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Abstract. Allergic diseases have been classified in the last 
decades using various theories. The main classes of the 
newest classification in allergic respiratory diseases focus 
on the characterization of the endotype (which takes into 
account biomarkers related to determinant pathophysi-
ological mechanisms) and of the phenotype (based on the 
description of the disease). Th2, Th1 and Th17 lymphocytes 
and the type of inflammatory response mediated by them 
represent the basis for Th2 and non‑Th2 endotype clas-
sification. In addition, new lymphocytes were also used 
to characterize allergic diseases: Th9 lymphocytes, Th22 
lymphocytes, T follicular helper cells (TFH) lymphocytes and 
invariant natural killer T (iNKT) lymphocytes. In the last 
decade, a growing body of evidence focused on chemokines, 
chemoattractant cytokines, which seems to have an impor-
tant contribution to the pathogenesis of this pathology. This 
review presents the interactions between chemokines and Th 
lymphocytes in the context of Th2/non‑Th2 endotype clas-
sification of respiratory allergies.
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1. Introduction

Over the years, there has been an important number of 
attempts to classify allergic diseases, especially on respira-
tory level. Respiratory allergies may begin at any level of the 
respiratory tract (nose, sinuses, lungs) and, over time, they can 
generalize throughout, process known as the United Airway 
Disease (UAD) (1). One of them was based on the evaluation 
of specific mechanisms that represent the pathophysiological 
background of the disease: endotypes (2). A disease endo-
type includes the specific biological pathway (describing 
an etiology and/or a firm pathophysiologic mechanism) that 
explains the observable properties of a phenotype (clinical 
description of a disease without a connection with underlying 
pathology). Lötvall et al  (2) were the first to propose the 
criteria that characterizes an endotype. In order to be accepted, 
an endotype description should take into account at least 5 of 
these 7 aspects: Clinical, biomarkers, lung function, genetics, 
histopathology, epidemiology and treatment response (3). At 
the moment, there are two main endotypes described: Th2 and 
non‑Th2.

2. Th2 endotype

Over the last decade, one of the most studied endotypes 
was the one based on type 2 immune response. Historically, 
allergic asthma and rhinitis were hypothesized to be 
produced by this type of mechanism (4,5). Type 2 immune 
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response is based on the contribution of the following 
cells: Th2 cells (6), type 2 B cells (7), interleukin-4 (IL‑4) 
secreting NK cells (8), IL‑4 secreting T‑NK cells (9), mast 
cells, eosinophils, basophils, their cytokines (CK) (5): IL‑4, 
IL‑5, IL‑9, IL‑13, along with those CKs secreted by tissue 
cells (5): IL‑25 (10), IL‑31 (11), IL‑33 (12) and TSLP (13). 
Starting from the characterization of Th2 endotype, experts 
identified two endotypes: Th2‑high and Th2‑low (14), which 
were divided further in several sub‑endotypes: IL‑5‑high, 
IL‑13‑high, IgE‑high (5). This kind of endotype may also be 
characterized by several other biomarkers: blood or sputum 
eosinophilia (15), periostin (16), considered to be character-
istic for it. Type 2 immune response underlines atopic asthma 
and allergic rhinitis  (AR) as fundamental for the united 
airway concept  (5). In addition, type 2 immune response 
seems to be important in chronic rhinosinusitis (CRS) with 
nasal polyposis (CRSwNP), tissue eosinophilia and evidence 
of eosinophil activation, being closely associated with 
remodeling features of CRS (5). The whole disease spectrum 
of atopic dermatitis (AD) from background inflammation in 
asymptomatic patients to chronic disease is also covered by 
this type of mechanism (5).

