth factors, 
hormones, integrins, osmotic stress and other signaling 
pathways regulate the activity of NHE1 via the mediation 
of the C-terminal domain, thus determining the pHi (33). In 
addition, there are some binding sites in the C-terminus, such 
as calmodulin (CaM), CaM homologous protein (CHP) and 
esrin/radixin/moesin (ERM) (4). When CaM binds to NHE1, 
it eliminates self-inhibition and activates NHE1. CHP AND 
ERM are bound to the cytosolic regulatory tail and also 
support the physiological activity of NHE1 (4) (Fig. 1).

3. NHEs in hepatic physiological regulation

NHEs are the most widely studied pHi regulators in various 
animal cells, including hepatocytes (34). Intracellular acid 
load produced by normal hepatocyte metabolism activates 
NHE proteins to catalyze the electroneutral exchange of one 
extracellular Na+ with one intracellular H+, thus constituting 

a key component that prevents cell acidosis (4). Furthermore, 
this exchange process depends on the inward-directed Na+ 
gradient produced by the Na+/K+-ATPase to excrete H+ from 
the cytoplasm (9,35). NHEs are also involved in regulating the 
volume of hepatocytes (36), hepatocyte growth, regeneration, 
proliferation, apoptosis and bile formation, and a series of 
physiological activities, which are described below.

Regulation of cell volume is critical for liver function 
in healthy and disease states (37). Shrinkage or swelling 
of cells may result in disruption of the integrity of the cell 
membrane and cytoskeletal structure. To survive, ions must 
pass via certain ion transporters to avoid excessive changes 
in cell volume (38,39). When cells are exposed to hypertonic 
extracellular media, cell contraction triggers a regulated cell 
volume increase, which is largely accomplished by cellular 
ion uptake (40,41). Cellular contraction also stimulates 
Na+/K+/2Cl- cotransporters (NKCC) and/or NHEs in parallel 
with Cl-/HCO3

- exchangers (40). H+ excretion via NHEs and 
HCO3

- exiting via the Cl-/HCO3
- exchanger are replenished in 

the cell by H2CO3, which is readily produced by CO2; this 
process achieves NaCl entry (42). On the other hand, Na+, 
which enters the cell via the NKCC and NHE, is pumped 
out by the Na+/K+-ATPase in exchange for K+, which eventu-
ally causes KCl uptake by the cells (42) (Fig. 2). Moreover, 
the NKCC isoforms NKCC1 and NKCC2 (43) and the NHE 
isomers NHE1, 2 and 4 are activated by cell contraction, while 
NHE3 is inhibited by cell contraction (43).

The volume sensitivity of metabolism is an integral part 
of hormone signaling (44,45). The insulin involves changes 
in the volume of hepatocytes (42). In addition to activating 
NHEs and NKCC to expand hepatocyte volume and serving 
an antiproteolytic role, (42) insulin activates NHEs by binding 
to receptors linked to tyrosine kinases in hepatocytes and 
promotes the growth of hepatocytes (46). Similar to insulin, 
several growth factors, such as hepatocyte growth factor 
(HGF) (47,48), epidermal growth factor (EGF) (49) and trans-
forming growth factor (TGF)-α (50), increase cell volume 
by stimulating NHEs, which is essential for stimulating cell 
proliferation (40). HGF is one of the most effective mitogens 
in hepatocytes and is often used to study the mechanism of 
hepatocyte proliferation (51). HGF, similar to insulin, activates 
NHEs in hepatocytes via a tyrosine kinase CaM-dependent 
pathway (51). EGF rapidly stimulates NHEs before increasing 
DNA synthesis, which not only promotes the proliferation of 
hepatocytes, but also participates in the regulation of liver 
regeneration (52). Dallenbach et al (53) measured pHi and 
homeostasis NHEs mRNA expression to compare the activity 
and regulation of NHEs in hepatocytes isolated after two-thirds 
partial hepatectomy or sham operation. These authors reported 
that during liver regeneration induced by partial hepatectomy 
in rats, NHEs in hepatocytes were activated at early, transient 
and posttranscriptional levels (53). The effect of liver regen-
eration on NHEs in hepatocytes is similar in qualitative and 
quantitative terms to that of hepatocytes exposed to EGF (54), 
suggesting that NHEs may participate in the regulation of liver 
regeneration as EGF in liver injury.