3. Non‑Th2 endotype

Recent years brought to the allergist's attention a new endo-
type in allergic respiratory diseases: non‑type 2 immune 
response driven endotype. This endotype is related to 
neutrophilic inflammation, Th17 activation (17), neurogenic 
inflammation and tissue remodeling (4). There are two major 
mechanisms that are considered to contribute to definition 
of this endotype: the activation of the IL‑17‑dependent 
pathway and neutrophil intrinsic abnormalities (4). It was 
demonstrated that IL‑17 is linked to remodeling  (18), 
airway hyper-reactivity  (AHR)  (19), asthma severity  (20) 
and inflammation (21). Lung airway neutrophilia seems to 
be associated with lower lung function, thickening airway 
walls and more air trapping (3). For decades, Th1 immune 
response was considered the main mechanism responsible 
for the pathophysiology of non‑atopic asthma (5). This 
response is characterized by the domination of Th1 cells and 
their mediators: interferon‑γ (IFN‑γ) (22) and tumor necrosis 
factor‑α  (TNF‑α)  (23). Initially described in non‑atopic 
asthma or in severe asthma, it has recently been connected 
with allergic rhinitis and asthma as well  (24,25). TNF‑α 
produces a nasal inflammatory response in patients with AR 
characterized by plasma exudation and late phase neutro-
phil activity 24 h post nasal challenge  (24). An increase 
of IFN‑γ levels was observed due to increased exposure to 
polycyclic aromatic hydrocarbons (PAHs), known for their 
predisposition to atopy (25). In recent years, mixed endo-
types/sub‑endotypes, such as Th1/Th17  (4) or Th2/Th17 
endotype were proposed (26).

4. Lymphocyte diversity, plasticity and heterogeneity

Besides the classic difference Th1 vs. Th2, immunology has 
been described previously in many other types of lympho-
cytes. The importance of Th17 in respiratory allergies has 
been presented before. Th9 cells have an important role in 

the immune responses regulation. They express predomi-
nantly IL‑9. IL‑9 causes the induction of lung eosinophilia, 
increased serum total IgE levels, airway hyperreactivity (27), 
the generation of cytokines from active mast cells; it also 
up‑regulates high‑affinity IgE receptors on mast cells (28). 
Th22 cells are positive for chemokine receptors CCR4, 
CCR6 and CCR10 and produce mostly IL‑22. IL‑22 
has been found to be increased in patients with AR  (29) 
and asthma  (30). GM‑CSF producing T  cells were also 
described. Increased levels of GM‑CSF were found during 
the birch‑pollen season in the nasal lavage (31). T follicular 
helper cells (TFH) represent a specialized CXCR5‑expressing 
CD4+ T  cell population, regulated by Bcl‑6. Peripheral 
circulating TFH can be divided into three subsets: cTFH cells 
(BCL6‑CXCR3+CCR6‑), cTFH2 cells (BCL6‑CXCR3‑CCR6‑), 
and cTFH17 (BCL6‑CXCR3‑CCR6+) cells, based on the differ-
ential expression of the chemokine receptors CXCR3 and 
CCL6 (32). Significant levels were found in child and adult 
asthma patients (33). In addition, TFH were positively corre-
lated with total IgE levels in the blood (34). Unconventional 
T lymphocytes, such as invariant natural killer T (iNKT) and 
mucosal‑associated invariant T cells (MAIT), are considered 
potential candidates for studying the mechanisms underlying 
the pathophysiology of asthma  (35). MAIT cells produce 
low‑to‑moderate levels of IL‑4 and IL‑13 (36). A recent study 
suggests that MAIT‑17 cells may be associated with asthma 
symptoms (37).

Another important aspect is represented by the plasticity 
of T cells. Previously it was shown that T  lymphocytes 
can display an important grade of plasticity when they are 
exposed to re‑polarizing signals (38). Signaling via Toll‑like 
receptors can drive Th2 cells to an IFN‑γ‑secreting pheno-
type (39). Th9 cells may develop from Th2 cells under the 
action of TGF‑β (40). Th1/Th2 hybrid cells may develop from 
Th2 precursor cells under the influence of interferons (41). 
Th1 and Th17 cells may produce IL‑4 under some circum-
stances (42).

5. Chemokines

Chemokines (CC) are chemoattractant cytokines that signal 
through seven‑transmembrane‑spanning domain, pertussis 
toxin‑sensitive, G‑protein‑coupled receptors (GPCRs). They 
are classified into four families, based on the arrangement of 
the first two N‑terminal cysteine residues within their amino 
acid sequence: CXC(α) family, CC(β) family, CX3C(δ) family 
and C(γ) family. Chemokines can be divided functionally 
into inflammatory and homeostatic. Inflammatory chemo-
kines are produced during an inflammatory response by 
activated leukocytes or tissue resident cells. Examples include 
CXCL9 [monokine induced by γ‑interferon (MIG)], CXCL10 
[interferon‑γ‑induced protein  10  (IP‑10)] and CXCL11 
(interferon‑inducible T cell α‑chemoattractant (ITAC)] that 
attract Th1 cells and neutrophil‑attracting chemokines: 
CXCL1 [growth‑regulated oncogene (GROα)] and CXCL8 
(interleukin‑8). Homeostatic chemokines are produced by 
healthy tissues and direct leukocytes to fulfill their normal 
roles, which are immune surveillance, hematopoiesis and 
embryogenesis: CCL19 [EBI1 ligand chemokine  (ELC)], 
CCL21 [secondary lymphoid‑tissue chemokine  (SLC)], 
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CCL25 [thymus‑expressed chemokine (TECK)] and CCL27 
[cutaneous T cell‑attracting chemokine (CTAK)] (43).

The interrelations between CC and T cells are well estab-
lished (43). The interaction between CC, mediated by their 
receptors, and T cells is well documented, as well as this 
influence on the inflammatory infiltrate from allergic patho-
genesis (43). Further, we will focus on the presentation of the 
interaction between the different subtypes of T cells and the 
CC regarding their contribution to the pathogenesis of respira-
tory allergies (Fig. 1).

Chemokines associated with Th2 lymphocyte function. Th2 
cells are classically associated with the CC (β) family (best 
studied until now are CCL1, CCL17, CCL18, CCL22) (43). 
They possess three receptors for CC: CCR3, CCR4, and 
CCR8. CCL1 (also known as I‑309) is a potent attractant for 
Th2 lymphocytes (44). CCL1 represents the predominant CC 
secreted from IgE‑activated mast cells and is found in high 

concentrations in asthmatic airways (45). Mast cells release of 
CCL1 was proposed to be the key step for early Th2 recruit-
ment through the CCR8 receptor (46). CCL1 was found to be 
significantly elevated in the bronchoalveolar fluid (BALF) 
from atopic asthmatic patients as compared with volun-
teers (44), and asthmatic vs. controls (47). The role of CCL1 
in the pathogenesis of asthma was indirectly demonstrated by 
the suppression of its serum levels after treating human mono-
cytic leukemia cell line THP‑1 and human monocytes from 
healthy donors with a cysteinyl leukotriene receptor antagonist 
(montelukast) (48). Murine studies reinforced the role of CCL1 
released by mast cells and basophils and its receptor (CCR8) in 
recruitment of IL‑4, IL‑5 and IL‑13‑secreting T lymphocytes 
into the airways (45,49).

CCL17 [thymus and activation regulated chemokine 
(TARC)] facilitates recruitment, activation and development 
of Th2‑polarized cells that express CCR4 (50). CCL17 has 
been associated with an important role in the development 

Figure 1. Interplay between chemokines and T cells. Th1, Th1 lymphocyte; Th2, Th2 lymphocyte; Th9, Th9 lymphocyte; Th17, Th17 lymphocyte; 
Treg, T regulatory lymphocytes; TFH, T follicular helper cells; iNKT, invariant natural killer T; CCL, C‑C motif ligand; CXCL, C‑X‑C‑motif ligand; CCR, 
C‑C receptor.
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of pulmonary diseases  (51). Clinical studies that included 
patients with asthma demonstrated over‑expression of CCL17 
RNAm+ in patients with asthma compared with controls 
and a weak, but significant association with sputum eosino-
philia (52); RNAm+ TARC/CCL17 cells were found elevated 
in the epithelium and submucosa of the bronchial biopsies of 
the asthmatics compared with the controls (53). CCL17 was 
also highly expressed in patients with AR or rhino‑sinusitis 
in serum and nasal secretions compared with controls (54‑57) 
and significantly decreased after immunotherapy in patients 
with dust mite allergy (50), suggesting an implication in naso-
sinusal allergy.

CCL18 [pulmonary and activation‑regulated chemokine 
(PARC)] is another chemokine, production of which, is 
induced by the inflammatory Th2 cytokines. CCL18 exhibits 
dual functions, with pro‑ and anti‑inflammatory properties, 
according to the environment (baseline or inflammatory) and 
to the genetic background. CCL18 recruits basophils and Th2 
cells activates basophils and induces histamine release (58). 
CCL18 levels were found to be elevated in patients with asthma 
after segmental allergen challenge (59) and significantly corre-
lated with sputum eosinophil percentages (60) in patients with 
dust mites allergy (61) and AR (62), results congruent with 
theoretical data.