The effects of cell proliferation may be mediated 
by enhancing cell survival or inhibiting apoptosis (55). 
Intracellular acidification and cell volume reduction are 
markers of apoptosis, while NHE1 intracellular alkalization 
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and the regulatory volume increases may be antiapoptotic 
signals (2,56). TGF-β, which induces apoptosis of hepatic 
parenchymal cells (57), has a significant inhibitory effect on 
NHE activity in short-term cultured rat hepatocytes, especially 
in cells isolated from perivenular regions, in which apoptosis 
is more frequently observed (58).

Hepatocytes and bile duct epithelial cells are involved 
in bile secretion and absorption (59). Bile duct epithelial 
cells also serve a role in the transport of water, electrolytes, 
sugar, bile and amino acids, and express several transport 
proteins to modify the primary production of hepatocyte 
bile (60). In biliary cells, four isoforms (NHE1-4) have been 
identified (61,62). Basolateral NHE1 is generally speculated 
to be involved in pHi, cell volume homeostasis and fluid 

and electrolyte transport, particularly secretin-induced bile 
secretion (63,64). In addition, NHE3 has been detected in 
cholangiocarcinoma cells in rats (65,66) and in gallbladder 
epithelial cells in calves (67) and prairie dogs (68). Targeted 
destruction of the NHE3 gene results in inhibition of fluid 
reabsorption in isolated bile duct units. For example, a study 
in mice found that decreased gallbladder absorption of bile 
may be the result of a decrease in NHE3 activity caused by 
an increased level of NHE3 phosphorylated at serine-552; this 
increase in phosphorylation is hypothesized to lead to a higher 
turnover of NHE3, which leads to a decrease in the gallbladder's 
concentrating function (69). Moreover, prairie dogs represent 
a good animal model for human gallstone formation, and their 
gallbladder epithelial cells exhibit H+ gradient-dependent Na+ 
uptake via NHE1 (~6% of total intake), NHE2 (~66% of total 
intake) and NHE3 (~28% of total intake), indicating a signifi-
cant contribution of NHEs to epithelial Na+ absorption (68,70). 
Along with the findings showing increased absorption of Na+ 
and liquid in the early stage of gallstones (71), it has been 
proposed that apical membrane NHEs may be involved in the 
pathogenesis of gallstones (69). In conclusion, the aforemen-
tioned results suggested that decreases in NHE activity affects 
the absorption capacity of bile duct cells.

NHE1 may also regulate cell differentiation, as the absence 
or inhibition of NHE1 impairs the differentiation pathway (72). 
Furthermore, NHE1 function is important in cytoskeletal tissue 
and cell migration (22). The cytoplasmic tail of NHE1 acts as 
an anchor for actin filaments via the binding of ezrin, Radixin 
and moesin proteins, and the destruction of these interactions 
or inhibition of NHE1 activity leads to the inhibition of cell 
migration and the formation of external adhesions (2).

4. NHEs in hepatic pathology

Role of NHEs in NAFLD. NAFLD is closely related to 
liposome imbalance, and hepatic steatosis is considered to 
be the first stage in the development of NAFLD (73). With 
the development of fibrosis and inflammation, NAFLD 

Figure 1. Structure of NHE1. Both the N‑ and C‑ termini of NHE1 are located in the cytosol. The first 500 amino acids of NHE1 consist of 12 transmembrane 
hydrophobic domains. The C-terminal hydrophilic cytoplasmic domain of 315 amino acids contains binding sites of various proteins, such as CaM, CHP and 
ERM and the region of the cytoplasmic domain involved in phosphorylation and activity regulation. CaM, calmodulin; CHP, calmodulin homologous protein; 
ERM, esrin/radixin/moesin; NHE, Na+/H+ exchangers.