CCL22 [monocyte‑derived chemokine (MDC)] induces 
the selective migration of Th2 cells (roles in homing and 
recruitment of CC chemokine receptor 4‑bearing Th2 cells in 
allergen‑induced inflammation). High levels of CCL22 were 
found in the serum of patients with allergic rhinitis with sensi-
tization to birch pollen (63) and ragweed pollen (56), which 
suggest a possible role in the pathogenesis of AR.

The Eotaxin family, which include Eotaxin‑1 (CCL11), 
Eotaxin‑2  (CCL24) and Eotaxin‑3  (CCL26), recruits and 
activates CCR3‑bearing cells, such as Th2 lymphocytes, 
mast cells and eosinophils that play an important role in 
allergic diseases (64). Eotaxin‑1 was also shown to contribute 
in producing AHR. Eotaxin‑1 presented elevated levels and 
good correlations with sputum eosinophilia in children with 
stable asthma compared with controls (65), and significant 
differences between children with asthma vs. healthy chil-
dren in BAL fluid (66), which suggests that eotaxin‑1 may 
regulate eosinophil trafficking into the airways of asthmatic 
children in a coordinated manner. High levels of eotaxin‑1 
were obtained after nasal allergen challenge in patients with 
AR comparing with controls (67) and in the material from 
nasal brushing in patients with asthma, allergic rhinitis and 
COPD (68). Eotaxin‑1 was involved in acute allergic airway 
response to Aspergillus fumigatus (69), eosinophilic inflam-
mation in asthma (70) and progress to AHR (71). Based on a 
review that included 30 studies, Eotaxin‑1 was considered as 
a potentially useful biomarker for the diagnosis and assess-
ment of asthma severity and control (72). Eotaxin‑2, found 
in high levels in patients with nasal polyposis and perennial 
allergic rhinitis when comparing to controls, contribute 
to eosinophil attraction at the site of inflammation  (73). 
Eotaxin‑3 was expressed by nasal nerves of patients with 
AR after allergen challenge (74) and predisposed to AR in a 
Korean population (75).

Besides this known relationship between Th2 lymphocytes 
and presented chemokines, a number of studies pointed out 

the association of other CC and Th2 cells in the pathogen-
esis of respiratory allergic diseases. For instance, in the last 
decades, numerous studies focused on the investigation on 
CCL2 [monocyte chemoattractant protein‑1 (MCP‑1)], CCL5 
(RANTES‑regulated on activation, normal T cell expressed and 
secreted), CCL7 [monocyte‑chemotactic protein‑3 (MCP‑3)], 
CCL13 [monocyte‑chemotactic protein‑4  (MCP‑4)] and 
CX3CL1 (Fraktaline) regarding their association with inflam-
mation in asthma and AR.

CCL2 was found to be related to the development of 
airway smooth muscle (ASM) hyperplasia in asthma (76) and 
has been proven to be a good biomarker of asthma control 
in adults and children when it is measured in saliva along 
with CCL5 (RANTES) (77). CCL2 (MCP‑1) was observed in 
high serum levels in experimental murine studies of allergic 
asthma (70,78) and in bronchoalveolar lavage (BAL) from 
a Cynomolgus monkey model (79). Genetic studies proved 
the association between CCL7 and asthma: ‑1382T/C was 
associated with the susceptibility to atopic asthma in an 
Indian population  (80). CCL7 was associated to the defi-
ciency of IL17‑A and suppression of eosinophil infiltration in 
an animal model of AR (81). CCL5 (RANTES) was signifi-
cantly higher in patients with atopic asthma than controls 
and positive correlated with absolute eosinophil counts and 
total serum IgE (82) in pediatric patients with asthma after 
exercise challenge (83), which seems to be associated with 
allergic inflammation. On the other hand, the levels of CCL5 
presented significant differences between patients with 
allergic and non‑allergic rhinopathies and polyps vs. those 
with normal mucosa (84), which suggest its contribution to 
leukocyte infiltration and activation related to inflammation. 
Two CCL5'SNPs (located at ‑403G/A and ‑28C/G) were 
evaluated and associated with the risk of asthma in Asian 
and Caucasian populations (85). CCL13 (MCP‑4), a CC able 
to induce crucial immuno‑modulatory responses through 
its effects on epithelial, muscular and endothelial cells was 
also measured in studies investigating asthma and rhinitis. 
Significant higher plasma levels of CCL13 were found in 
patients with stable‑asthma than in controls and those with 
acute asthma vs. those with stable asthma (86). It was shown 
that the CCL13 expression was stimulated by IL‑4, a cytokine 
characteristic for Th2, in an experimental study that used 
airway smooth muscle cells (87). Moreover, serum levels of 
CCL13 were observed to be higher in patients with allergic 
rhinitis after nasal allergen challenge between patients and 
controls and during natural pollen exposure (88).

CX3CL1 (Fraktaline) has been found to be increased 
in allergic diseases by promoting Th2 cell survival in the 
inflamed airways (particularly in asthma). CX3CL1 levels 
were increased after segmental allergen challenge in allergic 
asthmatic patients (89,90). The CX3CL1/CX3CR1 axis was 
also demonstrated to contribute to the development of allergic 
asthma in murine studies (91).

Chemokines associated with function of Th1 lymphocytes. 
Th1 lymphocytes are associated with CXC chemokines, 
especially CXCL9, 10 and 11. Th1 lymphocytes possess the 
receptors CCR1, CCR5, CXCR3 and CXCR6  (43). Three 
CC‑CXCL9 (MIG), CXCL10 (IP‑10) and CXCL11 (ITAC) are 
described, which form a mini‑cluster along the chromosome 
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4 at q21.21. They are inducible by IFN‑γ and act on immune 
cells expressing CXCR3. Th1 cells express CXCR3 and 
thus will be attracted by these chemokines  (92). CXCL9 
and CXCL10 were released in large amounts by eosinophils 
obtained from the peripheral blood of allergic volunteers 
when these were stimulated concomitantly with TNF‑α and 
IFN‑γ (93). Also, it was observed that high concentrations of 
CXCL9, 10 and 11 were significantly elevated (94) in BALF 
after broncho‑provocation with antigen in patients with 
asthma. Allergen activation in asthma patients provoked a 
diminished production of CXCL9 and CXCL10, which 
contributed to a skewed Th2 profile  (95). Elevated levels 
of CXCL9 and CXCL10 were observed in a pediatric 
study in patients with an acute exacerbation in contrast to 
patients with stable asthma (96). CXCL10 proved to be a 
useful inflammatory marker of occupational asthma (OA) 
exacerbation in patients with wood dust OA in contrast with 
healthy controls (97) and in the exacerbation of childhood 
asthma (96). CXCL10 presented significant differences in 
patients with AR when it was measured in nasal lavage before 
and after allergen exposure (98). The development of respi-
ratory allergies was related to decreased levels of CXCL10, 
particularly in patients with asthma, because this situation 
indirectly favors Th2 cytokines production (99‑101).

Chemokines associated with function of Th17 lymphocytes. 
Th17 lymphocytes were found to be associated with chemo-
kines from the CXC family: CXCL1 (GROα), CXCL2 (GROβ), 
CXCL3 (GROγ), CXCL5 [epithelial‑derived neutrophil‑acti-
vating peptide 78 (ENA‑78)], CXCL6 [granulocyte chemotactic 
protein 2 (GCP2)] and CXCL8 (IL‑8) (43). These chemokines, 
along with CXCL7, belong to the family of ELR+CXC chemo-
kines (characterized by the highly conserved N‑terminal ELR 
(glutamic acid‑leucine‑arginine) triad and agonists for the 
CXCR2 receptor. Their primary role is to attract and activate 
neutrophils  (102). Besides these well‑known properties, a 
small number of studies associated these chemokines with 
allergic inflammation. An important body of evidence related 
to the contribution of these chemokines regarding allergic 
inflammation in respiratory diseases was obtained through 
experimental animal murine models. Thus, it was observed that 
CXCL1, a chemokine expressed on macrophages, neutrophils 
and epithelial cells known for its role in angiogenesis, arte-
riogenesis, inflammation, wound healing, and tumorigenesis 
had an increased expression in mouse lung epithelial cells in 
sensitized animals with Anisakis, which suggest that allergens 
can induce airway inflammation by elevating Th2 and Th17 
responses (103). In addition, it was found that its concentration 
was increased in the BAL of cockroach‑sensitized mice where 
the allergen was administered intranasally during a period 
of 5 days, which shows that CXCL1 might have roles in the 
remodeling during asthma (71). The expression of CXCL1 was 
decreased in a murine model of AR when the experimental 
animals were treated with flagellin‑ovalbumin mixture (used 
as an adjuvant for immunomodulation) (104) and in a murine 
model of allergic severe asthma sensitization with house 
dust mites (HDM) when the researchers blocked the activity 
of IL17‑A and IL17‑F, which suggest that CXCL1 might be 
an important player in neutrophilic allergic lung inflamma-
tion (105).