Figure 2. Regulation of various transporters on the membrane during cell 
contraction. Cell contraction, Cl-/HCO3

- exchanger, Na+/K+/2Cl- cotrans-
porter and Na+/H+ exchanger coactivate to produce NaCl in cells. Then, K+ is 
pumped by the Na+/K+-ATPase and is exchanged for intracellular Na+, which 
eventually leads to the uptake of KCl by cells.
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can progress to non-alcoholic steatohepatitis (NASH) and 
eventually lead to liver fibrosis, cirrhosis and cancer (74,75). 
NHE activity is associated with steatosis in NAFLD. Previous 
studies (76) have compared the expression of NHE1 in the 
livers of normal diet mice and high-fat diet mice, and revealed 
that the expression of NHE1 in the livers of high-fat diet 
mice was nearly tripled and the long-term ablation of NHE1 
activity in mice weakened high lipid diet-induced liver lipid 
accumulation, which suggests that NHE activity plays a role 
in the development of NAFLD (76). Farnesoid X receptor 
(FXR) is a nuclear hormone receptor. It has been reported 
that activation of FXR attenuates the development of hepatic 
steatosis (77,78), and FXR agonists reduce NASH-associated 
fibrosis (79,80). The prolipogenic liver X receptor (LXRa) is 
an important regulator of lipid metabolism. LXR activation 
promotes hepatic steatosis (81,82), and treatment with 
liver-specific LXR inhibitors reduced the development of 
hepatic steatosis (83). Prasad et al (76) revealed that in the 
livers of NHE1-null (KO) mice, increased expression of FXR 
and downregulation of LXRa expression were consistent with 
the results of long-term NHE1 deletion in reducing liver lipid 
accumulation induced by high-fat diet. In addition, the key 
regulators of adipogenesis, acetyl-CoA carboxylase α (Acc1) 
and Acc β (Acc2), are downregulated in NHE1-KO liver (76). 
Moreover, downregulation of Acc1 and Acc2 expression levels 
can reverse hepatic steatosis (84). Based on these findings, it 
was speculated that the loss of NHEs in the liver may lead to 
increased expression of FXR, downregulation of LXRa and 
downregulation of Acc1/Acc2 expression, which may reduce 
or reverse liver steatosis during the occurrence of fatty liver 
diseases such as NAFLD, which slows the development of 
NAFLD.

NHEs in liver fibrosis. Hepatic fibrosis is a common response 
to chronic liver injury of variable origins, such as viruses and 
metabolism (85). The mechanisms of liver fibrosis include 
activation of hepatic stellate cells (HSCs) and extracellular 

matrix (ECM) protein deposition, including various collagens 
and matrix glycoconjugates (86). During the development of 
fibrosis, HSCs proliferate and the activation process is char-
acterized by the appearance of myofibroblast‑like phenotypes 
that accumulate near necrotic areas (87). Activated HSCs are 
characterized by the expression of α-smooth muscle actin 
(SMA) (87), increased cell numbers, loss of retinoic acid (88,89) 
and increased expression of collagen fibrin (90). Currently, 
oxidative stress (91,92), paracrine stimulation of damaged hepa-
tocytes, cytokines (93,94) and mitogens, such as platelet-derived 
growth factor (PDGF), TGF-β and insulin-like growth factor I, 
have been reported to promote the proliferation of HSCs and 
matrix synthesis. All of these factors activate NHEs, mostly 
likely the subtype 1, in the liver, and NHE activation is one of the 
earliest responses to mitogens and growth factors in most cell 
types (95). Previous studies have shown that NHE1 is the main 
pH regulator in HSCs, and its activity increases with the activa-
tion process of HSCs (96,97). When different growth factors and 
oxidative stress stimulate HSC proliferation and collagen type 
synthesis, the activity of NHE1 protein increases (96,98-100). 
Furthermore, the mechanism of HSCs proliferation is related 
to the increase in cell volume caused by NHE activation. For 
example, an increase in cell volume itself induces multiple 
changes in cellular function and gene expression by activating 
the osmosignaling pathway, and is a prerequisite for cell divi-
sion and proliferation (38,101). It has also been reported that 
an increase in cell volume is parallel to the process via which 
fibroblasts transition from G1 to S phase (102).