The contribution of CXCL2 and CXCL3 to mediating 
normal and asthmatic airway smooth muscle cell  (ASMC) 
migration (through the ERK1/2 MAPK pathway) was demon-
strated in a study that used human ASMCs isolated from lung 
transplant donors, which suggest a possible role in the patho-
genesis of airway remodeling in asthma (106).

CXCL8 (interleukin‑8) is the primary cytokine involved 
in the recruitment of neutrophils to the site of damage or 
infection, representing one of the key mediators associated 
with inflammation. In some situations, IL‑8‑stimulated 
neutrophils could lead eosinophils to accumulate in the 
airways of asthma  (107). IL‑8 seems to contribute to the 
pathophysiology of allergic diseases through its roles in some 
aspects of these mechanisms. Serum IL‑8 levels were higher 
in patients with asthma (non‑allergic and allergic) compared 
with controls in a genetic study from Spain in adults (108) 
and in a pediatric population from Tunisia (109) due to the 
roles in neutrophil functions (release, chemotaxis, survival). 
Serum levels of IL‑8 were significantly higher in patients 
with allergic asthma compared with allergic rhinitis and 
controls (110), suggesting that IL‑8 is associated with more 
severe inflammatory response. In addition, higher levels of 
IL‑8 were found in BALF of asthmatic patients compared 
with healthy controls, the authors proposed that IL‑8 might 
augment eosinophil trans‑basement membrane migration 
by releasing superoxide anion, matrix metalloproteinase, 
leukotriene B4, and platelet‑activating factor (111). Elevated 
concentrations of IL‑8 were found in patients with AR/chronic 
sino‑sinusitis and concomitant nasal polyps (112,113). IL‑8 
levels were higher in nasal biopsy specimens from patients 
with persistent AR vs. controls (114). Pelikan demonstrated 
high concentrations of IL‑8 in tears from patients with AR 
after nasal provocation tests with allergen  (115,116). In 
conclusion, IL‑8 is a key player in the pathogenesis of asthma 
through its roles in neutrophil functions.

Moreover, it was shown that not only is allergic sensitiza-
tion related to elevated levels of IL‑8, but it is also related to 
pollution. For instance, it was found that diesel exhaust parti-
cles (DEP) induce expression of IL‑8 in nasal fibroblasts (117) 
and in primary nasal epithelial cells (NECs) (118), suggesting 
that air pollution might induce or aggravate allergic rhinitis 
through this chemokine (117).

Chemokines associated with other types of lymphocytes. Th9 
lymphocytes. CCL4 was significantly associated with a mix 
of lymphocytes (Th1, Th2, Th9, Th17) in subjects with severe 
asthma (119).

TFH lymphocytes. The plasma levels of CXCL13 were 
significantly elevated and correlated with a subset of TFH cells: 
TFH2 in patients with atopic asthma (120).

iNKT lymphocytes. A number of studies connected β and 
δ families of chemokines with these lymphocytes. NKT cells 
previously treated with CCL2 in contact with naïve T cells 
determined them to produce IL‑4 in a murine study (121). 
Another murine study demonstrated that the stimulation 
of NKT cells with a specific ligand‑α‑galactosylceramide 
enhanced ragweed‑induced IL‑4 and CCL11 produc-
tion  (122). The duet CCR2/CCL2 was reduced in control 
mice vs. OVA‑sensitized mice in a study that evaluated the 
expression of CD1d, an MHC‑1 like molecule, responsible for 
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presenting glycolipids to iTCR and iNKT cells conducting  
exacerbate airway inflammation and up‑regulating IgE 
production  (123). Along with other proteins, CXCL15 
contributed to iNKT regulated AHR via altering leukocyte 
chemotaxis in a murine study (124). Data from animal studies 
(murine) demonstrate that iNKT cell‑mediated XCL1‑XCR1 
axis promotes AHR by recruiting CD103+ DCs into the lung 
in patients with allergic asthma (125).

6. Conclusions

Interleukins were used in the last two decades in order to 
define and characterize the classical Th2/non‑Th2 endotype, 
as well as the newest Th2/Th17. As shown, CCs appear to 
be good candidates for a comprehensive characterization of 
endotypes.
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