Inhibition of NHEs selectively blocks ribonucleotide reduc-
tase, an enzyme that is critical for DNA synthesis (103). The 
antioxidant resveratrol also inhibits nucleoside reductase 
activity (104), thus suggesting the possible role of reactive 
oxygen species as a common mechanism of NHE activation in 
HSCs; the promotion of fibrosis caused by oxidative stress is 
also partly due to NHE activation in HSCs (99). Benedetti et al 
(105) used the NHE inhibitors amiloride and cariporide, and 

Figure 3. In hepatocellular carcinoma cells, activation of NHEs to produce acidic pHe promotes the degradation of ECM. Alkaline pHi promotes the expres-
sion of VEGF, thus inducing neovascularization and promoting tumor growth. On the other hand, the use of EIPA (an inhibitor of NHEs) downregulates the 
expression of Bcl-2, a proapoptotic gene, and the expression of the proapoptotic gene Bax is upregulated, which ultimately promotes apoptosis of hepatocellular 
carcinoma cells. ECM, extracellular matrix; VEGF, vascular endothelial growth factor; pHi, intracellular pH; pHe, extracellular pH; NHE, Na+/H+ exchangers.
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revealed that these inhibited the proliferation and activation of 
NHE and HSCs by blocking PDGF and oxidative stress in vitro, 
suggesting that NHE inhibitors may reduce DNA synthesis in 
HSCs by inhibiting the activity of NHEs. Benedetti et al (105) 
also found that in vivo administration of amiloride and cari-
poride reduced the formation of α-SMA positive chains and 
the expression of type I procollagen in the local proliferation 
induced by two different liver injury models, dimethyl nitro-
samine and bile duct ligation. Therefore, NHE appears to 
play a catalytic role in the pathogenesis of liver fibrosis (105). 
Collectively, it was speculated that the activity of NHEs may 
be closely related to the activation of HSC during liver fibrosis.

NHEs in liver cancer. Hepatocellular carcinoma (HCC) is 
one of the most common malignant tumors in the world and 
has a poor prognosis (106). The occurrence and development 
of cancer are closely related to dysregulation of cell energy 
metabolism, which is known as the Warburg effect (107). As a 
supportive anticancer therapy, glucose restriction (GR) inhibits 
enhanced glycolytic activity in cancer cells via energy-depen-
dent signaling pathways, including the insulin like growth 
factor-1/PI3K/Akt/mTOR pathway (108). Previous studies have 
reported that intracellular alkalization is a major transforma-
tion event for cancer cells. For instance, one study showed that 
glioblastoma (MG) is a highly glycolytic malignant tumor 
that has a strong dependence on pH, and NHE1 activation 
drives cytoplasmic alkalization (109). However, inhibition of 
NHE1 in MG can acidify tumor cells, while healthy astrocytes 
are not affected; this finding may facilitate the development 
of treatment for malignant tumors (109). Targeting proton 
dynamics associated with pHi gradients has been proposed 
as a potential cancer prevention strategy and treatment (110). 
Kim et al demonstrated that curcumin treatment or GR slightly 
inhibited NHE1, while the combined treatment of curcumin 
and GR further enhanced the inhibitory effect on NHE1 and 
reduced pHi (110). Since the activation of NHE1 depends on 
energy and Akt (111), GR enhances the ability of curcumin to 
synergistically inhibit NHE1. Therefore, the combined treat-
ment of GR and curcumin may have an important role in the 
regulation of pH in human hepatoma cells.

The expression of NHE1 in tumor tissues is not only related 
to the tumor size in HCC, but also venous invasion and patho-
logical TNM staging (112). Previous studies have reported 
that inhibition of NHE1 blocks the invasion and metastasis of 
SMMC-7721 and HepG2 liver cancer cells (113,114). Invasion 
and migration of malignant tumor cells require destruction of 
the basement membrane and ECM proteolysis (115). The acidic 
extracellular pH (pHe) of tumor cells is also crucial in the acti-
vation of extracellular proteinases and the degradation of ECM 
in tumors (116,117). In the early stages of cell migration, inva-
sion and metastasis, ECM decomposition is mainly mediated 
by matrix metalloproteinases (MMP)-2, -3 and -9 (114,118). 
Moreover, alkaline pHi promotes the expression of vascular 
endothelial growth factor (VEGF), which plays an important 
role in inducing neovascularization and promoting tumor 
growth and metastatic potential (Fig. 3) (119-121). Hypoxia is 
also a common feature of the tumor microenvironment and 
has been shown to stimulate invasion and metastasis (122,123). 
Hypoxia activates ERK1/2, a family of mitogen-activated 
protein kinases that play a major role in signaling pathways 

that are involved in cell scatter, motion, invasion, proliferation 
and survival (124). ERK1/2 also regulates the expression of 
MMPs and VEGF (125,126). Yang et al (114) demonstrated 
that inhibition of NHE1 by ethyl-isopropyl-amiloride (EIPA) 
inhibited HepG2 cell invasion and metastasis, and that EIPA 
inhibition acts by downregulating MMP-2, MMP-9 and 
VEGF in an ERK1/2-dependent manner. Moreover, NHE1 not 
only affects the migration and invasion of tumor cells, but is 
also related to the apoptosis of tumor cells (127). Bcl-2 family 
members, such as Bcl-2, Bcl-xL and Bax, play a crucial role 
in controlling apoptosis (127). Previous studies have reported 
that the NHE1 inhibitor EIPA downregulates Bcl-2, and 
upregulates Bax expression in HepG2 cells, leading to tumor 
cell apoptosis (128) (Fig. 3).

Interleukin 6 (IL6) is a key cytokine involved in the 
development and progression of inflammation-associated 
HCC. For example. Xu et al (128) found that IL6 activates 
the functional activity of NHE1, induces the interaction of 
NHE1, Na+/Ca2+ exchanger1 (NCX1) and calmodulin (CaM), 
and upregulates the expression of NHE1 in human hepatoma 
cells. Benzo[a]pyrene (B[a]P) is a prototype of polycyclic 
aromatic hydrocarbons, and is a human carcinogen (107). 
In addition to triggering apoptotic signals, B[a]P may 
induce survival signals and participate in the promotion of 
cancer (107). Previous studies have also reported that B[a]
P induces metabolic reprogramming, which involves the 
activation of NHE1, and it leads to epithelial-mesenchymal 
transition (129-131). Ginsenoside Rg3, the main pharmaco-
logically active compound extracted from Chinese ginseng, 
has been widely recognized as having antitumor properties 
in various cancer types (132,133), including inhibition of 
HCC cell proliferation, induction of apoptosis and inhibi-
tion of angiogenesis (134) and metastasis (135). Recently, it 
has been reported that Rg3 inhibits HCC cell proliferation 
and induces apoptosis by decreasing NHE1 expression and 
activity, and Rg3-mediated NHE1 inhibition is dependent 
on the EGF/EGFR/ERK1/2/hypoxia-inducible factor-1α 
signaling pathway (136). As a common ion transporter, NHEs 
are regulated by numerous substances. For example, IL6 and 
B[a]P can activate the activity of NHE1, while Rg3 can inhibit 
the activity of NHEs (107,128,132). Therefore, based on the 
aforementioned description of IL6, B[a]P and Rg3 in HCC, 
it was suggested that NHEs may be a potential therapeutic 
target in HCC. However, further studies are required to iden-
tify the potential mechanisms.

Cholangiocellular carcinoma (CCC) is the second most 
common primary liver cancer after HCC, with an increased 
incidence (137). Furthermore, chronic inflammation and oxida-
tive stress play a key role in the development of CCC (138). 
NHEs form a potential link between controlling pHi and tumor 
development. Therefore, Elsing et al (62) determined the effect 
of oxidative stress on NHEs using tert-Butyl hydroperoxide 
(t-BOOH), a hydrogen peroxide, in the biliary epithelial cancer 
cell line Mz-Cha-1. These authors demonstrated that t-BOOH 
reduced NHE activity in a dose-dependent manner; at 4 mM 
t-BOOH, the NHE activity was almost absent and glutathione 
supplementation and intracellular Ca2+ chelation partially 
restored NHE activity. Moreover, in Mz-Cha-1 cells, inhibition 
of NHE by oxidative stress depends in part on the presence of 
intracellular Ca2+ and intracellular glutathione levels (62).
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5. NHEs in other liver diseases

Hepatic failure (HF) is a life-threatening disease with a very 
high mortality rate (139), and hepatocyte apoptosis leading to 
HF is an important event in hepatocyte death. Tumor necrosis 
factor-α (TNF-α) is an inflammatory factor and an inducer of 
hepatocyte apoptosis (140). It has been reported that TNF-α 
induces NHE activity in hepatocytes in a time-dependent 
manner (141). Activation of NHEs increases intracellular Na+, 
promotes Na+/Ca2+ exchange and causes Ca2+ overload (142), 
which is considered to be the key factor in cell damage. 
Moreover, an increase in intracellular Ca2+ concentration auto-
matically activates calpain, a calcium-dependent protease (143). 
The antiapoptotic family member Bcl-xL is a natural substrate 
for calpain, and NHE mediates TNF-α-induced hepato-
cyte apoptosis via Ca2+/calpain-dependent degradation of 
Bcl-xL (141). However, the NHE inhibitor cariporide reverses 
the effects induced by TNF-α and has a protective effect on 
acute HF (141).

Endotoxin-mediated production of proinflammatory 
cytokines plays an important role in the pathogenesis of 
liver disease (144). Previous studies have reported that 
lipopolysaccharide (LPS) causes liver damage by increasing 
the release of TNF-α in a NASH model (145). Therefore, 
interfering with LPS-induced inf lammatory responses 
may help to alleviate inflammation associated with liver 
disease. Heat shock proteins (Hsp70) play an important role 
in LPS‑mediated inflammatory responses (144). NHE1 is 
considered to be a mediator of inflammatory responses in 
macrophages (146-148) and has been reported to interact 
with Hsp70 (149). Inhibition of Hsp70 substrate binding 
activity in vivo reduces induction of proinflammatory 
factors (144). Huang et al (144) treated macrophages and 
livers with LPS and revealed a significant increase in the 
association of NHE1-Hsp70, suggesting that the formation 
of the NHE1-Hsp70 complex is essential for the induction 
of proinflammatory factors. Therefore, LPS‑induced liver 
damage may be prevented by disrupting the NHE1-Hsp70 
interaction.

In addition, the beneficial effects of the NHE inhibitor 
EIPA in blocking NHEs in a partial hepatic ischemia rat model 
suggested a positive role for NHE1 in oxidative liver injury, 
and indicated that inhibition of NHEs is a potential strategy 
for preventing or reducing ischemic liver injury (27).

6. Conclusion

NHEs are ion transporters that are widely present in a variety 
of organisms and are important regulators at the cellular, 
tissue and systemic levels (150). To the best of our knowledge, 
the current review is the first detailed description of the 
physiology and pathology of NHEs in the liver. While NHEs 
are common targets for various inflammatory stimuli, the 
effect of selective targeted therapy of NHEs in the liver are 
inconclusive, and thus further studies are required. Numerous 
experimental models currently show that NHE inhibitors 
lack major toxic effects, and several, such as cariporide, have 
been used in preclinical and clinical trials (151). However, 
a large number of studies have only analyzed the effects of 

single factors, and have not considered that their function in 
physiological and pathological conditions may mainly be the 
result of the interaction of various transporters. Therefore, more 
comprehensive methods are required to alter the function, and 
regulate and target NHEs in liver-related pathology.
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